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Supplementary Figures and Figure legends 

 

Figure S1. Related to Figure 1. a) H&E staining of liver tissue sections of WT and LKO 

mice. Scale bar, 50 μm. b) qRT-PCR analysis of MSL1 mRNA expression in WT and 

LKO mouse livers (n = 6 mice/group). c) Immunoblot analysis of liver tissue lysates 

from WT and LKO mice using the indicated antibodies (n = 3 mice/group). The data 

were expressed as means ± SD. Significant difference was presented at the level of ***p 

< 0.001 by two-tailed Student’s t-test. 

 



 

Figure S2. Related to Figure 2. a-c) Quantification of protein levels of ac-STAT3 (a), 

p-STAT3 (b) and p-JAK2 (c) as in (Figure 2a) by densitometric analysis and 

normalization versus loading control (n = 3). d-f) Quantification of protein levels of ac-

STAT3 (d), p-STAT3 (e) and p-JAK2 (f) as in (Figure 2b) by densitometric analysis and 



normalization versus loading control (n = 3). g) Primary mouse hepatocytes treatment 

with 1 μM CMS-121 or 10 μM SB 204990 for 24 h and quantification of the Ac-CoA 

concentration (n = 3). h,i) Immunoblot analyses were performed on primary mouse 

hepatocytes prepared from WT and LKO mice, and treatment with 1 μM CMS-121 

(h)/10 μM SB-204990 (i) for 24 h and/or 10 ng mL-1 IL-6 for 30 mins using the 

indicated antibodies. Right panels show the quantification of protein levels of ac-

STAT3 and p-STAT3 by densitometric analysis and normalization versus loading 

control (n = 3). j) Quantification of protein levels of MSL1 as in (Figure 2f) by 

densitometric analysis and normalization versus immunoprecipitated STAT3 (n = 3). k) 

Quantification of protein levels of Flag-H4 as in (Figure 2g) by densitometric analysis 

and normalization versus immunoprecipitated Myc-MSL1 (n = 3). l) Quantification of 

protein levels of ac-STAT3 and p-STAT3 as in (Figure 2h) by densitometric analysis 

and normalization versus loading control (n = 3). The data were expressed as means ± 

SD. Significant difference is presented at the levels of *p < 0.05 and **p < 0.05 by two-

tailed Student’s t-test. 

  



 
Figure S3. Overexpression of MSL1 in the hepatocytes promoted STAT3 and H4K16 

acetylation. a) Immunoblotting analysis of GFP-positive primary mouse hepatocytes 

sorted by FACS at 3 h post-PH in mice using the indicated antibodies. b) Quantification 

of protein levels of ac-STAT3 and p-STAT3 as in (Figure S3a) by densitometric analysis 

and normalization versus loading control (n = 3). c) qRT-PCR analysis of c-Myc and 

SOCS3 mRNA expression in GFP-positive primary mouse hepatocytes sorted by FACS 

at 3 h post-PH in mice (n = 3). d) Immunoblotting analysis of GFP-positive primary 

mouse hepatocytes sorted by FACS at 36 h post-PH in mice using the indicated 

antibodies. e) Quantification of protein levels of H4K16ac as in (Figure S3d) by 

densitometric analysis and normalization versus loading control (n = 3). f) qRT-PCR 

analysis of Cyclin A2, Cyclin B1 and Cyclin D1 mRNA expression in GFP-positive 

primary mouse hepatocytes sorted by FACS at 36 h post-PH in mice (n = 3). The data 

were expressed as means ± SD. Significant difference was presented at the level of *p 

< 0.05, **p < 0.01, and ***p < 0.001 by two-tailed Student’s t-test. 



 

Figure S4. related to Figure 4. a) Graphs of IDR of MSL1 plotted by PONDR VSL2. 

b) Confocal images of fixed HEK293T cells transfected with GFP-MSL1 or GFP for 

24 h. Scale bar, 5 μm. c) Confocal images of GFP-MSL1-transfected HEK293T cells 

before and after 1,6-hex or 2,5-hex treatment at indicated time points. Scale bar, 5 μm. 

d) Diagram of full-length and truncated GFP-MSL1 proteins. e) Confocal images of 



HEK 293T cells transfected with full-length or truncated GFP-MSL1 plasmids. Scale 

bar, 5 μm. f) SDS-PAGE assay and Coomassie blue staining of GFP-MSL1 protein 

purified from E. coil. g) Images of GFP-MSL1 and GFP taken at room temperature. 

Scale bar, 10 μm. h) Diagrams of GFP-MSL1 phase separation at various 

concentrations of salt (NaCl) and proteins. i) Images of GFP-MSL1 (8 μM) condensates 

at room temperature with or without 5% 1,6-hex treatment. Scale bar, 5 μm. j) Images 

of GFP-MSL1 (8 μM) condensates at room temperature with 5% or 10% PEG-8000 

treatments. n = 3 fields (100 × 100 μm2). Scale bar, 5 μm. k) Schematic diagram of 

sedimentation assay to separate the condensed liquid phase and the aqueous phase with 

additional MSL1, Ac-CoA, PEG-8000, 1.6-hex, STAT3 or H4. The data were expressed 

as means ± SD. Significant difference was presented at the level of ***p < 0.001 by 

two-tailed Student’s t-test. 

  



 

Figure S5. Related to Figure 5. a) Confocal images of fixed HEK293T cells transfected 

with mCherry-STAT3-encoding plasmids for 24 h without or with 10 ng mL-1 IL-6 for 

30 min. Scale bar, 5 μm. b,c) SDS-PAGE assay and Coomassie blue staining of 

mCherry-STAT3 (b) and Histone 4-mCherry (c) purified from E. coil. d) Immunoblot 

analysis of Hep1-6 cells transfected with MSL1 or MSL1-ΔIDR3 plasmids for 24 h 

using the indicated antibodies. Right panel show the quantification of protein levels of 

H4K16ac by densitometric analysis and normalization versus loading control (n = 3). 

e) Immunoblot analysis of Hep1-6 cells transfected with MSL1 or MSL1-ΔIDR3 

plasmids for 24 h with or without 30-min IL-6 treatment (10 ng mL-1) using the 

indicated antibodies. Right panels show the quantification of protein levels of ac-



STAT3 and p-STAT3 by densitometric analysis and normalization versus loading 

control (n = 3). The data were expressed as means ± SD Significant difference is 

presented at the levels of *p < 0.05 and **p < 0.01 by two-tailed Student’s t-test. 



 

Figure S6. Related to Figure 6. a) qRT-PCR analysis of MSL1 in aged and young mouse 

livers (n = 8 mice/group). b) Immunoblot analysis of liver tissues lysates from young 

and aged mice using the indicated antibodies. c) Quantification of protein levels of ac-

STAT3 and p-STAT3 as in (Figure 6f) by densitometric analysis and normalization 

versus loading control (n = 3). d) Quantification of protein levels of H4K16ac as in 



(Figure 6g) by densitometric analysis and normalization versus loading control (n = 3). 

e) BrdU and Ki67 staining of liver tissues from WT and LKO mice treatment with or 

without GS-0976 at 36 h after PH. Scale bar, 50 μm. f) BrdU- and Ki67-positive cell 

count at 36 h after PH, n = 4 mice/group, 5 fields (215 × 285 μm2) quantified/animal. 

g) Serum ALT and AST levels in WT and LKO mice treatment with or without GS-

0976 at 36 h after PH (n = 4 mice/group). The data were expressed as means ± SD. 

Significant difference was presented at the level of ***p < 0.001 by two-tailed Student’s 

t-test. 

  



Supplementary Tables 

Table S1. Primers used in qRT-PCR 

Name Location Sequence (5′ to 3′)      nt (bp) 

MSL1 NM_028722.3 
F: TTTCTCATGTGGCCGGAGTG 

R: GGGGTTTCTTGGCTCCTCAA 

204 

SOCS3 NM_007707.3 
F: CCCCAAGAGAGCTTACTACA 

R: TTTCTCATAGGAGTCCAGGT 
139 

c-Myc NM_010849.4 
F: TCCACTCACCAGCACAACTACG 

R: GCTGATCTGCTTCAGGACCCT 
105 

Cyclin A2 NM_009828.3  
F: TGAAGAGGCAGCCAGACATCAC  

R: AGCCAAATGCAGGGTCTCAT 
107 

Cyclin B1 NM_172301.3 
F: AAGGTGCCTGTGTGTGAACC 

R: AGATACTCTTCTGCAGGCGC 
 164   

Cyclin D1 NM_001379248.1 
F: GCGTACCCTGACACCAATCTC 

R: CTCCTCTTCGCACTTCTGCTC 
 183 

36B4 NM_007475.5 
F: TGGAGACAAGGTGGGAGCC  

R: CACAGACAATGCCAGGACGC 
      271 

 

Table S2. Primers used in Chip-PCR and Chip-qPCR 

Name Sequence (5′ to 3′) 

Cyclin A2-F GGGACAGCATTATGAGACCCTG 

Cyclin A2-R CCCCGTCCTGGGTACACTAC 

Cyclin B1-F GTGAGCACTGCACGCCATGC 

Cyclin B1-R GAATGCGTTTCCTGGGCGATC 

Cyclin D1-F TCTTCCTTGGCTTGCGTGTG 

     Cyclin D1-R           GAGACCTGTGGAGGTGGGG 

 


