Appendix

Description of the back-calculation method

Previous studies have demonstrated, through laboratory-based research, that the levels of CD4 and viral load in HIV-infected individuals exhibit
an inverse relationship over time, revealing the natural disease progression from HIV infection to clinical symptoms [1]. However, due to delayed
diagnosis in most HIV-infected individuals, CD4 changes after HIV infection cannot be observed immediately. Therefore, based on the decline of
CD4 over time in HIV-infected individuals, we used the square root of CD4 to fit the relationship between CD4 and time, constructing a CD4
elimination model to estimate the time of HIV infection of PLHIV.

Formula for back-calculation method based on the CD4 elimination model parameters
Linear elimination relationship between the square root of CD4 and the duration of infection based on a linear mixed effects model fitted to the
pattern of CD4 decline over time prior to ART initiation

JCDL(T) = a; + (b; X T)) + e;;

Where T; is the time interval between the date of HIV infection and the first CD4 test, e;; is the random error.

Calculating the estimated time from infection to diagnosis, based on CD4 elimination model fitted using HIV/AIDS data in the National AIDS
Case Report Database in China

_ firstCDy — a;

l bl




Additional file 1 Table S1 Estimates of the random intercept and random slope of the CD4+ T-cell elimination model, based on the CD4 elimination

model parameters estimated from HIV/AIDS data in the National AIDS Case Report Database in China [2]

Gender Age group | Route of transmission Estimated value of intercept (95% CI) Estimated value of slope (95% CI)
15-24 24.84(23.76, 25.92) -1.31(-1.33, -1.25)
25-34 23.94(22.86, 25.02) -1.37(-1.40, -1.33)
Male Homosexual
35-44 -1.53(-1.58, -1.47)
23.44(21.91, 24.96)
>45 -1.59(-1.68, -1.51)
15-29 24.42(22.64, 26.20) -1.21(-1.24, -1.18)
Male 30-39 23.17(21.25, 25.09) -1.27(-1.30, -1.24)
>40 24.04(21.28, 26.80) -1.48(-1.51, -1.44)
Heterosexual
15-29 23.80(21.49, 26.12) -1.22(-1.25, -1.19)
Female 30-39 22.55(17.73, 27.37) -1.27(-1.31, -1.23)
>40 22.62(20.37, 24.88) -1.46(-1.50, -1.41)
15-29 -1.18(-1.24, -1.12) -0.88(-0.91, -0.84)
Male 30-39 -1.12(-1.17, -1.07) -0.93(-0.97, -0.90)
>40 Others -1.06(-1.14, -0.98) -1.00(-1.05, -0.94)
15-29 -1.17(-1.30, -1.03) -0.98(-1.06, -0.90)
Female 30-39 -1.05(-1.17, -0.93) -1.04(-1.13, -0.95)
>40 -0.87(-1.04, -0.69) -1.17(-1.34, -1.00)




Formula for Poisson and quasi-Poisson segmented regression models
Calculating the change in outcome at “treat-all”, unadjusted for seasonality

logY, = by + by (t = T) + byx + bsx(t — T)

Where Y; is the outcome variable at time ¢, t represents the elapsed time in months since the start of the study, x is a dummy variable indicating
the implementation of “treat-all” policy, and T is the center time.

Calculating the change in outcome at “treat-all”, adjusted for seasonality

logY, = by + b, (t —=T) + byx + bsx(t —T) + b, sm( ) + bs cos( ) + by sm( ) + b, cos(
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Where sm(E), cos(?), SIH(E)’ cos(?) are two sine and cosine pairs of Fourier terms used to adjust the seasonality.

Counterfactual model, unadjusted for seasonality
lOth = bO + bl(t - T)

Counterfactual model, adjusted for seasonality

it
loth—b0+b1(t—T)+b4sm( )+b5COS( )+b6sm( )+b7cos( )



Sample R code for Poisson and quasi-Poisson regression models, using proportions of 30-day ART initiation as an example

# Load packages
library(tsModel)
library(tidyverse)
library(sandwich)
library(dplyr)
library(qcc)

# Centre time
list2$time _c <- list2$n - 18 # Time centered at the first month of “treat-all”

list2$time e <- list2%n - 60 # Time centered at the end of 2019

# Overdispersion test

qcc.overdispersion.test(list2$x)

# Quasi-Poisson regression model of proportions of 30-day ART initiation without adjusting for seasonality



model time <- glm(x ~ interruption + n + interruption:time_c, family = quasipoisson, list2)

summary(model time)

# Calculated the impact of “treat-all” at the end of 2019 without adjusting for seasonality
model time end <- glm(x ~ interruption + n + interruption:time_e, family = quasipoisson, list2)

summary(model time end)

# Look at residuals for autocorrelation
acf(residuals(model time, type = "deviance"))
pacf(residuals(model time, type = "deviance"))
acf(residuals(model time_end, type = "deviance"))

pacf(residuals(model time end, type = "deviance"))

# Calculate Newey-West standard errors, with the lag taking the optimal value calculated
est <- exp(c(coef(model time)["interruption:time_c"], coef(model time)["interruption"], coef(model time)["n"]))
sel <- sqrt(diag(NeweyWest(model time, prewhite = F)))["interruption:time c"|

se2 <- sqrt(diag(NeweyWest(model time, prewhite = F)))["interruption"]



se3 <- sqrt(diag(NeweyWest(model time, prewhite = F)))["n"]

Ib <- est * exp(-1.96 * c(sel, se2, se3))

ub <- est * exp(1.96 * c(sel, se2, se3))

table <- cbind(round(est, digits = 3), round(lb, digits = 3), round(ub, digits = 3))

table

# Calculate trend and confidence intervals after “treat-all”

V <- NeweyWest(model time, prewhite = F)

se <- sqrt(V["n", "n"] + V["interruption:time c", "interruption:time c"]+ 2 * V["n", "interruption:time _c"])
slope post <- sum(coef(model time)[c("n", "interruption:time c")])

lower <- slope post - 1.96 * se

upper <- slope_post + 1.96 * se

round(exp(cbind(slope post, lower, upper)),3)

# Quasi-Poisson regression model of proportions of 30-day ART initiation adjusting for seasonality
model time sea <- glm(x ~ interruption + n + interruption:time_c +harmonic(month, 2, 12), family = quasipoisson, list2)

summary(model time sea)
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