

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202301288

Integrated Gradient Cu Current Collector Enables Bottom-Up Li Growth for Li Metal Anodes: Role of Interfacial Structure

Yuhang Liu, Yifan Li, Zhuzhu Du*, Chen He, Jingxuan Bi, Siyu Li, Wanqing Guan, Hongfang Du and Wei Ai*

Supporting Information

Integrated gradient Cu current collector enables bottom-up Li growth for Li metal anodes: role of interfacial structure

Yuhang Liu, Yifan Li, Zhuzhu Du,^{*} Chen He, Jingxuan Bi, Siyu Li, Wanqing Guan, Hongfang Du and Wei Ai^{*}

Mr. Y. Liu, Mr. Y. Li, Dr. Z. Du, Mr. C. He, Mr. J. Bi, Ms. S. Li, Ms. W. Guan, Prof. W. Ai Frontiers Science Center for Flexible Electronics and Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. E-mail: <u>iamzzdu@nwpu.edu.cn</u>, <u>iamwai@nwpu.edu.cn</u>

Prof. H. Du

Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.

Figure S1. The preparation and characteristics of (a-c) S-Cu(OH)₂@Cu, (d-f) M-Cu(OH)₂@Cu and (g-i) D-Cu(OH)₂@Cu: (a, d, g) curves of galvanostatic anodization, (b, e, h) SEM images and (c, f, i) XRD patterns.

Figure S2. Surface SEM images of (a, b) S-CuO@Cu and (c, d) D-CuO@Cu nanowire arrays.

Figure S3. Cross-section SEM images of (a) S-CuO@Cu and (b) D-CuO@Cu nanowire arrays.

Figure S4. Digital photographs of resistance measures with digital multimeter for (a) bare Cu, (b) S-CuO@Cu, (c) M-CuO@Cu, (d) D-CuO@Cu nanowire arrays. All samples were punched into a circle with a diameter of 12 mm and the two test probes were maintained at a fixed length of 10 mm.

Figure S5. Cyclic voltammetry tests of half cells based on the (a) S-CuO@Cu, (b) M-CuO@Cu, (c) D-CuO@Cu electrodes at programmed scan rates. (d) The estimation of C_{dl} by plotting the current density variation against scan rate.

Figure S6. Digital photographs of molten Li infusion. All procedures were conducted on a hotplate with 300 °C in an argon-filled glove box.

Figure S7. Contact angle tests of (a) bare Cu, (b) S-CuO@Cu, (c) M-CuO@Cu and (d) D-CuO@Cu nanowire arrays with the electrolyte solution.

Figure S8. Comparison of CE for different electrodes at the (a) 3 mA cm^{-2} for 1 mAh cm^{-2} and (b) 1 mA cm^{-2} for 3 mAh cm^{-2} .

Figure S9. Cycling performance of symmetric cells based on different electrodes at 2 mA cm⁻² for 1 mAh cm⁻².

Figure S10. Cross-section SEM images of (a) S-CuO@Cu-Li, (b) M-CuO@Cu-Li, and (c) D-CuO@Cu-Li based on symmetric cells after 200 cycles at 1 mA cm⁻² and 1 mAh cm⁻².

Figure S11. The equivalent circuit used for EIS analyses.

Figure S12. Change in R_{ct} of different electrodes before cycling, and after 50th and 100th cycles.

Figure S13. (a, b) SEM images of M-CuO@Cu after 0.25 mAh cm⁻² Li plating at 0.25 mA cm⁻².

Figure S14. SEM images of (a) bare Cu, (b) S-CuO@Cu, (c) M-CuO@Cu, (d) D-CuO@Cu after 3 mAh cm⁻² Li plating and then fully stripping at 0.25 mA cm⁻².

Figure S15. SEM images of the (a) pristine and (b-d) cycled LFP cathodes after 150 cycles at 1 C based on (b) LFP || S-CuO@Cu-Li, (c) LFP || M-CuO@Cu-Li, and (d) LFP || D-CuO@Cu-Li full cells.

Table S1. Comparison of cycling performance of symmetric cells based on functionalized Cu

 current collectors.

Current Collector	Current density (mA cm ⁻²)	Areal capacity (mAh cm ⁻²)	Cycling time (h)	Overpotential (mV)	Ref.
3D porous Cu current collector	1	1	400	~20	[1]
3D porous Cu current collector	1	1	800 535	~11 ~15	[2]
3D porous Cu current collector	0.2	1	1000	~26	[3]
3D Cu current collector with submicron skeleton	0.2	1	600	~50	[4]
3D duplex Cu current collector	0.5	1	960	~13	[5]
	1	1	880	~17	
Cu-CuO-Ni current collector	0.5	0.5	580	~12	[6]
Cu foil-supported Cu ₃ P	1	1	1000	~30	[7]
nanowires	2	2	450	~30	[/]
MOF-derived carbon framework/Ag deposited Cu current collector	0.4	0.4	500	~20	[8]
N-doped CuO nanosheet- decorated Cu current collector	1	1	600	23.1	[9]
Vertically aligned carbon nanofiber array grown on Cu current collector	1	2	500	~35	[10]
M-CuO@Cu current	1	1	1200	10	This
collector	2	1	500	24	work

References

- H. Zhao, D. Lei, Y. He, Y. Yuan, Q. Yun, B. Ni, W. Lv, B. Li, Q. Yang, F. Kang, J. Lu, *Adv. Energy Mater.* 2018, 8, 1800266.
- [2] H. Qiu, T. Tang, M. Asif, X. Huang, Y. Hou, Adv. Funct. Mater. 2019, 29, 1808468.
- [3] Q. Yun, Y. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q. Yang, Adv. Mater. 2016, 28, 6932.
- [4] C. Yang, Y. Yin, S. Zhang, N. Li, Y. Guo, *Nat. Commun.* **2015**, 6, 8058.
- [5] K. Lin, T. Li, S. Chiang, M. Liu, X. Qin, X. Xu, L. Zhang, F. Kang, G. Chen, B. Li, *Small* 2020, 16, 2001784.
- [6] S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, *Adv. Mater.* 2018, 30, 1705830.
- [7] P. Zhai, Y. Wei, J. Xiao, W. Liu, J. Zuo, X. Gu, W. Yang, S. Cui, B. Li, S. Yang, Y. Gong, *Adv. Energy Mater.* 2020, 10, 1903339.
- [8] J. Yun, H. Rim Shin, E. Won, H. Chol Kang, J. Lee, *Chem. Eng. J.* **2022**, 430, 132897.
- [9] J. Luan, Q. Zhang, H. Yuan, D. Sun, Z. Peng, Y. Tang, X. Ji, H. Wang, *Adv. Sci.* 2019, 6, 1901433.
- [10] Y. Chen, A. Elangovan, D. Zeng, Y. Zhang, H. Ke, J. Li, Y. Sun, H. Cheng, Adv. Funct. Mater. 2020, 30, 1906444.