Supplementary material – Duplicate genes

The genes for IRF3, IRF7, and MAVS from rainbow trout and Atlantic salmon were aligned per gene, and sequencing primers were designed in homologous regions. These primers enabled sequencing of the respective genes from the chinook salmon genome as isolated from CHSE-214 cells, and a blast against the chinook salmon genome in ncbi confirmed the genetic locations and sequences.

Table: Locations and predictions of genomic locations

Gene	Sequence	Location	Annotation ncbi	Sequence ID
IRF3	Oncorhynchus tshawytscha isolate Ot180627B linkage group LG24,	5299671 - 5302798	Predicted IRF3	NC_056452.1
	Otsh_v2.0, whole genome shotgun sequence			
IRF7	Oncorhynchus tshawytscha isolate Ot180627B linkage group LG06,	36074493 -	Predicted IRF7-like	NC_056434.1
	Otsh_v2.0	36084407		
MAVS	Oncorhynchus tshawytscha isolate Ot180627B linkage group LG11,	55045023 -	Predicted Proline-	NC_056439.1
	Otsh_v2.0	55053498	rich protein 36	

We identified possible duplicate genes by a blast of the coding sequences in the ncbi nucleotide collection. IRF3 only showed homology with IRF3 transcript variants. IRF7 had 80% homology with a predicted mRNA for IRF8, along with being identical to predicted IRF7 mRNA. The IRF8 mRNA was aligned in Clustal omega with IRF7 and IRF8 from *Homo sapiens*, *Danio rerio*, and *Oncorhynchus mykiss* and clustered with IRF8, so is probably the IRF8 mRNA and not a IRF7 duplicate.

Figure: Phylogenetic tree of IRF7 and IRF8 coding sequences

Phylogenetic Tree

This is a Neighbour-joining tree without distance corrections.

Branch length: Cladogram Real

Rt_IRF7_Y 0.14878 Chinook_IRF7 -0.03004 Hs_IRF7 0.03004 Dr_IRF7 0.18908 CHSE_IRF7 -0.18908 Hs_IRF8 0.29778 Dr_IRF8 0.30115 Chinook_IRF8 0.01023 Rt_IRF8 0.00786 As_IRF7A 0.18569 MAVS corresponded to a predicted proline-rich protein 36 mRNA and had 66% homology with the predicted MAVS mRNA. The gene we found while searching for MAVS was also predicted to be PRP36, so we set out to check these predictions. An alignment with the CDSs of *Homo sapiens*, *Mus musculus, Danio rerio*, and *Oncorhynchus mykiss* MAVS and PRP36 showed grouping of both mRNAs with MAVS, with the predicted PRP36 mRNA being closest to the other salmonid MAVS sequences.

Phylogenetic Tree

This is a Neighbour-joining tree without distance corrections.

Figure: Phylogenetic tree of MAVS and PRP36 coding sequences

The predicted PRP36 in chinook salmon thus seems to be actually MAVS and will now be called ChMAVSa, while the mRNA predicted to be MAVS could be a duplicate gene and will be called ChMAVSb. These conclusions are corroborated by domain predictions. ChMAVSa has a very clear CARD domain, while in ChMAVSb only the death domain superfamily was recognized. Both proteins have a transmembrane domain at the C terminus.

We blasted both mRNA sequences against the chinook salmon, rainbow trout, and Atlantic salmon ncbi RefSeq Genome Databases to find the corresponding genes and to investigate the gene synteny.

Name used	Species	Predicted in ncbi	Location	Accession no.
here				ncbi
ChMAVSa				XM_042330395
ChMAVSa	Chinook salmon	proline-rich protein 36	LG11 - end	LOC112236223
RtMAVSa	Rainbow trout	MAVS	Chr. 19 - end	100499614 (mavs
)
AsIPS-1	Atlantic salmon	IPS-1 (MAVS)	Chr. 01 -	LOC100316613
			start	
ChMAVSb				XM_042326218
ChMAVSb	Chinook	MAVS	LG08 - start	112237596 (mavs
	salmon)
RtMAVSb	Rainbow trout	mRNA-nascent polypeptide-associated complex subunit alpha, muscle-specific form	Chr. 25 - end	LOC110504282
AsMAVSb	Atlantic salmon	MAVS-like / mucin-6- like	Chr. 9 - 1/3	LOC106611470

Table: Genomic locations of genes corresponding to ChMAVSa and ChMAVSb

Synteny for ChMAVSa compares very well between all three species, indicating that ChMAVSa is actually MAVS as described for Atlantic salmon (Lauksund 2009, Biacchesi 2009). The synteny of ChMAVSb compares well with the RtMAVSb gene (predicted nascent polypeptide-associated complex subunit alpha, muscle-specific form), and to a lesser extend to the AsMAVSb gene (predicted MAVS-like or mucin-6-like). Interestingly, AsMAVSb is predicted to be MAVS-like, has two genes in the vicinity that are near the actual ChMAVSa, and is on a location of chromosome 9 that was duplicated from the start of chromosome 1, where the AsIPS-1 (MAVS) gene is situated. This all suggests that this gene might be a duplicate of MAVS. The ChMAVSb and AsMAVSb proteins both contain a death domain superfamily domain that indicates a possible CARD domain at the N terminus and a transmembrane domain at the C terminus, suggesting a function similar to MAVS. The RtMAVSb protein lacks these domains, however, and will not have a MAVS-like function.

sav1	atl1	cdkl1	l2hgdh	sos2	cn1h1	pacs2	dcaf5	map3k9	pcnx1	fbln5	plek2	smor1	paplna	exd2	wdr32	manba	nat8	si:dky-33	ChMAVSa	rab11fip5acfd	
>	<	>	>	>	<	>	>	>	>	>	>	<	<	<	>	>	>	<	<	>	>
jade1	cfd	rab11fip5	RtMAVSa	si:dky-33c12.3	nat8	manba	wdr32	paplna	smor1	plek2	pcnx1	med6	map3k9	cn1h1	sos2	l2hgdh	atl1	sav1			
>	>	<	<	<	>	>	>	<	<	>	<	>	<	<	>	>	<	>			
jade1	manba	AsIPS-1	exd2	smor1	pcnx	fbln5	plek2	med6	map3k9	sav1	atl1	cdkl1	l2hgdh	sos2	cn1h1						
>	>	>	>	>	>	>	>	>	<	>	<	>	>	>	<						
asmt2	letm1	fgfr3	eif2ak3	ChMAVSb	pank2	slc39a8	zmp:0000)(marc1	capn3a	uti1b	golga5										
<	>	<	>	>	>	<	<	<	<	<	<										
capn3a	nenf	marc1	zmp:00000)(slc39a8	mrps26	pank2	RtMAVSb	ap5s1	eif2ak3	fgfr3	letm1	asmt2									
>	>	>	>	>	>	<	<	>	<	>	<	>									
nenf	ap5s1	eif2ak3	pacs2	mrps26	AsMAVSb	golga5	dcaf5	uti1b													
>	<	>	>	>	<	>	<	<													

Figure: Synteny of chinook salmon, rainbow trout, and Atlantic salmon genes corresponding to ChMAVSa and ChMAVSb

MAVS gene/duplicateStrong synteny in the three speciesSynteny in chinook salmon and rainbow troutSynteny in Atlantic salmon and rainbow troutSynteny in Atlantic salmon and chinook salmonPresent near Atlantic salmon MAVS duplicate and chinook salmon MAVS geneGenes with largely conserved gene orderLegend