Appendix

Description of the back-calculation method

Previous studies have demonstrated, through laboratory-based research, that the levels of CD4 and viral load in HIV-infected individuals exhibit an inverse relationship over time, revealing the natural disease progression from HIV infection to clinical symptoms [1]. However, due to delayed diagnosis in most HIV-infected individuals, CD4 changes after HIV infection cannot be observed immediately. Therefore, based on the decline of CD4 over time in HIV-infected individuals, we used the square root of CD4 to fit the relationship between CD4 and time, constructing a CD4 elimination model to estimate the time of HIV infection of PLHIV.

Formula for back-calculation method based on the CD4 elimination model parameters

Linear elimination relationship between the square root of CD4 and the duration of infection based on a linear mixed effects model fitted to the pattern of CD4 decline over time prior to ART initiation

$$\sqrt{CD_4(T_i)} = a_i + (b_i \times T_i) + e_{ii}$$

Where T_i is the time interval between the date of HIV infection and the first CD4 test, e_{it} is the random error.

Calculating the estimated time from infection to diagnosis, based on CD4 elimination model fitted using HIV/AIDS data in the National AIDS Case Report Database in China

$$T_i = \frac{\sqrt{firstCD_4} - a_i}{b_i}$$

Additional file 1 Table S1 Estimates of the random intercept and random slope of the CD4+ T-cell elimination model, based on the CD4 elimination model parameters estimated from HIV/AIDS data in the National AIDS Case Report Database in China [2]

Gender	Age group	Route of transmission	Estimated value of intercept (95% CI)	Estimated value of slope (95% CI)
Male	15-24	- Homosexual	24.84(23.76, 25.92)	-1.31(-1.33, -1.25)
	25-34		23.94(22.86, 25.02)	-1.37(-1.40, -1.33)
	35-44		23.44(21.91, 24.96)	-1.53(-1.58, -1.47)
	>45			-1.59(-1.68, -1.51)
Male	15-29	Heterosexual	24.42(22.64, 26.20)	-1.21(-1.24, -1.18)
	30-39		23.17(21.25, 25.09)	-1.27(-1.30, -1.24)
	>40		24.04(21.28, 26.80)	-1.48(-1.51, -1.44)
Female	15-29		23.80(21.49, 26.12)	-1.22(-1.25, -1.19)
	30-39		22.55(17.73, 27.37)	-1.27(-1.31, -1.23)
	>40		22.62(20.37, 24.88)	-1.46(-1.50, -1.41)
Male	15-29	Others	-1.18(-1.24, -1.12)	-0.88(-0.91, -0.84)
	30-39		-1.12(-1.17, -1.07)	-0.93(-0.97, -0.90)
	>40		-1.06(-1.14, -0.98)	-1.00(-1.05, -0.94)
Female	15-29		-1.17(-1.30, -1.03)	-0.98(-1.06, -0.90)
	30-39		-1.05(-1.17, -0.93)	-1.04(-1.13, -0.95)
	>40		-0.87(-1.04, -0.69)	-1.17(-1.34, -1.00)

Formula for Poisson and quasi-Poisson segmented regression models

Calculating the change in outcome at "treat-all", unadjusted for seasonality

$$\log Y_{t} = b_{0} + b_{1}(t - T) + b_{2}x + b_{3}x(t - T)$$

Where Y_t is the outcome variable at time t, t represents the elapsed time in months since the start of the study, x is a dummy variable indicating the implementation of "treat-all" policy, and T is the center time.

Calculating the change in outcome at "treat-all", adjusted for seasonality

$$\log Y_{t} = b_{0} + b_{1}(t - T) + b_{2}x + b_{3}x(t - T) + b_{4}\sin(\frac{2\pi t}{12}) + b_{5}\cos(\frac{2\pi t}{12}) + b_{6}\sin(\frac{4\pi t}{12}) + b_{7}\cos(\frac{4\pi t}{12})$$

Where $\sin(\frac{2\pi t}{12})$, $\cos(\frac{2\pi t}{12})$, $\sin(\frac{4\pi t}{12})$, $\cos(\frac{4\pi t}{12})$ are two sine and cosine pairs of Fourier terms used to adjust the seasonality.

Counterfactual model, unadjusted for seasonality

$$\log Y_t = b_0 + b_1(t - T)$$

Counterfactual model, adjusted for seasonality

$$\log Y_{t} = b_{0} + b_{1}(t - T) + b_{4}\sin(\frac{2\pi t}{12}) + b_{5}\cos(\frac{2\pi t}{12}) + b_{6}\sin(\frac{4\pi t}{12}) + b_{7}\cos(\frac{4\pi t}{12})$$

Sample R code for Poisson and quasi-Poisson regression models, using proportions of 30-day ART initiation as an example

Load packages

library(tsModel)

library(tidyverse)

library(sandwich)

library(dplyr)

library(qcc)

Centre time

list2\$time_c <- list2\$n - 18 # Time centered at the first month of "treat-all"

list2\$time_e <- list2\$n - 60 # Time centered at the end of 2019

Overdispersion test

```
qcc.overdispersion.test(list2$x)
```

Quasi-Poisson regression model of proportions of 30-day ART initiation without adjusting for seasonality

model_time <- glm(x ~ interruption + n + interruption:time_c, family = quasipoisson, list2)
summary(model_time)</pre>

Calculated the impact of "treat-all" at the end of 2019 without adjusting for seasonality model_time_end <- $glm(x \sim interruption + n + interruption:time_e, family = quasipoisson, list2)$ summary(model time end)

Look at residuals for autocorrelation
acf(residuals(model_time, type = "deviance"))
pacf(residuals(model_time, type = "deviance"))
acf(residuals(model_time_end, type = "deviance"))
pacf(residuals(model_time_end, type = "deviance"))

Calculate Newey-West standard errors, with the lag taking the optimal value calculated

est <- exp(c(coef(model_time)["interruption:time_c"], coef(model_time)["interruption"], coef(model_time)["n"]))</pre>

sel <- sqrt(diag(NeweyWest(model_time, prewhite = F)))["interruption:time_c"]</pre>

se2 <- sqrt(diag(NeweyWest(model_time, prewhite = F)))["interruption"]</pre>

```
se3 <- sqrt(diag(NeweyWest(model_time, prewhite = F)))["n"]
lb <- est * exp(-1.96 * c(se1, se2, se3))
ub <- est * exp(1.96 * c(se1, se2, se3))
table <- cbind(round(est, digits = 3), round(lb, digits = 3), round(ub, digits = 3))
table</pre>
```

Calculate trend and confidence intervals after "treat-all"

V <- NeweyWest(model time, prewhite = F)

se <- sqrt(V["n", "n"] + V["interruption:time_c", "interruption:time_c"]+ 2 * V["n", "interruption:time_c"])

slope_post <- sum(coef(model_time)[c("n", "interruption:time_c")])</pre>

lower <- slope_post - 1.96 * se

upper <- slope_post + 1.96 * se

```
round(exp(cbind(slope_post, lower, upper)),3)
```

Quasi-Poisson regression model of proportions of 30-day ART initiation adjusting for seasonality
model_time_sea <- glm(x ~ interruption + n + interruption:time_c +harmonic(month, 2, 12), family = quasipoisson, list2)
summary(model_time_sea)</pre>

References

- 1. Fauci, A.S., et al., Immunopathogenic mechanisms of HIV infection. Annals of Internal Medicine, 1996. 124(7): p. 654-663.
- 2. Tang, L., Estimating the trend of new HIV infections in Honghe Prefecture, Yunnan Province based on the back-calculation method. 2020,

Chinese Centre for Disease Control and Prevention.