
 1 

Supplementary Appendix 

Table of contents 

Section S1: Additional methods 2 

a) Data sources and further cohort information 2 

b) Sepsis label annotation 2 

c) Exclusion criteria 3 

d) Human subject data 3 

e) Machine learning methods 3 

f) Feature engineering 4 

g) Variable importance 4 

h) Experimental setup 5 

i) Evaluation and statistical analyses 5 

Section S2: Additional analyses 6 

a) Comparison of dataset pooling and predictor pooling 6 

b) Model calibration 6 

c) Temporal analysis 6 

d) Antibiotics analysis 6 

Section S3: Figures 7 

Figure S1: Study flow chart of filtering steps 7 

Figure S2A: Data harmonisation 8 

Figure S2B: Sepsis-3 label 8 

Figure S3: Comparison of two alternative suspicion of infection tags 8 

Figure S4: Classification performances on the AUMC dataset. 9 

Figure S5: Classification performances on the eICU dataset. 10 

Figure S6: Classification performances on the HiRID dataset. 11 

Figure S7: Classification performances on the MIMIC-III dataset. 12 

Figure S8: Additional Shapley distributions of the raw measurements. 13 

Figure S9: Variable importances including non-physiological signals. 14 

Figure S10: Performance ablations. 15 

Figure S11: Pooling datasets during training. 16 

Figure S12: Prediction task visualisation 16 

Figure S13: Model reliability before calibration 17 

Figure S14: Model reliability after calibration 18 

Figure S15: Temporal analysis of performance 19 



 2 

Section S4: Tables 20 

Table S1A: Variables used for sepsis prediction 20 

Table S1B: Variables used for sepsis prediction (continued) 21 

Table S2A: Variables used for clinical baseline scores. 21 

Table S2B: Variables used for clinical baseline scores 22 

Table S2C: Variables used for clinical baseline scores 22 

Table S2D: Variables used for clinical baseline scores 23 

Table S2E: Variables used for clinical baseline scores 23 

Table S2F: Variables used for clinical baseline scores 24 

Table S3: Additional details on the hyperparameters of the deep learning models 24 

Table S4: Patient characteristics 25 

Table S5: Variable units and valid ranges 26 

Table S6: Patient characteristics (development set) 28 

Table S7: Patient characteristics (test set) 30 

References 32 

 

 

Section S1: Additional methods 

 
a) Data sources and further cohort information 

In this study, electronic health record data was harmonized from four large ICU databases (versions are provided wherever 

available): i) AUMC: 1.0.2, ii) eICU: 2.0, iii) MIMIC-III: 1.4, and iv) HiRID: 1.1.1. Hourly-resolved sepsis annotations 

were implemented using the Sepsis-3 definition1. Depending on the database, the data were mostly collected in the last 

decade. Specifically, for AUMC between 2003 and 2016, for eICU between 2014 and 2015, for MIMIC-III between 2001 

and 2012, for HiRID between 2008 and 2016. Hence, all included ICU datasets have no temporal overlap with the COVID-

19 pandemic. The used variables were modeled using the open-source software package ricu. Additionally, in our 

supplemental data, we provide SNOMED codes for the used variables. An additional data source, the Emory dataset of the 

Physionet 2019 Computing in Cardiology Challenge2, was intended to be included into this study. However, due to low 

availability of variables (only 35 variables overlapped with our set of 63 variables), as well as a preprocessed sepsis label 

that did not follow our implementation of Sepsis-3, this dataset was removed from our set of cohorts. 

 

b) Sepsis label annotation 

The Sepsis-3 criterion defined sepsis as co-occurrence of suspected infection and a SOFA increase of two or more points. 

We followed the approach of the original authors as closely as possible1 3. Suspected infection was defined as co-occurrence 

of antibiotic treatment and body fluid sampling. If antibiotic treatment occurred first, it needed to be followed by fluid 

sampling within 24 hours. Alternatively, if fluid sampling occurred first, it needed to be followed by antibiotic treatment 

within 72 hours in order for it to be classified as suspected infection. The earlier of the two times is taken as the suspected 

infection (SI) time. After this, the SI window is defined to begin 48 hours before the SI time and end 24 hours after the SI 

time. Within the SI window, a SOFA increase of two or more points is defined as the time of sepsis onset. While to our 

understanding the original Sepsis-3 definition is not committal on how to define the time of sepsis onset, we use the moment 

of SOFA increase as this makes it likely that both organ dysfunction and infection are co-present (for instance, infection 

may be clinically suspected with delay). By contrast, if SI time were used for defining sepsis onset time, we expect that in 

many cases, time points of patients prior to sepsis (e.g., still suffering from a focal infection) would be mislabelled as septic 

which could dilute the phenotype. Fig. S2B provides a visual representation of our implementation of Sepsis-3. Table S2D 

and Table S2E list all concepts that were used for constructing the SOFA score. SOFA is a composite score to assess the 

damage of different organ systems which is calculated over a look-back window of 24 hours. Consistent with previous 

works, missing values of SOFA components resulted in a score of 0 for those components.  For the SOFA components, 
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there are two remarks we make about the score construction. For all patients who were sedated, we set the Glasgow Coma 

Scale (GCS) score to 15. Furthermore, the 24-hour urine output is not evaluated before 12 hours into ICU stay and 

appropriately scaled during hours 12 through 24 into ICU stay. 

The eICU dataset reports only a small number of body fluid samplings, while the HiRID dataset reports no body fluid 

samplings at all. For this reason, the original definition of suspected infection is hard to implement on these datasets. 

Therefore, on these two datasets, we used an alternative definition of suspected infection, which was defined as a co-

occurrence of multiple antibiotic administrations. We then tested whether the alternative definition coincided with the 

original definition on the MIMIC-III and AUMC datasets, where both antibiotic treatment and fluid sampling were reported.  

The comparison of the two definitions, in terms of Venn diagrams, is given in Fig. S3, where we use data prior to filtering 

of early onsets. What can be observed is that on the MIMIC-III dataset, the two definitions overlap to a large extent (Jaccard 

similarity 0.69). On the AUMC dataset, the multiple antibiotics definition was broader than the original definition, but it 

included almost all patients in the original definitions (Jaccard similarity 0.42). The reason for this was that the majority of 

admissions in the AUMC database were surgical, and such patients are frequently prescribed antibiotics for prophylactic 

purposes. Finally, a comparison of the two definitions on the subset of non-surgical admissions in the AUMC database 

showed a very strong overlap (Jaccard similarity 0.78). 

 

c) Exclusion criteria 

This section defines the exact exclusion criteria that were used for patient filtering. The steps are also visually shown in the 

flow diagram in Fig. S1.  Namely, the following filtering steps were applied: 

a) non-adult patients (< 14 years) were excluded, 
b) hospital centres in the eICU dataset that had low Sepsis-3 prevalence were removed (< 15%), as it is likely that such 

hospitals would contribute negative cases (controls), which might in fact correspond to Sepsis-3 cases, but are not 

labelled as such due to data missingness; the list of hospital IDs that were used can be found in the 

config/cohorts.json file in the code repository. 

Furthermore, we excluded patients that satisfied at least one of the conditions outlined below: 

i) an ICU length of stay shorter than 6 hours, 
ii) recorded measurements at fewer than 4 different hourly time points, 
iii) a missing data window longer than 12 hours, 
iv)  the onset of sepsis outside of the ICU stay, 
v) the onset of sepsis before 4 hours into ICU stay, or after 168 hours into ICU stay. 

To detect (and penalise) delayed alarms, we include 24 hours of data after sepsis onset, which means that for sepsis cases 

we consider the first time window of up to 168 + 24 hours, or 7 days (plus 1 day buffer). Accordingly, for controls we 

include all data up to 168 + 24 hours into ICU stay. 
 

d) Human subject data 

The data in MIMIC-III has been previously de-identified, and the institutional review boards (IRBs) of the Massachusetts 

Institute of Technology (No. 0403000206) and BIDMC (2001-P-001699/14) approved the use of the database for research. 

The eICU database is released under the Health Insurance Portability and Accountability Act (HIPAA) safe harbour 

provision. The re-identification risk was certified as meeting safe harbour standards by Privacert (Cambridge, MA) (HIPAA 

Certification no. 1031219-2). The IRB of the Canton of Bern approved the HiRID data collection and its anonymised use 

for research. The AUMC dataset was certified according to NEN7510 (ISO 27001), which ensures that strict information 

governance protocols are in place for the protection of source data. Furthermore, according to the original source4, two 

independent teams auditing the project reported that the design, database management and governance were state-of-the-

art, and therefore the data was considered as anonymous information in the context of the General Data Protection 

Regulation. 

 

e) Machine learning methods  

In this study, we investigated a comprehensive selection of supervised ML approaches. This includes i) deep self-attention 

models (attn)5 ii) recurrent neural networks employing gated recurrent units (gru)6 iii) LightGBM gradient boosting trees 

(lgbm)7, and iv) LASSO-regularised8 logistic regression (lr). All models were tuned to minimise the binary cross-entropy 

loss of the prediction score with the binary sepsis label on the time-point level. For the non-deep classifiers, we ran a 

randomised hyperparameter search with 50 iterations of a stratified 5-fold cross-validation of the first training split. For the 

deep learning models depth, width, learning rate, batch size, and weight decay were selected based on a dedicated online 

validation split of the training data. The performance in terms of cross-entropy loss on this split was monitored during 

training and the model state where the performance was best was used for the final evaluation. The hyperparameter selection 

process was split into two stages: first, a search over a coarse grid (see Table S3 for the exact values) was performed by 

https://docs.google.com/document/d/1rI0oTtATjywkFuIqLtdhf_r0xkazsz0q/edit#heading=h.2r0uhxc
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randomly selecting 25 of the possible parameter combinations and evaluating the models on them. Afterwards a second 

finer grid around the previously selected parameters was constructed and further 25 randomly selected parameter 

combinations were evaluated. The model architecture (depth and width) was not changed in the second stage. All models 

were trained with a positive weight dependent on the class imbalance. Training was stopped after 100 epochs (i.e., iterations 

through the dataset) and the hyperparameter search was always performed on the training split of the first repetition of 

train-validation splitting. Finally, using the best hyperparameters, for each method 5 repetition models were fitted on 5 

different repetitions of train-validation splitting of the development data. This strategy was applied to each database 

independently. 

Next, we list more details about the used ML architectures, starting with the deep self-attention model (attn). First, each 

position (pos) (the relative time step measured as hours since ICU admission) is embedded with a 10-dimensional positional 

encoding (PE) which is computed as follows:  𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = sin(𝑝𝑜𝑠 ∙ 𝑠𝑖) and  𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = cos(𝑝𝑜𝑠 ∙ 𝑠𝑖), where 

𝑖 enumerates 5 different time scales that are being used from 0 to 4, and 𝑠𝑖  indicates the actual time scaling factors that are 

computed as: 𝑠𝑖 = 𝑎 ∙  exp (
−log(

𝑏
𝑎

) ∙ 𝑖

𝑆−1
), where 𝑎 and 𝑏 represent the minimal and maximal time scales, with 𝑎 = 1 and 𝑏 =

500, and 𝑆 = 5 denoting the number of time scales that are employed. Next, the attn model consists of a first linear layer 

that maps the 59-dimensional input time series (concatenated with 10 dimensions of the positional encoding) to a model 

dimension d which is treated as a hyperparameter. Then, two Transformer layers are sequentially applied that each consist 

of the following components (that are also sequentially applied): 

1. an 8-head multi-head attention layer, which is followed by 

2. a residual connection that combines the attention output (after applying dropout) with the Transformer layer’s 

input 

3. a feedforward Multilayer perceptron that has a single hidden dimension of size 4 ∙ d and that uses a rectified 

linear unit activation, followed by  

4. a final residual connection combining the outputs of step 2 and 3. 

Causal masking is applied to the multi-head attention layers to prevent the leakage of future information. After the 

Transformer layers, a final linear layer projects the d-dimensional hidden representation to a one-dimensional output (the 

logits).  For the recurrent neural network employing Gated Recurrent Units (gru), we provided the time series of 59 input 

variables as sequential input to this recurrent architecture. Static variables were used as initial state of the recurrent model 

via the projection of a linear layer. For gru, we allowed a network depth of up to 3 layers (Table S3). The LightGBM model 

was trained by randomly sampling configurations from the following choice of hyperparameters. Number of estimators: 

100, 300, 500, 1000, 2000; Boosting type: gbdt, dart; learning rate: 0.001, 0.01, 0.1, 0.5; number of leaves: 30, 50, 100; 

L1-regularisation strength: 0, 0.1, 0.5, 1, 3, 5. The logistic regression model was optimized by allowing for two solvers: 

liblinear and saga. Additionally, L1-regularisation was employed whereas for the regularization strength parameter, the 

range between 10-3 and 102 was partitioned into 50 parameter choices that were equally spaced (in log space). 

 

f) Feature engineering  

For the 59 temporal variables (vital signs and lab tests), hourly intervals were considered and the median measurement 

value was taken as representative value of each interval. If no measurement occurred in an interval, it would be treated as 

a missing value (see below in this section). 

For the included non-deep classifiers, which were not  originally  designed for sequential data, we extracted 1,269 features 

based on multi-scale look-back statistics (mean, median, variance, minimum and maximum over the last 4, 8, and 16 hours), 

measurement counts, missingness indicators, the raw measurement values of the current time step, and hand-crafted 

features derived from domain knowledge (for instance shock index, oxygenation index, or available  lab and vital 

components of baseline scores like SOFA,  SIRS, or MEWS).   For the deep models, which are capable of automatically 

learning feature representations from sequential data, we refrained from employing manual multi-scale look-back statistics, 

resulting in 190 features including 59 observed measurements, 59 missingness indicators, 59 measurement counts, 9 

derived domain-knowledge features (ratios and partial scores) and 4 static variables representing demographic information. 

All features were standardised on the respective training split by computing the mean and standard deviation from all 

measurements of a given variable (across time). Missing values were accounted for with a missingness indicator feature 

while the missing measurement was imputed with the feature mean (i.e., a value of zero after standardisation). Validation 

samples were standardised using the standardisation moments calculated from the given training split, respectively.  

During preliminary experiments, we observed that including the 4 static variables had a slight detrimental effect on 

performance of the attention model (not on the other models); we therefore discarded this information specifically for the 

attention model. 

 

g) Variable importance  

We measured the importance and relevance of individual features by calculating Shapley values9 via the integrated 

gradients method10 for our attention-based deep learning model. This method “explains” a prediction of a trained model by 

assessing the contribution of each feature. This enables us to explain and interpret the predictions of a model in a unified 

manner, which even accounts for the directionality of an effect. We focused on (patho-)physiological signals by restricting 

https://docs.google.com/document/d/1rI0oTtATjywkFuIqLtdhf_r0xkazsz0q/edit#heading=h.37m2jsg
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ourselves to “raw” measurements, i.e., we discarded count variables, missingness indicator variables, and derived features. 

All computations were performed on the dataset-specific held-out test split (with the model having no access to such test 

data during training, as described in Section S2h). For this, we consistently inspected the model as fitted on the first 

repetition split of the development split. We sampled 500 patient stays at random from each dataset and repeated this 

procedure five times, as the implementation of integrated gradients precludes calculations on the full dataset due to 

excessive memory requirements. Since we were specifically interested in contributions ahead of a potential sepsis onset, 

we chose the time point with the maximum model prediction as an anchor for each patient stay.  

For each patient, we then focused on how the model utilised such changes in the period of up to 16 hours preceding the 

time step at which the prediction score was maximal (making the resulting time windows at most 16 hours long) and 

calculated Shapley values for each of those time points. The advantage of this procedure is that it restricts our view to 

recent time points, making the Shapley values more pertinent for a specific prediction, as opposed to incorporating a 

potentially large number of time points, which may in turn result in de-emphasising a potential signal.  

 

h) Experimental setup  

All datasets were split into a development set (90%) and a held-out test set (10%). For 5 independent repetitions, the 

development set was randomly divided into a training set and validation set such that they accounted for 80% and 10% of 

the total data. All splits were stratified to preserve the dataset-specific sepsis prevalence. We optimised all ML models on 

the first partition (out of 5 repetitions) of the development set, whereas the validation split was used for fine-tuning 

hyperparameters. Next, each model was refitted on the respective train split of each of the five repetitions, which allowed 

us to assess model robustness with respect to varying training data. Finally, all performance measures are reported on the 

respective held-out test split. To maximise comparability between internal and external evaluations, in both settings, 

identical test splits are evaluated. For the sake of performance metrics being comparable across datasets, upon testing time 

we harmonised the prevalence of sepsis cases to the across-dataset average of 17%. This was achieved by randomly 

subsampling either controls for increasing the prevalence, or cases for decreasing the prevalence. To ensure that valuable 

case information is not lost during this procedure, we repeated all subsamplings 10 times and confirmed that the coverage 

of sepsis cases is above 98.3%. The across-dataset average of 17% was computed at a stage where an additional dataset 

from the Emory hospital was still included in our cohort. It was removed during the revision process as it limited the joint 

feature set of our overall cohort. Nevertheless, we kept the 17% prevalence average, that was computed on a larger cohort, 

more closely reflecting the ground truth. For fine-tuning, a given pre-trained model was fine-tuned on a small split of the 

testing database (of size 10%) which was independent from the testing split used for final evaluation. 

 

i) Evaluation and statistical analyses 

We formulated the problem of detecting sepsis as an online prediction task, where a model is continuously provided with 

new data to make the next, hourly prediction for a given patient. This setup was chosen in order to simulate a realistic 

deployment setting already during the (retrospective) model development phase. By contrast, to devise a clinically sensible 

model evaluation strategy, we report the following performance metrics on the patient level:  i) area under the ROC curve 

(AUC) and ii) positive predictive value (PPV) and earliness for a fixed sensitivity of 80%. In both cases, we considered the 

set of all observed unnormalised prediction scores (logits) and divided them into 100 evenly spaced thresholds. For each 

threshold, we swept through the prediction scores of an ICU stay and triggered an alarm the first (and only the first) time 

the prediction score surpassed the current threshold.  The set of raised alarms was then used to fill the cells of a confusion 

matrix, where a sepsis case with an alarm was considered true positive, a control ICU stay without an alarm a true negative, 

and so on. ROC curves were then computed from these confusion matrices over all thresholds. For the second measure, we 

determined the threshold with 80% recall (or sensitivity) and reported the precision (or positive predictive value) as 

obtained from the confusion matrix corresponding to this threshold, as well as alarm earliness, computed as the median 

number of hours the alarm preceded sepsis onset. In case there was no threshold with exactly 80% recall, we linearly 

interpolated all measures based on the two closest thresholds. This evaluation strategy is conservative in that no repeated 

alarms (that would improve recall at the cost of alarm fatigue) are permissible. While this makes recognising sepsis cases 

more challenging, it also guarantees that at most only a single false alarm can be raised in a control stay. 

Means and standard deviations (SDs) of these performance measures are estimated by first averaging the measures over 10 

subsamplings for each repetition split and by then computing mean and SD over the 5 repetitions of the training/validtion 

splits of the development part of each database. 95% confidence intervals are computed as percentile intervals by treating 

all of these 50 iterations as bootstrap samples.  

Hypothesis testing was conducted using the Wilcoxon signed-rank test to assess whether the pooling of predictors performs 

significantly different (two-sided) to the best performing predictor as derived on the separate datasets. Our bootstraps 

derived from the subsampling and repetition splits allowed for a natural pairing of the AUC values between both settings 

(pooled predictors versus best pair-wise predictor), which was used for computing the Wilcoxon test. Next, we tested 

whether pooling predictors is inferior to pooling the datasets already during model derivation (which is more effortful as 

retraining on large datasets is necessary and sensitive patient data needs to be shared across sites) with a one-sided Wilcoxon 

signed-rank test. In both cases, for four core datasets, multiple testing was accounted for using Bonferroni correction, 

resulting in 𝛼 = 0.0125. Additionally, to assess inferiority of prediction pooling versus dataset pooling across all core 
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datasets, we also report the one-sided Wilcoxon signed-rank test on the AUC mean over datasets. We assessed model 

calibration of our attention model on each core dataset by means of reliability diagrams.  

To calibrate our models, we used Platt scaling which was tuned on the respective validation split of the cohort, whereas all 

reliability diagrams are computed on the held-out test split of each cohort. To align with the evaluation of model 

discrimination, which was performed on the patient level (as opposed to a time point level), the calibration analysis was 

also performed on the patient level. To create the reliability diagram, for a given ICU admission, we used the models 

average predicted score and the overall label, whether or not this admission was a sepsis case. Since calibration is strongly 

connected with the specific prevalence of a cohort, we used the raw cohorts (without repeated subsampling for harmonizing 

the prevalences) and assessed the attention model that was trained on the given dataset.  

Finally, we conducted an ablation analysis to assess the informativeness of individual feature categories as well as the 

model’s performance on different patient cohorts (Fig. S10).  

All computing code used for this study will be made publically available under 

https://github.com/BorgwardtLab/multicenter-sepsis. 

 

 

Section S2: Additional analyses 
a) Comparison of dataset pooling and predictor pooling 

As compared to our pooling strategy where predictors are combined that were developed on the different databases, in this 

auxiliary analysis, we assessed the value of pooling already on the data level when performing the external validation 

across databases. For each of the four core datasets, one dataset is chosen as the external testing site, whereas the remaining 

datasets are merged for developing the model (using our deep learning architecture), respectively. Averaged over the 

datasets, with data pooling we observed an AUC of 0·755 (95% CI, 0·743 to 0·763). The corresponding ROC curves are 

visualised in Fig. S10. In contrast, with our strategy to pool predictors, where no additional retraining on large datasets was 

necessary, we observed an average AUC of 0·761 (95% CI, 0·747 to 0·770). On the dataset level, we observed significant 

AUC improvements of dataset pooling over predictor pooling for MIMIC-III and eICU (P < 0·001 on each dataset), albeit 
no improvements on HiRID and AUMC (P = 0·99 in both datasets). When averaging the AUCs over the four core datasets, 

we find no improvement when employing dataset pooling (P = 0·99). 

 

b) Model calibration 

On each core dataset we plotted reliability diagrams of our attention model before and after calibration using platt scaling 

(Figures S24 and S25). We observe that the predicted risk of the respective calibrated models aligns well with the true risk 

of sepsis. 

 
c) Temporal analysis 

We assess performance over the course of the ICU stay. For this, in Figure S15 we plot four quantities: (i) true positive 

rate over the preceding 6-hour period (TPR); (ii) false positive rate over the preceding 6-hour period (FPR); (iii) 

proportion of patients still to be diagnosed with sepsis (PTBD); (iv) the inverse positive likelihood ratio (LR+)-1 which 

puts the FPR and TPR in direction relation: LR+ = TPR / FPR and (LR+)-1 = FPR/TPR. We note that the FPR and TPR are 

highly correlated, which indicates that there is likely no deterioration in the performance of the alarm system. However, 

the figure suggests that it may be worthwhile to consider alarm thresholds which are time-dependent. Such an approach 

could be used to stabilise the TPR and FPR values throughout the period of ICU stay.  

 
d) Antibiotics analysis 

We calculated the fraction of true positive alarms (only at most one alarm per patient is raised) that occurred before any 

kind of antibiotic was given. Pooled across all datasets, this fraction is 42.5% (SD 7.4 std). This means that almost half of 

the true positive alarms were raised before any antibiotic was given – which is likely actionable. However, the reverse 

conclusion, i.e., that the remaining TP alarms would not be actionable, does not necessarily hold: Many patients receive 

multiple drugs (polypharmacy) and may enter intensive care due to an ongoing focal infection (like e.g. pneumonia or 

UTI). Just because these patients will receive antibiotics early on to treat a potentially focal infection, does not imply that 

a) the given antibiotic is the right choice for treating a later fulminant sepsis or that b) the clinician is at all aware of an 

imminent sepsis. Hence, to fully understand the clinicians’ intentions would require a detailed case-by-case qualitative 

analysis (planned ahead of data collection) that cannot be readily applied to our large-scale retrospective study. For more 

conclusive answers on utility and actionability, clinical trials will be indispensable. 

 

 

 

 

 

https://github.com/BorgwardtLab/multicenter-sepsis
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Section S3: Figures 

 
Figure S1: Study flow chart of filtering steps 

Patient filtering steps applied to the data sets yielding the final study cohort of 156,309 patients. Parenthesised numbers 

refer to the individual data sets MIMIC-III (M), eICU (E), HiRID (H), and AUMC (A), respectively. 
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Figure S2A: Data harmonisation 

Monitoring of distributions of measurements across all five datasets. These checks were applied to all variables to ensure 

that units were harmonised. Here, from left to right, a subset of variables is illustrated: Mean arterial pressure, temperature, 

creatinine and lactate. 

 

 

 

Figure S2B: Sepsis-3 label 

Visual representation of how the onset time of sepsis was defined following Sepsis-3. The label is 

constructed by evaluating the SOFA score on hourly basis and determining suspicion of infection (SI) 

windows based on body fluid culture sampling and antibiotics administration. The criterion is fulfilled 

if (and at the time of) an acute increase in SOFA of at least 2 points coincides with an SI window 

 

 
 

Figure S3: Comparison of two alternative suspicion of infection tags 

Comparison of the original suspected infection (SI) definition (antibiotics + fluid sampling) against the alternative 

suspected infection definition based on multiple antibiotics (which was used when no culture sampling was available) 

displayed as Venn diagrams for MIMIC-III and AUMC, the two datasets that allowed for both implementations.  In Panel 

A, the two variations of SI showed a Jaccard similarity of 0·69 for MIMIC-III. Panel B shows that in AUMC, the multiple 

antibiotics definition was broader than the original definition, but included most patients of the original definitions (Jaccard 

similarity 0·42). This is likely due to a foremost surgical cohort where antibiotics are frequently prescribed for prophylactic 

purposes. In Panel C, a comparison of the two definitions on the subset of non-surgical admissions in the AUMC database 

shows a very strong overlap (Jaccard similarity 0·78). 

 

  A    B    C 
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Figure S4: Classification performances on the AUMC dataset. 

Predictive performance plots for the AUMC dataset and all methods. In Panel A (and Panel B), ROC curves of the internal 

(and external) validation performance are shown. In Panel C (and Panel D), PPV at 80% Sensitivity is plotted against 

median earliness for the internal (and external) validation. Our deep learning approach (attn) is visualised together with the 

comparison methods including clinical baselines (SOFA, MEWS, NEWS, qSOFA and SIRS), and machine learning 

methods: logistic regression model (lr), LightGBM (lgbm), and recurrent neural network employing Gated Recurrent Units 

(gru). Error bands (Panel A and B) and error bars (Panel C and D) indicate standard deviation of the reported metric over 

5 repetitions of train-validation splitting.  

 

 

 

 

 

 A B 

 

 C D 



 10 

Figure S5: Classification performances on the eICU dataset. 

Predictive performance plots for the eICU dataset and all methods. In Panel A (and Panel B), ROC curves of the internal 

(and external) validation performance are shown. In Panel C (and Panel D), PPV at 80% Sensitivity is plotted against 

median earliness for the internal (and external) validation. Our deep learning approach (attn) is visualised together with the 

comparison methods including clinical baselines (SOFA, MEWS, NEWS, qSOFA and SIRS), and machine learning 

methods: logistic regression model (lr), LightGBM (lgbm), and recurrent neural network employing Gated Recurrent Units 

(gru). Error bands (Panel A and B) and error bars (Panel C and D) indicate standard deviation deviation of the reported 

metric over 5 repetitions of train-validation splitting. 

 

 

 

 A B 

 

 
 C D 
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Figure S6: Classification performances on the HiRID dataset. 

Predictive performance plots for the HiRID dataset and all methods. In Panel A (and Panel B), ROC curves of the internal 

(and external) validation performance are shown. In Panel C (and Panel D), PPV at 80% Sensitivity is plotted against 

median earliness for the internal (and external) validation. Our deep learning approach (attn) is visualised together with the 

comparison methods including clinical baselines (SOFA, MEWS, NEWS, qSOFA and SIRS), and machine learning 

methods: logistic regression model (lr), LightGBM (lgbm), and recurrent neural network employing Gated Recurrent Units 

(gru). Error bands (Panel A and B) and error bars (Panel C and D) indicate standard deviation deviation of the reported 

metric over 5 repetitions of train-validation splitting. 

 

 

 A B 

 C D 
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Figure S7: Classification performances on the MIMIC-III dataset. 

Predictive performance plots for the MIMIC-III dataset and all methods. In Panel A (and Panel B), ROC curves of the 

internal (and external) validation performance are shown. In Panel C (and Panel D), PPV at 80% Sensitivity is plotted 

against median earliness for the internal (and external) validation. Our deep learning approach (attn) is visualised together 

with the comparison methods including clinical baselines (SOFA, MEWS, NEWS, qSOFA and SIRS), and machine 

learning methods: logistic regression model (lr), LightGBM (lgbm), and recurrent neural network employing Gated 

Recurrent Units (gru). Error bands (Panel A and B) and error bars (Panel C and D) indicate standard deviation deviation 

of the reported metric over 5 repetitions of train-validation splitting. 

 

 

 A B 

 

 

 C D 
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Figure S8: Additional Shapley distributions of the raw measurements. 

Additional Shapley distributions are provided for all four core datasets: AUMC (Panel A), eICU (Panel B), MIMIC-III 

(Panel C) and HiRID (Panel D). The top 20 raw measurements are being shown in the visualisation. While the precise 

ranking differs between databases, mean arterial pressure and heart rate are consistently part of the top 10 features. 

 

A B 

C D 
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Figure S9: Variable importances including non-physiological signals. 

We display a repetition of the Shapley value analysis presented in Fig. 4 that considers all features types used in the deep 

learning model, i.e., raw, count, indicator. Panel A shows the mean absolute Shapley (SHAP) values averaged over all 

datasets (error bars indicate standard deviation over datasets) and lists the top 20 variables for which the features were most 

informative in terms of increasing the predicted sepsis risk. Panel B illustrates the corresponding beeswarm plot of Shapley 

distributions for the eICU dataset. 
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Figure S10: Performance ablations. 

Ablations of cohorts and feature categories. We observed the best performance on AUMC, a dataset with a large proportion 

(80%) of surgical patients. Thus, in Panel A we applied a deep model that was trained on AUMC to the medical and surgical 

cohorts both in-distribution (AUMC) and out-of-distribution (MIMIC-III) and observed that the surgical cohort within 

AUMC is indeed easier to classify, whereas this does not necessarily generalise to other datasets.  

Having observed that count features appeared frequently among the top 20 features explaining high prediction scores in 

Fig. S9, in Panel B we investigated how a model performed when trained solely on counts or raw measurements (here 

internally validated on MIMIC-III). We further subdivided the features into lab tests and vital signs and confirmed that lab 

tests carry sampling information (as a clinician requested them), whereas this was less the case for vital signs. The legend 

displays AUC means +/- SDs over the 5 repetition splits of the development split, respectively (variations due to 

subsampling are averaged out beforehand). 
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Figure S11: Pooling datasets during training. 

In an auxiliary analysis of our deep model, we pooled datasets already during training, as opposed to pooling predictions 

of models trained on different datasets. This is computationally more costly as in each new setting (i.e., new dataset) the 

model needs to be retrained again, and this on increasingly bigger datasets. For each displayed dataset, the model was 

trained on a merged dataset comprising the remaining core datasets. Averaged over datasets, we observe an AUC of 0.754 

(95% CI, 0.742 to 0.761). The legend displays AUC means +/- SDs over the 5 repetition splits of the development split, 

respectively (variations due to subsampling are averaged out beforehand). 

 

 

 

 

 
Figure S12: Prediction task visualisation 

An illustration of our prediction task for a given sepsis case and control patient. Data is available for the whole ICU stay. 

We set the label (prediction target) of the case to be 1 starting from 6 hours before sepsis onset (red line) until 24 hours 

after sepsis onset. This allows for penalising late false negative predictions. If more than 24 hours after onset have passed, 

any further available data is not considered (grey region). 

 

 

 

 
 

 

 

 

MIMIC-III, AUC = 0.735± 0.005

AUMC, AUC = 0.811± 0.009

HiRID, AUC = 0.705± 0.013

eICU, AUC = 0.766± 0.007
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Figure S13: Model reliability before calibration 

 

In Panel A, a reliability diagram is shown for the attention models that were trained on the four core datasets before applying 

calibration. First, 10 bins of patients are created such that they show an increasing mean predicted risk (ranging from 0 to 

1) as averaged over the patients in each bin. Next, the true fraction of positives, i.e., of sepsis cases are shown on the y-

axis. Here, we see that the uncalibrated models tend to be overconfident in that they predict higher risks as compared to 

the empirically observed sepsis risk. In Panel B, a histogram displays the patient counts in each bin for each dataset. Solid 

lines indicate the mean, error bands indicate the standard deviation over the five repetitions of the train/validation splitting. 
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Figure S14: Model reliability after calibration 

 

In Panel A, a reliability is shown for the attention models that were trained and calibrated using platt scaling on the four 

core datasets. First, 10 bins of patients are created such that they show an increasing mean predicted risk (ranging from 0 

to 1) as averaged over the patients in each bin. Next, the true fraction of positives, i.e., of sepsis cases are shown on the y-

axis. Here, we see that the predicted risk of the calibrated models aligns well with the empirical risk of sepsis. In Panel B, 

a histogram displays the patient counts in each bin for each dataset. Solid lines indicate the mean, error bands indicate the 

standard deviation over the five repetitions of the train/validation splitting. 
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Figure S15: Temporal analysis of performance 

Four quantities are shown over time into ICU stay: (i) true positive rate over the preceding 6-hour period (TPR); (ii) false 
positive rate over the preceding 6-hour period (FPR); (iii) proportion of patients still to be diagnosed with sepsis (PTBD) 
and (iv) the inverse positive likelihood ratio (LR+)-1 which puts the FPR and TPR in direction relation (LR+ = TPR / FPR). We 
use the reciprocal value (LR+)-1 to fit the value into the same [0,1] range. 
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Section S4: Tables 

Table S1A: Variables used for sepsis prediction 

Variables that were provided to the sepsis warning system. Availability per database is indicated. 

 

Name       Description                               MIMIC-III   eICU        HiRID        AUMC       

age      patient age                             ✓       ✓    ✓       ✓     

alb       albumin                                   ✓       ✓    ✓       ✓         

alp        alkaline phosphatase  ✓      ✓  ✓  ✓   

alt   alanine  aminotransferase   ✓      ✓ ✓        ✓        

ast aspartate aminotransferase            ✓       ✓     ✓       ✓         

basos   basophils                                ✓       ✓     X        ✓         

be        base excess                           ✓       ✓     ✓       ✓         

bicar    bicarbonate                            ✓       ✓     ✓       ✓         

bili        total bilirubin                          ✓       ✓     ✓       ✓         

bili_dir      bilirubin direct                        ✓       ✓     ✓       ✓         

bnd      band form neutrophils            ✓       ✓     ✓       ✓         

bun       blood urea nitrogen    ✓      ✓     ✓ ✓                

ca   calcium          ✓        ✓     ✓  ✓       

cai       calcium ionized                      ✓       ✓     ✓       ✓         

ck         creatine kinase                       ✓       ✓     ✓       ✓         

ckmb    creatine kinase MB                 ✓       ✓     ✓       ✓         

cl         chloride                                   ✓       ✓     ✓       ✓         

crea      creatinine                               ✓       ✓      ✓       ✓          

crp        C-reactive protein       ✓      ✓     ✓           ✓    

dbp diastolic blood pressure  ✓ ✓     ✓        ✓       

eos      eosinophils                              ✓       ✓    X        ✓          

esr        erythrocyte sedimentation rate  ✓     X  ✓           ✓    

etco2   endtidal CO2  ✓        X  ✓  ✓       

fgn       fibrinogen                                ✓       ✓     ✓       ✓         

fio2      fraction of inspired oxygen     ✓       ✓    ✓       ✓         

glu       glucose                                  ✓       ✓    ✓       ✓          

hbco     carboxyhemoglobin    X       ✓    ✓         ✓                                               

hct  hematocrit     ✓        ✓    X   ✓       

height  patient height                         ✓       ✓     ✓       ✓         

hgb      hemoglobin                            ✓       ✓     ✓       ✓         

hr         heart rate                               ✓       ✓     ✓       ✓         

inr_pt  prothrombin time /   ✓       ✓     ✓        ✓         

international normalized ratio   

k         potassium                              ✓       ✓     ✓       ✓         

lact      lactate                                    ✓       ✓     ✓       ✓         

lymph  lymphocytes                           ✓       ✓     ✓       ✓         

map     mean arterial pressure          ✓       ✓     ✓       ✓         

mch     mean cell hemoglobin            ✓       ✓     ✓       ✓         

mchc   mean corpuscular  ✓       ✓      ✓       ✓         

hemoglobin concentration  

mcv     mean corpuscular volume      ✓       ✓     ✓       ✓         

methb  methemoglobin                      ✓       ✓     ✓       ✓         
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Table S1B: Variables used for sepsis prediction (continued)  
Variables that were provided to the sepsis warning system. Availability per database is indicated. 
 

Name Description MIMIC-III   eICU HiRID AUMC  

mg magnesium ✓ ✓ ✓ ✓  

na sodium ✓ ✓ ✓ ✓   

neut neutrophils ✓ ✓ ✓ ✓  

o2sat oxygen saturation ✓ ✓ ✓ ✓  

pco2 CO2 partial pressure ✓ ✓ ✓ ✓  

  ph pH of blood ✓ ✓ ✓ ✓  

phos phosphate ✓ ✓ ✓ ✓  

plt platelet count ✓ ✓ ✓ ✓  

po2 O2 partial pressure ✓ ✓ ✓ ✓  

pt prothrombine time ✓ ✓ X  ✓  

ptt partial thromboplastin time ✓ ✓ ✓ ✓  

rbc red blood cell count ✓ ✓ X  ✓  

rdw erythrocyte distribution width ✓ ✓ X  ✓  

resp respiratory rate ✓ ✓ ✓ ✓  

sbp systolic blood pressure ✓ ✓ ✓ ✓  

sex patient sex ✓ ✓ ✓ ✓  

tco2 totcal CO2 ✓ ✓ X  X  

temp temperature ✓ ✓ ✓ ✓  

tnt troponin t ✓ ✓ ✓ ✓   

tri troponin I ✓ ✓ X  X   

urine urine output ✓ ✓ ✓ ✓   

wbc white blood cell count ✓ ✓ ✓ ✓  

weight patient weight ✓ ✓ ✓ ✓   

 

 

Table S2A: Variables used for clinical baseline scores.  

Modified early warning score (MEWS)  
 

 

 

  Name  Description   MIMIC-III        eICU      HiRID         AUMC 
   

sbp systolic blood pressure ✓ ✓ ✓ ✓ 

hr heart rate ✓ ✓ ✓ ✓ 

resp respiratory rate ✓ ✓ ✓ ✓ 

temp temperature ✓ ✓ ✓ ✓ 

egcs GCS eye ✓ ✓ ✓ ✓ 

mgcs GCS motor ✓ ✓ ✓ ✓ 

vgcs GCS verbal ✓ ✓ ✓ ✓ 

tgcs GCS total ✓ ✓ X X 

trach tracheostomy ✓                X ✓ ✓ 

rass Richmond agitation sedation scale ✓                ✓       ✓ ✓ 
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Table S2B: Variables used for clinical baseline scores 

National early warning score (NEWS) 

 

 

  Name  Description   MIMIC-III        eICU      HiRID         AUMC 
  

resp respiratory rate ✓ ✓ ✓ ✓ 

o2sat oxygen saturation ✓ ✓ ✓ ✓ 

vent_start ventilation start ✓ ✓ ✓ ✓ 

vent_end ventilation end ✓ ✓ ✓ ✓ 

fio2 fraction of inspired oxygern ✓ ✓ ✓ ✓ 

temp temperature ✓ ✓ ✓ ✓ 

sbp systolic blood pressure ✓ ✓ ✓ ✓ 

hr heart rate ✓ ✓   ✓    ✓ 

egcs GCS eye ✓                ✓ ✓ ✓ 

mgcs GCS motor ✓                ✓ ✓ ✓ 

vgcs GCS verbal ✓ ✓ ✓ ✓ 

tgcs GCS total ✓ ✓ X X 

trach tracheostomy ✓ X ✓ ✓ 

rass Richmond agitation sedation scale ✓ ✓   ✓    ✓ 

 

 

Table S2C: Variables used for clinical baseline scores 

Quick SOFA (qSOFA) 

 

 

  Name  Description       MIMIC-III     eICU      HiRID        AUMC 
  

egcs GCS eye ✓                ✓ ✓ ✓ 

mgcs GCS motor ✓                ✓ ✓ ✓ 

vgcs GCS verbal ✓ ✓ ✓ ✓ 

tgcs GCS total ✓ ✓ X X 

trach tracheostomy ✓ X ✓ ✓ 

rass Richmond agitation sedation scale ✓ ✓   ✓    ✓ 

sbp systolic blood pressure ✓ ✓ ✓ ✓ 

resp respiratory rate ✓ ✓   ✓    ✓ 
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Table S2D: Variables used for clinical baseline scores 

Sequential organ failure assessment (SOFA). The SOFA subscores were not available in the data and needed to be 

computed from the raw data. 

 

 

  Name  Description   MIMIC-III    eICU            HiRID         AUMC 

 

sresp SOFA respiratory component -            -  - - 

scoag SOFA coagulation component -            -  - - 

sliver SOFA liver component -            -  - - 

scardio SOFA cardiovascular component  -            -  - - 

scns SOFA central nervous system 

component 

-            -  - - 

srenal SOFA renal component -            -  - - 

 

 
Table S2E: Variables used for clinical baseline scores 

SOFA components 

 

 

  Component  Name Description           MIMIC-III        eICU        HiRID      AUMC 

 

sresp po2 O2 partial pressure ✓ ✓ ✓ ✓ 

 fio2 fraction of inspired oxygen ✓ ✓ ✓ ✓ 

 vent_start  ✓ ✓ ✓ ✓ 

 vent_end  ✓ ✓ ✓ ✓ 

scoag plt  ✓ ✓ ✓ ✓ 

sliver bili  ✓ ✓ ✓ ✓ 

scardio map  ✓ ✓ ✓ ✓ 

 dopa_rate dopamine rate ✓ ✓ X ✓ 

 dopa_dur dopamine duration ✓ ✓ X ✓ 

 norepi_rate norepinephrine rate ✓ ✓ ✓ ✓ 

 norepi_dur norepinephrine duration ✓ ✓ ✓ ✓ 

 dobu_rate dobutamine rate ✓ ✓ ✓ ✓ 

 dobu_dur dobutamine duration ✓ ✓ ✓ ✓ 

 epi_rate epinephrine  ✓ ✓ ✓ ✓ 

 epi_dur epinephrine duration ✓ ✓ ✓ ✓ 

scns egcs GCS eye ✓                ✓     ✓     ✓ 

 mgcs GCS motor ✓    ✓     ✓     ✓ 

 vgcs GCS verbal ✓ ✓     ✓     ✓ 

 tgcs GCS total ✓ ✓     X     X 

 trach tracheostomy ✓ X     ✓     ✓ 

 rass Richmond agitation sedation 

scale 

✓ ✓     ✓ ✓ 

srenal crea creatinine ✓ ✓     ✓ ✓ 

 urine urine output ✓ ✓     ✓ ✓ 
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Table S2F: Variables used for clinical baseline scores 

Systemic inflammatory response syndrome (SIRS) 
 

 

 

  Name  Description   MIMIC-III        eICU        HiRID      AUMC 

 
   

temp temperature ✓ ✓ ✓ ✓ 

hr heart rate ✓ ✓ ✓ ✓ 

resp respiratory rate ✓ ✓ ✓ ✓ 

pco2 CO2 partial pressure ✓ ✓ ✓ ✓ 

wbc white blood cell count ✓ ✓ ✓ ✓ 

bnd band form neutrophils ✓ ✓ ✓ ✓ 

 

 
 

 

 

 

Table S3: Additional details on the hyperparameters of the deep learning models 

Additional details regarding the hyperparameter search of the investigated deep learning methods are provided: Our deep 

learning system, a deep self-attention model (attn), and recurrent neural networks using gated recurrent units (gru). 

 

Hyperparameter coarse search values  

Depth gru: 1,2,3, attn: 2 

Width 32, 64, 128, 256 

Learning rate log-uniformly in range e-9 to e-7 

Dropout 0·3, 0·4, 0·5, 0·6, 0·7 

Weight decay 0·0001, 0·001, 0·01, 0·1 
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Table S4: Patient characteristics  

Extended patient and demographic characteristics of our multi-center ICU cohort (including ethnicity and comorbidities).  

 

Variable MIMIC-III eICU HiRID AUMC 

Cohort size (n) 36,591 56,765 27,278 15,844 

Sepsis-3 prevalence (n (%)) 9,541 (26) 4,708 (8) 10,170 (37) 1,275 (8) 

Age, years (Median (IQR)) 65 (52-77) 65 (53-76) 65 (55-75) 65 (55-75) 

 

Ethnicity (n (%)) 

    

   African American 3,165 (9) 5,573 (10) - - 

   Asian 823 (2) 655 (1) - - 

   Caucasian 25,918 (71) 46,216 (82) - - 

   Hispanic 1,270 (3) 952 (2) - - 

   Other 5,415 (15) 3,102 (5) - - 

In-hospital mortality (n (%)) 2,829 (8) 3,962 (7) 1,399 (5) 745 (5) 

ICU LOS, days (Median (IQR)) 1·99 (1·15-3·63) 1·71 (0·95-3·01) 0·97 (0·8-1·95) 0·97 (0·81-1·82) 

Hospital LOS, days (Median (IQR)) 6·43 (3·82-11·14) 5·53 (2·99-9·89) - - 

Gender, female (n (%)) 15,944 (44) 25,740 (45) 9,977 (37) 5,350 (35) 

Gender, male (n (%)) 20,647 (56) 31,011 (55) 17,301 (63) 10,089 (65) 

Ventilated patients (n (%)) 16,499 (45) 24,534 (43) 14,021 (51) 10,469 (66) 

Patients on vasopressors (n (%)) 9,669 (26) 6,769 (12) 7,721 (28) 7,980 (50) 

Patients on antibiotics (n (%)) 21,598 (59) 21,847 (38) 17,152 (63) 11,165 (70) 

Patients with suspected infection (n (%)) 16,349 (45) 9,739 (17) 15,160 (56) 1,639 (10) 

Initial SOFA (Median (IQR)) 3 (1-4) 3 (1-5) 5 (3-8) 6 (3-7) 

 

SOFA components (Median (IQR)) 

    

   Respiratory 1 (0-2) 1 (0-2) 3 (2-4) 2 (1-3) 

   Coagulation 0 (0-1) 0 (0-1) 0 (0-1) 0 (0-1) 

   Hepatic 0 (0-1) 0 (0-0) 0 (0-1) 0 (0-0) 

   Cardiovascular 1 (1-1) 1 (0-1) 1 (1-4) 2 (1-4) 

   CNS 0 (0-1) 0 (0-2) 0 (0-1) 0 (0-1) 

   Renal 0 (0-1) 0 (0-1) 0 (0-0) 0 (0-1) 

 

Admission type (n (%)) 

    

   Surgical 13,836 (38) 9,865 (19) - 11,905 (80) 

   Medical 22,346 (61) 41,674 (79) - 2,172 (15) 

   Other 408 (1) 1,346 (3) - 786 (5) 

     

Comorbidities ICD-9 (n (%))     

   Chronic Renal Failure 5,137 (14) 3,950 (7) - - 

   Cancer 4,687 (13) 2,517 (4) - - 

   Chronic Pulmonary Disease 7,994 (22) 4,669 (8) - - 

   Liver Disease 3,142 (9) 1,507 (3) - - 

   Diabetes 9,792 (27) 1,919 (3) - - 



 26 

Table S5: Variable units and valid ranges 

 

Name Description Unit of meas. Min. value Max. value 

hr heart rate bpm 0 300 

o2sat oxygen saturation % 50 100 

temp temperature C 32 42 

sbp systolic blood pressure mmHg 0 300 

map mean arterial pressure mmHg 0 250 

dbp diastolic blood pressure mmHg 0 200 

resp respiratory rate insp/min 0 120 

etco2 endtidal CO2 mmHg 10 60 

fio2 fraction of inspired oxygen % 21 100 

be base excess mEq/L -25 25 

bicar bicarbonate mEq/L 5 50 

ph pH of blood - 6.8 8 

pco2 CO2 partial pressure mmHg 10 150 

cl chloride mEq/L 80 130 

mg magnesium mg/dL 0.5 5 

phos phosphate mg/dL 0 40 

k potassium mEq/L 0 10 

ast aspartate aminotransferase IU/L 0 - 

bun blood urea nitrogen mg/dL 0 200 

alp alkaline phosphatase IU/L 0 - 

ca calcium mg/dL 4 20 

crea creatinine mg/dL 0 15 

bili_dir bilirubin direct mg/dL 0 50 

glu glucose mg/dL 0 1000 

lact lactate mmol/L 0 50 

bili total bilirubin mg/dL 0 100 

tri troponin I ng/mL 0 - 

hct hematocrit % 15 60 

hgb hemoglobin g/dL 4 18 

ptt partial thromboplastin time sec 0 - 

wbc white blood cell count K/uL 0 - 
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Name Description Unit of meas. Min. value Max. value 

fgn fibrinogen mg/dL 0 1500 

plt platelet count K/uL 5 1200 

age patient age years 0 100 

cai calcium ionized mmol/L 0.5 2 

na sodium mEq/L 110 165 

po2 O2 partial pressure mmHg 40 600 

alb albumin g/dL 0 6 

alt alanine aminotransferase IU/L 0 - 

ck creatine kinase IU/L 0 - 

ckmb creatine kinase MB ng/mL 0 - 

crp C-reactive protein mg/L 0 - 

tnt troponin t ng/mL 0 - 

urine urine output mL 0 2000 

basos basophils % 0 50 

bnd band form neutrophils % - - 

eos eosinophils % 0 50 

esr erythrocyte sedimentation rate mm/hr 0 200 

hbco carboxyhemoglobin - - - 

inr_pt prothrombin time/international normalized ratio - - - 

lymph lymphocytes % 0 100 

mch mean cell hemoglobin pg 0 - 

mchc mean corpuscular hemoglobin concentration % 20 50 

mcv mean corpuscular volume fL 50 150 

methb methemoglobin % 0 100 

neut neutrophils % 0 100 

pt prothrombine time sec 0 - 

rbc red blood cell count m/uL 0 20 

rdw erythrocyte distribution width % 0 100 

tco2 totcal CO2 mEq/L 5 60 

weight patient weight kg 1 500 

height patient height cm 10 230 
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Table S6: Patient characteristics (development set) 

 

Variable MIMIC-III eICU HiRID AUMC 

Cohort size (n) 32931 51088 24550 14259 

Sepsis-3 prevalence (n (%)) 9076 (27.56) 4243 (8.31) 8354 (34.03) 1215 (8.52) 

Age, years (Median (IQR)) 64.7 (51.53-77.13) 65 (53-76) 65 (55-75) 65 (55-75) 

In-hospital mortality (%) 8 7 5 5 

ICU LOS, days (Median (IQR)) 1.98 (1.15-3.59) 1.71 (0.95-3.01) 0.97 (0.8-1.95) 0.97 (0.81-1.84) 

Hospital LOS, days (Median (IQR)) 6.4 (3.81-11.09) 5.5 (2.98-9.86) - - 

Gender, female (%) 44 45 36 35 

Gender, male (%) 56 55 64 65 

Ventilated patients (n (%)) 14825 (45) 22056 (43) 13658 (56) 9600 (67) 

Patients on vasopressors (n (%)) 8710 (26) 6087 (12) 6941 (28) 7193 (50) 

Patients on antibiotics (n (%)) 16471 (50) 19675 (39) 15464 (63) 10043 (70) 

Patients with suspected infection (n (%)) 12751 (39) 8762 (17) 13678 (56) 1472 (10) 

Initial SOFA (Median (IQR)) 3 (2-5) 3 (1-6) 5 (3-8) 6 (3-8) 

     Respiratory 1 (0-2) 1 (0-2) 3 (1-4) 2 (1-3) 

     Coagulation 0 (0-1) 0 (0-1) 0 (0-1) 0 (0-1) 

     Hepatic 0 (0-1) 0 (0-0) 0 (0-1) 0 (0-0) 

     Cardiovascular 1 (1-1) 1 (0-1) 1 (1-4) 2 (1-4) 

     CNS 0 (0-1) 0 (0-2) 1 (0-1) 0 (0-1) 

     Renal 0 (0-1) 0 (0-1) 0 (0-0) 0 (0-1) 

Admission Diagnosis     

     Other 1 3 - 5 



 29 

Variable MIMIC-III eICU HiRID AUMC 

     Surgical 38 19 - 80 

     Medical 61 79 - 15 

Hispanic (%) 3 2 - - 

African American (%) 9 10 - - 

Asian (%) 2 1 - - 

Caucasian (%) 71 82 - - 

Other (%) 15 5 - - 

Comorbidities (ICD-9)     

     Liver Disease 2828 (9) 1348 (3) - - 

     Cancer 4231 (13) 2268 (4) - - 

     Diabetes 8805 (27) 1745 (3) - - 

     Chronic Renal Failure 4617 (14) 3573 (7) - - 

     Chronic Pulmonary Disease 7241 (22) 4222 (8) - - 
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Table S7: Patient characteristics (test set) 

 

Variable MIMIC-III eICU HiRID AUMC 

Cohort size (n) 3660 5677 2728 1585 

Sepsis-3 prevalence (n (%)) 1008 (27.54) 471 (8.3) 914 (33.5) 129 (8.14) 

Age, years (Median (IQR)) 64.78 (51.8-76.89) 65 (53-76) 65 (55-75) 65 (55-75) 

In-hospital mortality (%) 8 7 5 5 

ICU LOS, days (Median (IQR)) 2.04 (1.17-3.91) 1.71 (0.95-3.05) 0.97 (0.8-1.93) 0.97 (0.81-1.63) 

Hospital LOS, days (Median (IQR)) 6.75 (3.88-11.56) 5.71 (3.01-10.15) - - 

Gender, female (%) 44 46 38 35 

Gender, male (%) 56 54 62 65 

Ventilated patients (n (%)) 1674 (46) 2478 (44) 1520 (56) 1107 (70) 

Patients on vasopressors (n (%)) 959 (26) 682 (12) 780 (29) 787 (50) 

Patients on antibiotics (n (%)) 1856 (51) 2172 (38) 1688 (62) 1122 (71) 

Patients with suspected infection (n (%)) 1406 (38) 977 (17) 1482 (54) 167 (11) 

Initial SOFA (Median (IQR)) 3 (2-5) 3 (1-5) 5 (3-8) 6 (3-8) 

     Respiratory 1 (0-2) 1 (0-2) 3 (2-4) 2 (1-3) 

     Coagulation 0 (0-1) 0 (0-1) 0 (0-1) 1 (0-1) 

     Hepatic 0 (0-1) 0 (0-0) 0 (0-1) 0 (0-0) 

     Cardiovascular 1 (1-1) 1 (0-1) 1 (1-4) 2 (1-3) 

     CNS 0 (0-1) 0 (0-2) 0 (0-1) 0 (0-1) 

     Renal 0 (0-1) 0 (0-1) 0 (0-0) 0 (0-1) 

Admission Diagnosis     

     Other 1 2 - 6 
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Variable MIMIC-III eICU HiRID AUMC 

     Surgical 38 19 - 81 

     Medical 61 79 - 14 

Hispanic (%) 4 2 - - 

African American (%) 8 10 - - 

Asian (%) 2 1 - - 

Caucasian (%) 70 81 - - 

Other (%) 16 6 - - 

Comorbidities (ICD-9)     

     Liver Disease 314 (9) 159 (3) - - 

     Cancer 456 (12) 249 (4) - - 

     Diabetes 987 (27) 174 (3) - - 

     Chronic Renal Failure 520 (14) 377 (7) - - 

     Chronic Pulmonary Disease 753 (21) 447 (8) - - 
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