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1 Methods

1.1 Experimental datasets

1.1.1 Datasets: FMT from humans to GF (germ-free) mice (human-to-GF)

To parameterize our initial model to identify an ideal FMT (fecal microbiota transplantation)
donor profile without recipient data, we collected microbiome data (16S rRNA sequences) of both
human donors and murine recipients from 4 human-to-GF mouse FMT experiments, referred to as
human-to-GF cohorts and colored in light blue in all figures. The data used included: (1) ASVs of
the intervention (stool transplant) and (2) ASVs of the recipient (mouse) at different time points
post-FMT. Fecal samples were collected from the mice every week after the transplantation. The
samples were sequenced at the Azrieli Faculty of Medicine, Bar-Ilan University as previously
described [1]. The datasets included: (a) “gestational diabetes mellitus” or “GDM”: stools from
pregnant women with gestational diabetes and pregnant controls [1]; (b) “Baby”: stools from
infants that were and were not treated with antibiotics in the first days of life [2]; (c) “Allergy”:
stools from humans with IgE-mediated food allergies and healthy controls (data not published);
and (d) “Chemotherapy”: stools from women who had had breast or gynecological cancer and
were undergoing adjuvant chemotherapy [3]. The datasets used are described in Table 1.

1.1.2 Datasets: FMT from humans to humans

We collected microbiome data (16S rRNA sequences) of both human donors and human recipients
from 8 human-to-human FMT experiments, referred to as human-to-human cohorts and colored
in light orange in the figures. The datasets used are described in Table 2. For the clinical outcome
predictions (success is response vs failure of FMT treatment at different time points after the
FMT). We used 5 different cohorts: (a) inflammatory bowel disease (IBD) [4], as measured by
Mayo score 3 months after FMT [5], (b) irritable bowel syndrome (IBS) measured by a decline
in symptoms, (c)the response to PD-1 therapy in patients with melanoma [6], (d) ulcerative
colitis (UC) measured by simple clinical colitis activity index scores (where ≥ 2 is ill) [7], and (e)
antibiotics resistance (AR) measured by a decline in symptoms [7]. For more details see Table 3.

1.1.3 Microbiome characterization (human-to-GF and human-to-ABX mice)

DNA was extracted from all human and mouse fecal samples, using the MagMAX Microbiome
Ultra-Kit (Thermo Fisher, Waltham, MA) according to the manufacturer’s instructions and
following a 2-minute bead beating step (BioSpec, Bartlesville, USA). The V4 region of the bac-
terial 16S rRNA gene was amplified by polymerase chain reaction (PCR) using the 515F (AAT-
GATACGGCGACCACCGAGATCTACACGCT) barcoded and 806R (TATGGTAATTGTGT-
GYCAGCMGCCGCGGTAA) primers [8] with a final concentration of 0.04% of each primer
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and 0.5% of PrimeSTAR Max DNA Polymerase (Takara-Clontech, Shiga, Japan) in 50µl to-
tal volume. PCR reactions were carried out by 30-35 cycles of denaturation (95°C), annealing
(55°C) and extension (72°C), with final elongation at 72°C. PCR products were purified using XP
magnetic beads (Beckman Coulter, Indianapolis, IN) and quantified using the Picogreen dsDNA
quantitation kit (Invitrogen, Carlsbad, CA). Samples were then pooled in equal amounts, loaded
on 2% agarose E-Gel (Thermo Fisher, Waltham, MA), purified and sent for sequencing using
the Illumina MiSeq platform (Genomic Center, Azrieli Faculty of Medicine, Bar-Ilan University,
Israel).

1.1.4 Dataset download and processing

Most datasets studied here are publicly available in the NCBI website. Those were downloaded
using a newly developed package YaMaS github.com/YarinBekor/YaMAS. The Yamas package is
a comprehensive tool that combines various packages and tools, such as the SRA-toolkit https:
//trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software, QIIME2 [9], and DADA2
plugin [10]. Its primary function is to enable easy downloading of DNA (Deoxyribonucleic acid)
datasets from the NCBI (National Center for Biotechnology Information) and ENA (European
Nucleotide Archive). The package is designed to be user-friendly, efficient and simple, even for
non-programmers. The package follows a straightforward process. First, it downloads the raw
DNA dataset. It then selects the appropriate pipeline for data processing. To transform short
reads into fastq files, the package utilizes the SRA toolkit. To process 16S data type, it uses
DADA2 from the QIIME package for denoising and utilizes QIIME for clustering the data and
creating taxonomy, OTU, and phylogeny tree files. Conversely, for shotgun data, the package
relies on the metaphlan package [11] to cluster the data and generate all relevant files.

1.1.5 Data merging, preprocessing, and normalization

When combining datasets, we padded with zeros the ASVs that were missing in some of the
datasets. We applied the MIPMLP preprocessing [12]. For the models’ inputs, we merged the
donors’ ASVs to the species taxonomy, by the mean method and a log normalization was followed.
Notice that we analyzed the human-to-GF and human-to-human datasets separately.

1.1.6 Model parameters: Identifying ideal FMT donors and predicting FMT out-
comes

The first model aimed to predict the donor maximizing the post-FMT Shannon’s diversity index.
In addition, models were built to predict FMT outcome based on donor data alone, focusing on
predictions of relative abundances of all orders, the relative abundance of the 50 or 100 most
prevalent species in the recipient mouse or human samples, respectively, following FMT, and
presence/absence of the 50 or 100 most prevalent species in the recipient mouse or human sam-
ple respectively following FMT. Specific considerations and methods are described below.

Shannon’s diversity
As a measure of FMT donor quality, we used the Shannon alpha diversity (Shannon) of the mice
samples (recipients) t days after the transplant, si,t. Shannon’s diversity index quantifies the
uncertainty in predicting the species identity of an individual that is taken at random from the
dataset [13]. Mathematically, it is defined by Shannon diversity = −

∑s
i=1 pi · ln(pi), where p

is the proportion (n/N) of individuals of one particular species found (n) divided by the total
number of individuals found (N) and s is the number of species. High alpha diversity is related
to health, while low alpha diversity is related to different diseases.
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Order-level relative abundances
We predicted the relative abundances of the 10 (mouse) or 30 (human) different orders present
in the recipients after the transplant, si, based on donor sample profiles alone (a model per
order). The orders’ relative abundances were defined by merging the data at the order level in
the MIPMLP pipeline via the sum merge function. A relative normalization was applied to each
vector (see above).

Species-level relative abundances
Similarly, we predicted the relative abundances of the 50 most prevalent species of the recipients
after the transplant in mice, si, and of the 100 most prevalent species in human samples (a model
per specie). A relative normalization was applied to each vector (see above).

Species-level prevalence
Finally, we predicted the binary presence or absence of the 50 most prevalent species from the
mouse samples and of the 100 most prevalent species from the human samples after the trans-
plant, si (a model per specie).

FMT success
We also used our model to assess FMT outcomes in human-to-human FMT 5 clinical cohorts such
as IBD measured by the improvement in Mayo score, response to PD-1 treatment in melanoma
patients, etc.

1.2 Predictive models

When predicting outcomes, the time of the outcome was one of the input features of the model.
For the training of the models, all the time steps of each sample i, ti in the training set were
used.

We also added metadata (donor’s age, sex, and weight) when available. The missing meta-
data was completed by the median for the continuous variables, and by another category for the
binary ones.

Linear predictors
We predicted the recipient outcomes at each time point after the FMT, si,ti using some models
implemented in sklearn, such as: a KNN (K nearest neighbors) regressor, SVR (Support Vector
Machine regression) and Ridge regression [14, 15, 16]. The inputs of the models were the prepro-
cessed ASVs from MIPMLP, ai and a scalar of the number of days after the FMT ti. We used
a grid search over human to GF datasets and used the same hyperparameters for all the order
and specie tasks. The same hyperparameters were used for all the tasks of the human-to-human
datasets. No hyperparameter tuning was applied for the human-to-human tasks. For the best
hyperparameters, see Supp. Mat. Table S1 and for the search space see Table S4.

Decision tree models
The inputs of the models were the preprocessed ASVs from MIPMLP, ai and a scalar of the
number of days after the FMT ti. We used grid search in order to optimize the hyperparameters
only on the Shannon task on the human to GF datasets and used the same hyperparameters
for all the order and species tasks. The same hyperparameters were used for all the tasks of
the human-to-human datasets. No hyperparameter tuning was applied in the human-to-human
tasks. For the best hyperparameters, see Supp. Mat. Table S2 and for the search space see
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Table S5. We used the XGBOOST regressor of xgboost [17] as well as the Random Forest (RF)
regressor and classifier of sklearn [18].

Fully connected neural networks
We used two fully connected neural networks on the processed ASVs from the MIPMLP ai and
a scalar of the number of days after the FMT ti. We used dropout L1 and L2 regularization
to the network to avoid overfitting. We ran Neural Network Intelligence (NNI) [19] to find the
best activation function and the number of neurons in each layer only on the Shannon task over
the human-to-GF cohorts and used the same hyperparameters for all the order and specie tasks.
The same hyperparameters were used for all the tasks of the human-to-human datasets. No hy-
perparameter tuning was applied for the human-to-human tasks. For the best hyperparameters,
see Supp. Mat. Table S2 and for the search space see Table S5.

iMic - Image Microbiome
iMic translates the microbiome ASVs vectors to images, by using the structure of the taxon-
omy tree and the relations between the taxa in each group [20]. Once the donors’ microbiome
input was translated to an image, we used CNNs followed by two fully connected layers for the
prediction itself. We fine-tuned the model’s hyperparameters using an NNI framework on 10
cross-validations only on the Shannon task over the human-to-GF cohorts. We then used the
same hyperparameters for all the order and specie tasks. The same hyperparameters were used
for all the tasks of the human-to-human datasets. No hyperparameter tuning was applied for
the human-to-human tasks. The best hyperparameters used are in Supp. Mat. Table S3 and the
search space can be found in Table S6. We further used iMic with the same hyperparameters with
additional metadata of the donors (concatenated to the flattened CNNs’ output before the fully
connected layers), including the donors’ age, sex and weight at the transplant. We used the same
metadata to predict all the time points after the FMT. We filled the missing data of the continu-
ous variables by the variable median of the cohort. There was no missing data in the categorical
variables. Notice that for the success-failure predictions, we used the same hyperparameters of
all the human-to-human tasks. No further hyperparameter tuning was applied.

1.3 Experimental setup

1.3.1 Training test split

The data was divided into three groups. The training set consisted of 60% of the data, a validation
set that contained 20% of the data for hyperparameter tuning (in the human to GF cohort only)
and early stopping and an external test set of another 20% of the data, for the task evaluation
(on which all the results are reported here). During the split, we ensured all the samples of the
same mouse were in the same training, validation, or test set to prevent data leakage.

For all learning tasks, we used 10 cross-validations for the stability of the results. The results
were reported as an average of 10 runs on the external test set.

1.3.2 Hyperparameter tuning

We computed the best hyperparameters for each model (KNN, SVR, LR, RF, XGBOOST,
NN and iMic models) over the human-to-GF cohorts on the Shannon diversity task using a
10-fold cross-validation [21] on the internal validation only for the Shannon prediction. The
same hyperparameters were used for all the other taxa frequency prediction tasks. We chose the
hyperparameters according to the average R2 on the 10 validations. The platform we used for the
optimization of the hyperparameters was NNI for the more complex models (NN, XGBOOST,
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RF, and iMic models). For the simple models (KNN, SVR and Ridge), a grid search was
applied. The tuned hyperparameters were: the coefficient of the L1 loss, the weight decay (L2-
regularization), the activation function (RelU,elU or tanh, which makes the model non-linear),
the number of neurons in the fully connected layers, dropout (a regularization method which zeros
the neurons in the layers in the dropout’s probability), batch size and learning rate. For the CNN
models, we also had the kernel sizes as well as the strides and the padding as hyperparameters.
The search space we used for each hyperparameter were: the L1 coefficient was chosen uniformly
from [0,1]. The weight decay was chosen uniformly from [0,0.5]. The learning rate was one of
[0.001,0.01,0.05]. The batch size was [32, 64, 218, 256]. The dropout was chosen universally from
[0,0.05,0.1,0.2,0.3,0.4,0.5]. We chose the best activation function from RelU, ElU and tanh. The
number of neurons was chosen relative to the input dimension. The first linear division factor
from the input size was chosen randomly from [1,11]. The second layer division factor was chosen
from [1,6]. The kernel sizes were defined by two different hyperparameters, a parameter for its
length and its width. The length was in the range of [1,8] and the width was in the range of
[1,20]. The strides were in the range of [1,9] and the channels were in the range of [1,16]. For
the search space tables see Supp. Mat. Tables S4-S6. No hyperparameter tuning was done for
the human-to-human tasks. We used the appropriate hyperparameters from the human-to-GF
tasks.

1.4 Validation experiment

1.4.1 Identifying most and least optimal donors for the FMT validation experiment

Three groups were defined from the predicted properties (plotted as two groups for the sake of
simplicity in Fig. 3 A). The first group is samples predicted to have a high Shannon after the
FMT and the second group is predicted to have a low one (representing the top and bottom 20 %
of the expected values. Given the association between the donor age and the transplant outcome,
and that the entire second group was comprised of child donor samples, we also identified a third
group, age-matched to the first, but expected to result in low diversity in donors (though not as
low as the second group).

1.4.2 FMT experiment

After mice were pretreated with antibiotics and randomized into groups, FMT was administered
via oral gavage as previously described [22]. Briefly, several grams of human donor fecal matter
were resuspended in sterile PBS. 200µl of the solution was then delivered directly to the mouse’s
stomach using a flexible feeding tube. Two mice received FMT from each donor and then were
housed together. The FMT was repeated for a second and final time 1 week after the first
FMT to improve engraftment. Fecal samples were collected for microbiota profiling, and mice
weights were recorded before each FMT and once per week for the six weeks following the second
FMT, after which the mice were euthanized. Fecal microbiota changes were profiled through
the experiment following FMT, and data were used to test model predictions of (1) Shannon
diversity and also of another focal parameter - relative abundances at the (2) order level.

1.5 Synthetic community compilation

1.5.1 Genetic Algorithm (GA)

100 simulated ”parent” donor populations were randomly chosen from all the simulated donor
populations of all the cohorts (human-to-GF), ai (Fig. 6 A. The following steps were then applied:
step A). A binary representation, bi, of the MIPMLP preprocessed donor vectors, ai, was created
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for each donor (Fig.6 A step B). Each MIPMLP preprocessed donor vector, ai, got into the pre-
trained iMic model with a scalar of 7 days after FMT. iMic returned the predicted outcome
of each recipient (Fig. 6 A, step C). All the predicted outcomes, si, were used for the fitness
function for selection. We used the following fitness function:

fitnessmax(si, bi) = si − sum(bi) · γ, (1)

such that sum(bi) represents the number of non-zero taxa in the donor sample, and γ is a
hyperparameter that controls the importance of solving the problem with minimum non-zero
taxa. For the minimization tasks, we used the following fitness function:

fitnessmin(si, bi) = si + sum(bi) · γ, (2)

such that textsum(bi) represents the number of non-zero taxa in the donor sample, and γ is a
hyperparameter that controls the importance of solving the problem with maximum non-zero
taxa.

Note that we do not explicitly require a given number of taxa in the optimized microbe
combination. Instead, we penalize that by assuming a cost to each different microbe. As such, a
new microbe is only added if it significantly improves the required outcome. Also, the limitation
is distinct for each candidate donor. Each taxon can be separately present in each candidate
combination.

To complete the donors’ parents of the next generation a mutation (see below) occurs with
a probability of 0.3, and a recombination (see below) occurs with a probability of 0.3 (Fig. 6
A, step E). Then the stopping rule is checked. If the stopping rule is met, the donors of step E
are returned; otherwise, the new generation of donors from step E is the initial values in step C,
till the stopping rule is met. The GA was applied for 25 generations since it converged within
this number of generations. In mutations, a zero entry of the binary vector bi from the 30 new
optimized donors is replaced by one vector with a probability of 0.3. Then the entry of the
MIMPLP preprocessed ASVs vector, a′i is changed, respectively. In recombinations, half of a
sample ai and half of a sample aj from the 30 new optimized donors are concatenated into a new
recombined sample, a∗k.
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2 FMT studies analysis

2.1 Microbiome properties distribution analysis

Figure 1: A, C. Shannon distributions in human-to-GF cohorts (A) and in human-to-human
cohorts (C). B, D. Overall orders distributions in human-to-GF cohorts (B) and human-to-
human cohorts (D).
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Figure 2: Orders distributions in the human-to-GF cohorts. Some orders distributions are con-
sistent over the different cohorts, such as Bacilles and Desulfovibrionales, while others are not,
such as Bacteroidels and Clostridiales.
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Figure 3: Orders distributions over the datasets of the human-to-human cohort, as in the human-
to-GF cohorts.
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2.2 Limited relation between donor and recipient properties.
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Figure 4: Limited relation between donor and recipient properties. A-J. Scatter plots of donor’s
property vs recipient’s property. The black line represents equal values. Each shape represents
a cohort. The dots represent the Baby dataset, the stars represent the GDM dataset, the Xs
represent the Chemotherapy dataset, and the triangles represent the Allergy dataset.
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Figure 5: Limited relation between donor and recipient properties in the human-to-human anal-
ysis. A-ZD. Scatter plots of donor’s property vs recipient’s property. The plot is similar to
the plot above. Orders with 0 values for all recipients or all donors were removed. Each shape
represents samples from different cohorts as assigned in Fig. 1 C.
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3 The recipient’s properties can be predicted only from
the donor’s sample
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Figure 6: The recipient’s properties can be predicted only from the donor’s sample in human-to-
GF cohorts. A. Average AUC (of presence-absence predictions) and SCC (Spearman correlation
coefficient) (of relative abundance predictions) over 10 cross-validations (CVs) of the 50 most
frequent species in the cohorts. The left bars represent the AUCs and the right bars represent
the SCCs. B - C. Histograms of average AUCs (B) and average SCCs (C) of iMic2 and RF,
where iMic2’s results are in pink and RF’s results are in light blue. In the relative abundances
predictions (most of the species results are absent for the RF since it predicts 0 abundance for
all the samples. D. Adding metadata of age, sex, and weight to the iMic2 model improves the
prediction results of the Shannon and the order’s relative abundances. The x-axis represents the
model, the y-axis represents the average SCC over 10 CVs. The black bars represent the learning
with the metadata, and the pink bars represent the original learning with no added metadata.

14



15



Figure 7: Recipient’s orders can be predicted from donor’s samples only (humans-to-GF). Differ-
ent models’ evaluation scores of recipient’s relative abundances SCC. The x-axis represents the
model. The Ridge, KNN and SVR models are in blue, the networks and trees - XGBOOST and
NN are in blue, and the structure-based CNNs - iMic-2 is in pink. The standard errors (error
bars) over the 10 CVs are in black. The stars represent the significance of p-value * - p ≤ 0.05,
** - p ≤ 0.01, *** - p ≤ 0.001.

Figure 8: 10CV vs LODO (leave-one-dataset-out). The x-axis represents the average SCC over
10 CVs of the iMic model on a mixed dataset (human-to-GF). The y-axis represents the SCC
of an iMic trained on 3 datasets (Allergy, GDM and Baby) and tested on the Chemotherapy
dataset. The black line is y = x, where the SCC of the CVs is equal to the SCC of the LODO.

16



Figure 9: Recipient’s orders can be predicted from donor’s samples only (human-to-human
datasets). Different models evaluation scores of recipient’s relative abundances SCC. The colors
and symbols are as above (orange for the non-iMic models and pink for the iMic model).
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4 Models hyperparameters

All models’ hyperparameters were optimized on a validation set of 20% of the data. The search
was applied by a grid-search to the simple models (KNN, SVR and Ridge) and by an NNI to the
more complicated models (NN, XGBOOST,iMic1 and iMic2).

4.1 Hyperparameters used

Table 1: Simple models’ (KNN, SVR, Ridge) hyperparameters used.
KNN SVR Ridge

Number of neighbors 5 - -
Distance metric minkowsky - -
Regularization - 1 1

Kernel - rbf -
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Table 2: NN RF and XGBOOST’s hyperparameters used
NN RF XGBOOST

Booster - - gbtree
Criterion - gini -

Number of trees - - 100
Learning rate 0.001 - 0.3
Max depth - None 5

L1 regularization 0.59 - 0.5
L2 regularization 0.006 - 1.5

Activation function - - elU
Dropout - - 0.05

Linear dimension 1 317 - -
Linear dimension 2 126 - -

Batch size 256 - -

Table 3: iMic’s models hyperparameters used.
iMic1 iMic2

Learning rate 0.001 0.001
L1 regularization 0.632 0.563
L2 regularization 0.009 0.0005

Activation function elU relU
Dropout 0.3 0.1

Linear dimension 1 (div) 4 6
Linear dimension 2 (div) 5 11

Batch size 64 128
Kernel size 1 first convolution layer

(rows)
3 4

Kernel size 2 first convolution layer
(columns)

17 12

Kernel size 1 second convolution layer
(rows)

- 2

Kernel size 2 second convolution layer
(columns)

- 5

Stride first convolution layer 5 1
Stride second convolution layer - 1
Padding first convolution layer 0 2

Padding second convolution layer - 0
Channels 1 14 7
Channels 2 - 4
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4.2 Search space fields of hyperparameters

Table 4: Simple models (KNN, SVR, Ridge) hyperparameters search space
KNN SVR Ridge

Number of neighbors {3,5,7,9} - -
Distance metric {minkowski,euclidean,manhattan} - -
Regularization - [0,1] [0,1]

Kernel - {rbf,linear,sigmoid,poly} -

Table 5: NN RF and XGBOOST’s hyperparameters used
NN RF XGBOOST

Booster - - {”gbtree”,”gblinear”,”dart”}
Criterion - {”gini”,”entropy”,”log loss” -

Number of trees - - {10,50,100,150,200}
Learning rate 0.001 - [0,1]
Max depth - {None,3,4,5,10,20} {3,4,5,6}

L1 regularization [0,1] - [0,1]
L2 regularization [0,0.05] - {0,0.5,1,1.5,2}

Activation function {”relU”,”elU”,”Tanh”} - -
Dropout [0,0.5] - -

Linear dimension 1 [1,320] - -
Linear dimension 2 [1,200] - -

Batch size {32,64,128,256} - -
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