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Supplementary Note 1 Details on the probabilistic model

1.1 Notations

Cells are indexed by the letter j, variants by i, regions by k and nodes by n.

• Dij : sequencing depth at locus i for cell j (and Dkj is the depth at region k for cell j, and Dj is the
total number of reads in cell j).

• Aij : number of alternative reads at locus i for cell j.

• σj : node to which cell j is attached.

• πn: prior probability of sampling a cell from node n.

• ck(n): copy number of region k for node n.

• c
(r)
i (n): copy number of the reference allele at locus i for node n.

• c
(a)
i (n): copy number of the alternative allele at locus i for node n.

• µi: dropout rate for locus i. When separate dropout rates are used for the two alleles, µ
(r)
i and µ

(a)
i

indicate respectively the dropout rate of the reference and alternative allele.

• λ: probability that the two alleles for one locus have a different dropout rate, which is constant and
was set to e−70.

• α, β: parameters for the Beta distribution corresponding to the prior on dropout rates, which are
constant and were set to 5 and 95 respectively.

• C
(r)
ij : Number of copies of the reference allele for locus i that did not get dropped out in cell j.

• C
(a)
ij : Number of copies of the alternative allele for locus i that did not get dropped out in cell j.

• ε: sequencing error rate (the same is used for all sites), which is constant and was set to 1%.

• ωhom: overdispersion of the beta binomial when the cell is homozygous for a locus (a high ω corresponds
to a low variance), which is constant and was set to 50.

• ωhet: overdispersion of the beta binomial when the cell is heterozygous for a locus, which is constant
and was set to 8.

• δ: doublet rate, which is constant and was set to 8%.

• ρk: probability for a read to fall on region k, when there are two copies of this region.

• θ: inverse dispersion parameter of the negative binomial distribution, which is constant and was set to
6.

1.2 Generative process

Given a mutation tree, we assume the following generative process for the read counts, which is used to
derive likelihoods.

• For each variant i:
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– With probability λ, draw the dropout rate of both alleles µ
(r)
i and µ

(a)
i independently from a Beta

distribution with parameters α and β (we used α = 5 and β = 95 so that the prior distribution
has a mean of 0.05).

– With probability 1 − λ, both alleles have the same dropout rate. Draw µi = µ
(r)
i = µ

(a)
i from a

Beta distribution with parameters α and β.

• Draw the node weights π1, ...πN from a flat Dirichlet distribution D(1, ..., 1).

• For each cell j:

– With probability 1− δ, the cell is a singlet.

∗ Draw the attachment node σj from Categorical(π1, ...πN ).

∗ Draw the total number of reads in the cell Dj .

∗ For each region k:

· draw the number of reads falling on region k Dkj from a negative binomial distribution

NB(Dj
ck(σj)

2 ρk, θ).

∗ For each variable locus i:

· Draw the number of copies of the reference allele that are not dropped out C
(r)
ij from

Binom(c
(r)
i (σj), 1− µ

(r)
i )

· Draw the number of copies of the alternative allele that are not dropped out C
(a)
ij from

Binom(c
(a)
i (σj), 1− µ

(a)
i )

· Draw the alternative read counts from BetaBinom(Dij , f, ω) where f =
C

(a)
ij

C
(r)
ij +C

(a)
ij

(1−ε)+

C
(r)
ij

C
(r)
ij +C

(a)
ij

ε is the expected frequency of the alternative allele and the overdispersion ω is

ωhom if C
(r)
ij = 0 or C

(a)
ij = 0 and ωhet otherwise.

– With probability δ, the cell is a doublet.

∗ Draw the two nodes independently, each from Categorical(π1, ...πN ).

∗ The genotype of the doublet is obtained by summing the copy numbers of each node.

∗ Given the genotype of the doublet, the reads are generated in the same way as for a singlet.
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Supplementary Figure 1: Probabilistic graphical model representing the generative process. Yellow nodes
correspond to observed variables and grey nodes to constants. All of the other variables are estimated in the
inference.

Supplementary Note 2 MCMC moves for exploring the tree space

In this section, we describe in more detail each move used to propose a new tree in the MCMC. Most of
these moves are not symmetric (proposing T ′ from T does not have the same probability as proposing T
from T ′), so we also explain how to compute the Hastings ratio.

2.1 Prune and reattach

• Select one node n1 uniformly at random.

• Select one node n2 which is not a descendant of n1.

• Set n2 as the new parent of n1 (which results in moving the whole subtree below n1).

This move is symmetric, so the Hastings ratio is 1:

HR = 1
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Supplementary Figure 2: Prune and reattach a node (here node B). The subtree (here node D) is moved
along with the node.

2.2 Swap node labels

• Select one node n1 uniformly at random.

• Select one node n2 uniformly at random among all other nodes.

• Exchange the events in n1 with those in n2.

This move is symmetric, so the Hastings ratio is 1:

HR = 1

2.3 Move event

• Select a type of event among SNV and CNA.

• Select a source node n1 which has this type of event (Nevent possibilities).

• Select one event in this node (nevent(n1) possibilities) and remove it.

• If the node is now empty, delete it and set the parent of its children to be the parent p of the deleted
node.

• Choose whether to move the event to a new node, or to an existing node.

– With probability α, move the event to a new node n2.

∗ Select a parent p for the new node among all the existing nodes (N possibilities)

∗ For each child of the parent, reassign its parent to the new node with probability 1/2.
(2nchildren(p) possibilities).

– With probability 1− α, move the event to an existing node n2.

∗ Select the node among all the existing nodes (N possibilities)

• If we moved an SNV and the tree contains CNAs which affect this locus, randomly change the allele
affected by the CNA for this locus.
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Supplementary Figure 3: Move a somatic event. Here, event C can either be moved to an existing node
(top) or to a new node (bottom). When an event is moved to a new node, the new node has to select its
parent among the existing nodes, and the children are randomly reassigned: here, the node containing event
D keeps A as its parent, but the node containing event B has the new node as its parent.

To reverse this move, we need to select n2 as the source node (N ′
event possibilities, because there might be

one more or one fewer node with this type of event, after moving the event), select the right event in n2

(nevent(n2) possibilities). If n1 was deleted, we need to select a new node as a destination node, select the
right parent and reassign the children correctly. Otherwise, we need to select n1 as the destination node
(N −1 possibilities). Let β = α if we moved the event to a new node and β = 1−α otherwise, and let γ = α
if the source node was deleted, and 1− α otherwise. The Hastings ratio is:

HR =
γ

β

Nevent

N ′
event

nevent(n1)

nevent(n2)

2.4 Split or merge node

Let α be the probability to split a node, and 1− α is the probability to merge two nodes.

2.4.1 Split node

• Select one node n uniformly at random (N possibilities).

• Randomly allocate the events between the two nodes (2nevents(n) possibilities).

• For all of the children of the original node, set its parent to either one of the two new nodes (2nchildren(n)

possibilities).

To reverse the move, we need to select merge and select the right node to merge with its parent. Note that,
when we merge two nodes, we cannot select the root so we have N − 1 possibilities, but after splitting N
was increased by one, so N − 1 after the split is equal to N before.
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HR =
1− α

α
2nevents(n)2nchildren(n)

2.4.2 Merge nodes

• Select one node different from the root uniformly at random (N − 1 possibilities).

• Merge the node with its parent (combine events of both nodes, and set the parents of their children to
this merged node).

HR =
α

1− α

1

2nevents(n)2nchildren(n)

Supplementary Figure 4: Split or merge nodes. When splitting a node, the children of the original node are
randomly assigned to the two resulting nodes.

2.5 Add or remove CNA event

Let α be the probability to add a CNA event (and 1− α the probability to remove a CNA event). α should
be quite high (around 0.8) because there are more ways to add an event than to remove one. If there is no
CNA event in the tree, we cannot remove an event so we set the probability to add an event to 1. Let α′

be the effective add probability in this configuration, which is 1 if there is no CNA event in the tree and α
otherwise.

2.5.1 Add CNA event

• Choose whether to add the event to a new node, or to an existing node.

– With probability 1/2, add the event to a new node.

∗ Select a parent p for the new node among all the existing nodes (N possibilities)

∗ For each child of the parent, reassign its parent to the new node with probability 1/2.
(2nchildren(p) possibilities).

– With probability 1/2, add the event to an existing node.

∗ Select the node among all the existing nodes (N possibilities)

• Select gain, loss or CNLOH (3 possibilities).
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• Select a region uniformly at random . If the event is a CNLOH, can only select from the regions which
contain SNVs. If the event is a gain or a loss, can only select from the candidate regions. There are
ncandidate regions possibilities.

• For each variable site in this region (if there are any), select which allele is gained or lost (2nloci in region

possibilities).

To reverse the move, we need to select remove, select this node among all nodes which have a CNA event
(taking into account that, if the node initially had no CNA event, there is now one more node with a CNA
event), and select the right event among all the CNA events in this node. Consequently, the Hastings ratio
is:

HR =
1− α

α′
N2nchildren(p)

NCNA

ncandidate regions × 3× 2nloci in region

nCNA(n)

2.5.2 Remove CNA event

• Select a node which has a CNA event (NCNA possibilities).

• Select one CNA event among all CNA events in this node (nCNA(n) possibilities).

• If the node is now empty, delete it and set the parent of its children to be the parent p of the deleted
node.

HR =
α

1− α

NCNA

N2nchildren(p)

nCNA(n)

ncandidate regions × 3× 2nloci in region

2.6 Exchange Loss and CNLOH

• Select one node which has at least one Copy Neutral LOH event or a Copy Number Loss of a region
containing at least one variant.

• Select one of such events in the node.

• If we selected a CNLOH event:

– Remove the CNLOH event.

– Add a Copy Number Loss of the region, with the alleles lost corresponding to the lost alleles of
the original CNLOH event.

• If we selected a loss:

– Remove the CNA event.

– Add a CNLOH event, with the same alleles lost as in the previous loss.

The move is symmetric.
HR = 1
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2.7 Change alleles affected by a CNA event

• Select one node containing at least one CNA event of a region containing variants.

• Select one such CNA event in that node.

• For each variant in the region affected by the CNA, randomly select which allele is affected.

This move is symmetric.

HR = 1

2.8 Merge or duplicate CNA

The goal of this move is to allow a transition in one-step from having two identical CNAs in two different
lineages to having only one copy of this CNA at their most recent common ancestor, and vice-versa.

• Count the number of CNA events which exist in several copies in the tree ndup CNA and the number
of nodes containing at least one CNA event and having multiple children nnodes CNA children.

• With probability
ndup CNA

ndup CNA+nnodes CNA children
, merge two identical CNA events to their most recent com-

mon ancestor.

– Select the CNA among the ndup CNA possibilities.

– Select two nodes having this CNA (
(
nnodesCNA

2

)
possibilities).

– Remove this CNA from the two selected nodes, and add the CNA to their most recent common
ancestor.

• With probability nnodes CNA children

ndup CNA+nnodes CNA children
, duplicate a CNA event and move the two copies to two

nodes in two different branches.

– Select one node having multiple children and containing at least one CNA event (nnodes CNA children

possibilities).

– Select one CNA event in this node and remove it.

– Select two children of this node.

– For each child, select one node in its subtree, and add the CNA event to it.
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Supplementary Figure 5: Merge or duplicate a CNA event. When merging, the two events are merged
at their most recent common ancestor. When duplicating, the two copies can be placed anywhere in two
distinct lineages below the original CNA.

Supplementary Note 3 Properties of the Tapestri data

3.1 Amplicons coverage

In Tapestri® data, each amplicon has a different amplification efficiency, with some amplicons having very
low coverage to the point where most cells cannot be genotyped. Supplementary Figure 6 shows the rela-
tionship between the GC-content of an amplicon and the percentage of reads falling on this amplicon, and
we do not observe any correlation: even amplicons having a GC-content of around 50% can have a very
low coverage. While an extreme GC-content might have a large impact on the coverage of an amplicon,
here all the amplicons in both panels had a moderate GC-content between 30% and 70%, which is probably
a consequence of having avoided amplicons with extreme GC-content in the panel design. Supplementary
Figure 7 shows for each amplicon a violin plot representing the distribution of the proportion of reads falling
on that amplicon across cells, in one sample. In addition to the variability between amplicons, there is a
substantial variance across cells for the same amplicon. The relative coverage of the different regions is fairly
consistent across samples sequenced with the sample amplicon panel (Supplementary Figure 8).

When there are no CNAs, we would expect the sequencing depth on each amplicon to be independent.
However, this is not what is observed in practice: Supplementary Figure 9A shows the correlation coefficients
between the read counts on each amplicon in one sample, and there are very strong correlations. The same
correlations are present in every sample sequenced with the 50-amplicon panel. There are also strong
correlations in the 279-amplicon panel, but they have a different pattern (Supplementary Figure 9B). With
this larger panel, amplicons on the same gene tend to be correlated, but this is not always the case, and there
are also numerous strong correlations between amplicons on different genes, and even between amplicons on
different chromosomes (Supplementary Figure 9C and D).

The biological explanation for these correlations is not clear. It might be that the efficiency of the proteases
used to remove nuclear proteins is variable, and when they do not work well in some cells, we find a much
lower sequencing depth in these cells for amplicons located in regions of tightly packaged chromatin. Such
correlations in Tapestri® data have never been reported, and they have the potential to strongly confound
the CNA inference, since we could interpret the two main clusters as two different clones with very different
copy number profiles. However, these correlations are independent from the actual clonal architecture of the
tumour, so by jointly inferring SNVs and CNAs, only the true CNAs should be detected.
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Supplementary Figure 6: Average proportion of reads falling on each amplicon, depending on the GC-content
of that amplicon, for the sample AML-72-001 (279-amplicon panel). There is a large coverage variability
across amplicons, but no clear correlation with the GC-content. The situation is similar for the 50-amplicon
panel.

Supplementary Figure 7: Violin pots of the proportion of reads falling on each amplicon for the sample
AML-02-001 (50-amplicon panel). Each amplicon has a different coverage and, within one amplicon, there
is a lot of variability across cells.
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Supplementary Figure 8: Boxplot of the median proportion of reads falling on each region in each sample,
for samples sequenced with the 50-amplicon panel. The boxplots represent the median and first and third
quartiles, whiskers show the rest of the distribution up to 1.5 times the interquartile length, and outliers not
within this range are shown as small circles.
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Supplementary Figure 9: Correlations observed between the coverage of different amplicons in real MissionBio
data. A. Correlation coefficients between the read count proportions on each amplicon in sample AML-08-
001, sequenced with the 50-amplicon panel. The amplicons were sorted according to a hierarchical clustering.
B. Correlation coefficients between the read count proportions on each amplicon in sample AML-89-001,
sequenced with the 279-amplicon panel. C. Proportions of reads falling on two correlated amplicons in each
cell: one amplicon on TP53 (chr17) and one amplicon on SF3B1 (chr2). D.:Proportions of reads falling on
two correlated amplicons in each cell: one amplicon on NPM1 (chr5) and one one WT1 (chr11).
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3.2 Allele dropout rates

Like every single-cell DNA sequencing platform, Tapestri® suffers from allelic dropouts: even if a cell is
heterozygous, it can happen that only one of the two alleles is amplified, and the cell appears homozygous.
The 50-amplicon panel used by Morita et al. contained 10 amplicons targeting common SNPs in order to
estimate dropout rates. For each sample, we selected the SNPs for which it is heterozygous, and we computed
the dropout rate of each allele: we define the dropout rate of the alternative allele as the number of cells
genotyped as wild type divided by the total number of cells genotyped, and likewise for the dropout rate
of the reference allele. The dropout rates of each allele are around 5%, but they vary a lot from variant to
variant and from sample to sample (Supplementary Figure 10). Apart from some outliers, both alleles have
the same dropout rate.

Supplementary Figure 10: Dropout rates of the two alleles, for 10 common SNPs targeted by specific
amplicons. Each point corresponds to a pair (sample, SNP), and points corresponding to the same SNP are
grouped by colour. In most cases, both alleles have the same dropout rate, but the dropout rate varies a lot
from variant to variant.

3.3 Allele frequencies

If one cell contains one copy of the wild type allele and one copy of the mutated allele, we expect in the
absence of dropouts to find approximately 50% reads supporting each allele, with some stochastic variability.
This is indeed what we observe in the Tapestri® data (Supplementary Figure 11, top). In case of a copy
number gain, there can be for example two copies of the reference allele and one copy of the alternative
allele, in which case we would expect the alternative allele fraction to be centered on 1/3. In addition, it is
very unlikely that both wild type copies fail to be amplified, which means that we don’t expect to find many
dropouts of the reference allele. This is indeed what is observed in real data (Supplementary Figure 11,
bottom left). For the larger panel with 279 amplicons, the alternative allele fraction distribution is not
as peaked (Supplementary Figure 11, bottom right), so in this case we use a larger overdispersion in the

14



beta-binomial model.

Supplementary Figure 11: Fraction of alternative allele for two germline variants in sample AML-02-001
(top), FLT3 -ITD in sample AML-28-001 (bottom left) and a mutation in IDH1 in sample AML-82-001
(bottom right).
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3.4 Genes covered by the panels

Chrom arm Gene Nb amplicons in small panel Nb amplicons in large panel
1p CSF3R 0 4
1p MPL 0 1
1p NRAS 2 2
2p DNMT3A 1 22
2q SF3B1 2 5
2q IDH1 1 1
3q GATA2 1 2
4q KIT 2 6
4q TET2 0 26
5q NPM1 1 1
7q EZH2 2 19
8q RAD21 0 4
8q MYC 0 6
9p JAK2 1 2
10q SMC3 0 4
11p WT1 3 3
11q CBL 0 3
12p ETV6 0 10
12p KRAS 2 3
12q PTPN11 2 4
13q FLT3 5 5
15q IDH2 1 1
17p TP53 4 9
17q NF1 0 28
17q PPM1D 0 3
17q SRSF2 1 1
18q SETBP1 0 6
19p CALR 0 1
20q ASXL1 2 10
21q RUNX1 5 9
21q U2AF1 2 2
Xp ZRSR2 0 11
Xp KDM6A 0 19
Xq BCOR 0 22
Xq SMC1A 0 3
Xq STAG2 0 13
Xq PHF6 0 8

6,10,14,18 SNPs 10 0
Total 50 279

Supplementary Table 1: List of genes targeted by each of the 2 panels used in the publication of Morita et al.
(2020), with the chromosome arm in which they are located and the number of amplicons targeting them. The
50-amplicon panel contains 10 amplicons targeting common SNPs, which were used to infer allelic dropout rates.
Genes targeted by only a few unreliable amplicons with a very high dropout rate were excluded from the CNA
inference. For example, both panels had only one amplicon on 5q (targeting NPM1) and this amplicon was very
unreliable and was therefore filtered out from the CNA inference, which is why we did not detect any deletion on
5q.
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Supplementary Note 4 Simulations with synthetic data

4.1 Data generation

We generated synthetic data in a way that attempts to mimic real data, as is described below.

• The tree structure of nnodes = 6 nodes is generated by randomly sampling a Prüfer sequence uniformly
from [[0, nnodes − 1]]nnodes−2.

• nSNVs SNVs are randomly assigned to nregions regions.

• nSNVs SNVs, nCNAs CNAs are randomly assigned to the nodes in the tree, making sure that each node
(except the root) contains at least one SNV or CNA.

• Each CNA is assigned randomly to one region. The regions are sampled without replacement. If the
region contains a variant which is present in this node, randomly select the CNA type between gain,
loss or CNLOH. Otherwise, select only between gain and loss. For each SNV present in the affected
region (if any), we randomly select which allele is affected, making sure that the affected allele is present
in this node.

• The node probabilities π1, ..., πnnodes
(the probability that a cell is sampled from each node) are sampled

from a uniform Dirichlet distribution whose concentration parameter is (10,...,10) in all simulations
except the one where it is explicitly varied.

• For all variants, each allele has the same probability of 5% of being dropped out (except in the
simulation where we varied the dropout rate).

• The region weights ρk are sampled from a Normal distribution N(1, σ) where σ is 0.5 in all simulations
except in Figure 2A where it was set to 0.0 (uniform coverage). We set the minimum value of ρk to be
0.3 to ensure that each region has a sufficient coverage.

• For each cell 3000 in total):

– Sample the node to which it is attached from Categorical(π1, ..., πnnodes
).

– For each variant i:

∗ Sample the number of reads covering locus i from a Poisson distribution with rate 20ρi (20
is the average sequencing depth).

∗ Each allele copy can be dropped out with probability 5%. Let f = c(a)

c(r)+c(a) (1− ε)+ c(r)

c(r)+c(a) ε
be the expected proportion of mutated reads, where ε is the sequencing error rate which we set
to 1% and c(r) and c(a) are the number of copies of the reference and alternative alleles which
were not dropped out. Sample the number of mutated reads from a binomial distribution
with parameter f , where the total number of reads is the one that was sampled from the
Poisson distribution.

For Figure 2F, we used trees with 6 nodes and 5 SNVs (so one SNV per node, plus the root), since SCITE
outputs trees with one SNV per node.

4.2 Parameters for the inference methods

BiTSC² takes as input total and alternative read counts for each locus. Following the recommendation from
BiTSC²’s developers, in cases where some regions do not contain any variants, we created one variant per
region, where we set the alternative read count to 0. This results in all of these additional ”variants” to be
placed by BiTSC² in one node where no cells are attached. Therefore, we post-processed BiTSC²’s trees by

17



removing the node with only placeholder SNVs. BiTSC² was run with 5000 burn-in samples and 500 actual
samples. We ran 5 chains in parallel, using the default temperature parameter. BiTSC² normally performs
the inference with different numbers of clones, and then selects the best model with a Bayesian Information
Criterion. In order to speed up the simulations, we directly gave BiTSC² the correct number of clones (plus
one, accounting for the node which we then remove in the post-processing), which also gives it an advantage.
BiTSC² takes as input genomic segments, which divide the genome into groups of loci which share the same
copy number. Here, we used regions as segments.

∞SCITE outputs trees where one node contains only one SNV, whereas here nodes may contain several
SNVs and CNAs. However, when one node in the true tree contains several SNVs, this will be represented in
the SCITE tree by several successive nodes, where most of the intermediate nodes have no cells attached to
them. Therefore, we post-processed SCITE’s trees by deleting nodes with exactly one child and which have
less than 2% of the cells attached to them, and moved their SNV to their child. This post-processing was not
applied to the simulations where we varied the Dirichlet concentration parameter for the node probabilities,
since in this case each node had exactly one SNV. SCITE was run with 4 different chains, each of length
20000. We gave SCITE the correct sequencing error and dropout rates, 1% and 5% respectively.

COMPASS was run with 4 parallel chains, each chain had 10000 iterations, and the temperature parameter
was set to 10. Doublets were not modelled since the simulated data did not contain any.
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4.3 Additional simulations

4.3.1 Number of cells for BiTSC²

In the simulations, we used 3000 cells, which is in the lower range of a typical Tapestri® dataset (1000 to
10000 cells). Surprisingly, we observed that BiTSC² performed worse when its input contained too many
cells. Supplementary Figure 12 shows that its performance dropped with an increasing number of cells.
In contrast to COMPASS which marginalizes out the attachments of cells to nodes, BiTSC² samples the
attachments of cells in the MCMC with a Gibbs sampling. This makes the inference much slower when there
are many cells since many iterations are required to change the assignments of cells. In our simulation for
Supplementary Figure 12, we set the number of iterations for BiTSC² to 5000, which took more than 24
hours with trees of 6 nodes, 30 regions, 20 SNVs and 3 CNAs for 1000 cells. Despite this very long runtime,
BiTSC² did not perform as well when given 500 or 1000 cells as input as with 100 or 200 cells. Consequently,
it might be that the Gibbs sampling of the attachments of cells to nodes in BiTSC² makes the MCMC more
likely to get stuck in a local optimum because, in order to reach a better tree, it might be necessary to change
the assignments of a very large number of cells. This could explain the decreased performance of BiTSC²
with a large number of cells. In all other simulations and for real data, we subsampled the input of BiTSC²
to 200 cells, which improved its performance and decreased its runtime.
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Supplementary Figure 12: Evaluation of BiTSC² on synthetic data, with different numbers of cells. Here, we
used trees with 6 nodes, 20 regions, 20 SNVs and 3 CNAs. For this simulation, we used the same coverage for
all regions and disabled CNLOH. For each setting, we generated 50 different trees. The boxplots represent
the median and first and third quartiles, crosses indicate means, whiskers show the rest of the distribution
up to 1.5 times the interquartile length, and outliers not within this range are shown as diamonds.
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4.3.2 Doublets

In order to investigate the impact of doublets on the performance of the different methods, we also generated
data with doublets, where we varied the doublet rate. COMPASS and ∞SCITE take doublets into account
in their model, while BiTSC² does not. In order to focus on the impact of the doublets, we generated here
data without CNAs.

Overall, all methods are very robust to doublets (Supplementary Figure 13A). Only when the doublet rate is
extremely high (90%, much higher than what would be found in real data) do we see a drop in performance
for COMPASS and SCITE when they do not model doublets. When they account for doublets, their
performance is almost not impacted by the presence of doublets in the data. Modelling doublets comes
with an increased computational cost, which is more modest for COMPASS than SCITE (Supplementary
Figure 13B). Although both COMPASS and SCITE model doublets in a similar way, by considering pairs of
nodes, SCITE is slower because the number of nodes in the trees is equal to the number of SNVs, whereas
COMPASS can have several events in the same node, leading to a lower number of nodes. Since the runtime
when modelling doublets is quadratic in the number of nodes, a lower number of nodes makes COMPASS
much faster.

A B

Supplementary Figure 13: Evaluation on synthetic data with doublets. The boxplots represent the median
and first and third quartiles, crosses indicate means, whiskers show the rest of the distribution up to 1.5
times the interquartile length, and outliers not within this range are shown as diamonds. A. Evaluation of
COMPASS, BiTSC² and SCITE on synthetic data, with different doublet rates. Here, we used trees with 6
nodes, 7 SNVs and 0 CNAs and a variance in region weights of 0. For each setting, we generated 20 different
trees. The crosses represent the mean MP3 similarity to the true tree and the boxplots show the median
and quartiles. B. Runtimes of COMPASS (with and without modelling doublets), BiTSC² and SCITE (with
and without modelling doublets).
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4.4 Correlations between regions

We generated data where regions were randomly clustered, and within each cluster the coverage on the
regions were correlated, independently of CNAs, as we had observed to be the case in real data. Supple-
mentary Figures 14A-C show the correlations between regions with this synthetic data generation, which
are similar the correlations observed in MissionBio’s Tapestri® data. Supplementary Figure 14D shows that
the correlations of this type do not affect the results of COMPASS.

Correlation = 0.0 Correlation = 0.5 Correlation = 1.0A B C

D

Supplementary Figure 14: A-C. Heatmaps showing the correlation coefficient between the coverage of the
different amplicons, for three examples with different settings.D. Evaluation of COMPASS and BiTSC² on
synthetic data, with different values for the correlation coefficient of regions in the same cluster. For each
setting, we generated 20 different trees. The boxplots represent the median and first and third quartiles,
crosses indicate means, whiskers show the rest of the distribution up to 1.5 times the interquartile length,
and outliers not within this range are shown as diamonds. The performances of COMPASS and BiTSC² are
not affected by these correlations.

Supplementary Note 5 Orthogonal validation of COMPASS-derived
CNA calls with bulk data

Bulk targeted sequencing data covering 297 genes was available for 94 samples, 9 of which were excluded
because they were too noisy. We used CNVkit to detect CNAs (only copy number gains and losses, no
CNLOH) in these samples. In addition, we also had bulk SNP array data for 40 samples, 8 of which
were excluded because they were too noisy. We used ASCAT to detect CNAs (including CNLOH) for these
samples. Since bulk data cannot be used to reliably infer subclonal CNAs, we only considered events detected
by COMPASS in more than 50% of the cells. The complete list of CNAs detected by COMPASS and whether
or not they could be validated in bulk data is available in Supplementary Table 2.
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Patient CNA Bulk validation
AML-01 CNLOH FLT3 (chr13) unavailable
AML-02 CNLOH JAK2 (chr9) too subclonal
AML-03 CNLOH FLT3 (chr13) YES

AML-07
Loss RUNX1 (chr21) unavailable

Loss U2AF1 (chr21) unavailable

Gain FLT3 (chr13) unavailable
AML-19 CNLOH FLT3 (chr13) unavailable
AML-21 CNLOH FLT3 (chr13) unavailable
AML-25 CNLOH RUNX1 (chr21) YES
AML-32 CNLOH RUNX1 (chr21) YES
AML-38 CNLOH FLT3 (chr13) unavailable
AML-39 Loss EZH2 (chr7) YES
AML-41 CNLOH WT1 (chr11) unavailable
AML-43 CNLOH WT1 (chr11) unavailable
AML-49 CNLOH FLT3 (chr13) unavailable
AML-51 CNLOH FLT3 (chr13) unavailable

AML-59
Loss TP53 (chr17) too subclonal

Loss EZH2 (chr7) YES

Gain WT1 (chr11) YES
AML-60 Gain ASXL1 (chr20) NO
AML-65 CNLOH FLT3 (chr13) unavailable
AML-73 Loss RUNX1 (chr21) YES

AML-97
CNLOH FLT3 (chr13) unavailable

CNLOH TP53 (chr17) unavailable

Patient CNA Bulk validation
AML-11 CNLOH CBL (chr11) YES
AML-42 Loss TET2 (chr4) YES

AML-71
CNLOH DNMT3A (chr2) NO

CNLOH RUNX1 (chr21) YES
AML-72 CNLOH TET2 (chr4) unavailable
AML-77 CNLOH CBL (chr11) unavailable

AML-78

Loss EZH2 (chr7) unavailable

CNLOH TP53 (chr17) unavailable

Loss MYC (chr8) unavailable

Loss ETV6 (chr12) unavailable

Loss RAD21 (chr8) unavailable

AML-79

Loss TP53 (chr17) unavailable

Loss U2AF1 (chr21) unavailable

Gain U2AF1 (chr21) unavailable

Loss EZH2 (chr7) unavailable

Loss SETBP1 (chr18) unavailable

Gain RUNX1 (chr21) unavailable

AML-83
Gain MYC (chr8) YES

Gain RAD21 (chr8) YES
AML-84 CNLOH FLT3 (chr13) unavailable
AML-88 CNLOH FLT3 (chr13) YES
AML-89 CNLOH JAK2 (chr9) unavailable
AML-91 CNLOH TET2 (chr4) YES
AML-92 CNLOH JAK2 (chr9) too subclonal
AML-98 Loss EZH2 (chr7) YES

AML-99
CNLOH RUNX1 (chr21) YES

Gain MYC (chr8) YES

Gain RAD21 (chr8) YES

AML-101

Loss PPM1D (chr17) unavailable

Loss NF1 (chr17) unavailable

Loss EZH2 (chr7) unavailable

Loss TP53 (chr17) unavailable
AML-103 Loss TET2 (chr4) unavailable

AML-107
Loss FLT3 (chr13) unavailable

Loss EZH2 (chr7) unavailable

Loss ETV6 (chr12) unavailable
AML-111 Loss EZH2 (chr7) unavailable

AML-112
CNLOH CSF3R (chr1) unavailable

Gain KIT (chr4) unavailable

CNLOH DNMT3A (chr2) unavailable
AML-113 CNLOH FLT3 (chr13) unavailable
AML-114 CNLOH EZH2 (chr7) unavailable

AML-117
Loss TP53 (chr17) unavailable

Gain MYC (chr8) unavailable

Gain RAD21 (chr8) unavailable

50-amplicon panel 279-amplicon panel

Supplementary Table 2: List of CNAs detected in the AML cohort, for samples sequenced with the 50-
amplicon and with the 279-amplicon panel. If SNP array or bulk targeted sequencing was available for the
corresponding samples, we indicated whether the CNAs detected by COMPASS were also detected in the
bulk data.
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5.1 CNAs detected by COMPASS

Among the 16 patients for whom we detected CNAs, we also had bulk SNP array data for 2 of them (samples
AML-59-001 and AML-99-001, shown in the main text) and bulk targeted sequencing (with a larger panel
covering 297 genes) for 6 of them. Among these 8 samples, all of the CNAs present in a majority of the cells
identified by COMPASS were also detected by bulk sequencing, except for one (amplification of ASXL1 in
sample AML-60-001, Supplementary Figure 15).

ASXL1 p.G646fs(chr20)

Gain ASXL1:REF (chr20)
1171 cells

15%

FLT3-ITD(chr13)
6186 cells

82%

31 cells
0%

171 cells
2%

SF3B1 p.K666N(chr2)
143 cells

1%

FLT3 p.V491L(chr13) NRAS p.Q61R(chr1) Loss RUNX1 (chr21)
843 cells

9%

Loss RUNX1 (chr21)
1997 cells

20%
Loss RUNX1 (chr21)

1602 cells
16%

2347 cells
24%

2007 cells
20%

978 cells
10%

PTPN11 p.A72T(chr12)
BCOR p.Q1624*(chrX)

Loss EZH2 (chr7)

KIT p.D816V(chr4)
2260 cells

43%

RUNX1 p.F158fs(chr21)
1833 cells

35%

252 cells
5%

897 cells
17%

EZH2 p.R690H(chr7)
Loss TET2:REF,REF (chr4)

NRAS p.G13D(chr1) RUNX1 p.A142fs(chr21)
STAG2 p.N1046fs(chrX)

0 cells
0%

2899 cells
90%

122 cells
4%

SNP TET2 p.I1783V(chr4)

TET2 intronic-splice-site(chr4)
ASXL1 p.G646fs(chr20)

173 cells
5%

37 cells
1%

A B C

D E

PTPN11 p.G503A(chr12)
Loss EZH2 (chr7)

PTPN11 p.A72V(chr12) PTPN11 p.E76G(chr12)
2629 cells

39%

RUNX1 p.Q335H(chr21)
3453 cells

51%
289 cells

4%
118 cells

2%

225 cells
3%

Supplementary Figure 15: Trees inferred by COMPASS and corresponding copy-number plots generated by
CNVkit from bulk sequencing for samples AML-39-001 (A), AML-42-001 (B), AML-60-001 (C), AML-73-
001 (D), and AML-98-001 (E). CNVkit detected a small deletion of GATA2 in sample AML-39-001 which
was not detected by COMPASS because, since the amplicons on GATA2 had a low coverage, this region was
excluded from the CNA inference by COMPASS.
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5.2 CNAs detected in bulk data but missed by COMPASS

Among the 85 samples for which we had reliable bulk targeted sequencing, some contained CNAs on regions
not targeted by the single-cell panel, which obviously cannot be detected by COMPASS. Only one sample
had CNAs that were identified by CNVkit in the bulk samples but were missed by COMPASS, even though
they overlap regions targeted by the panel: AML-81-001 (chromosomes 8 and 9). This sample had a high
number of cells attached to the root (47%). Since COMPASS estimates the region weights with the cells
attached to the root, these weights may not be properly estimated when some neoplastic cells are attached
to the root.

NRAS p.G12C(chr1) FLT3 p.D835Y(chr13) FLT3 p.D835E(chr13) NRAS p.G12S(chr1) KRAS p.G13D(chr12) CBL p.Q408del(chr11)
1282 cells

47%

110 cells
4%

122 cells
4%

479 cells
17%

91 cells
3%

530 cells
19%

128 cells
5%

Supplementary Figure 16: Tree inferred by COMPASS for sample AML-81-001, and copy-number profile
inferred by CNVkit from bulk data. COMPASS did not identify any CNAs, even though CNVkit detected
gains on chromosomes 8, 9 and 22. A high number of cells attached to the root (47%), which could have
confounded the estimation of the region weights.

5.3 CNLOH events detected by COMPASS

Among the 32 samples for which reliable SNP array data was available, 6 of them contained CNLOH events
detected by both COMPASS and ASCAT (AML-03-001, AML-11-001, AML-25-001, AML-71-001, AML-88-
001, AML-91-001 and AML-99-001, Supplementary Figure 17). Only in sample AML-71-001 did COMPASS
detect a CNLOH event which was not validated by ASCAT (on DNMT3A on chr2). COMPASS assumes that
allelic dropouts at different positions are independant, which may not be the case when several variants are
on the same amplicon. Since this sample AML-71-001 contains two SNVs on DNMT3A, this assumption of
the model might have led COMPASS to interpret the simultaneous dropouts of the two variants on DNMT3A
as two CNLOH events.
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FLT3-ITD(chr13)
CNLOH FLT3:REF,REF,REF (chr13)

RUNX1 p.S252P(chr21) FLT3 intronic(chr13)
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3%

SNP FLT3 intronic(chr13)
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3%

CNLOH CBL:REF,REF (chr11)

SRSF2 p.P95A(chr17)
404 cells

13%
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SNP CBL intronic(chr11)

TET2 p.P1215L(chr4)
CBL p.C416Y(chr11)

ASXL1 p.G646fs(chr20)

109 cells
3%

141 cells
4%

AML-11-001AML-03-001

AML-25-001

AML-71-001

AML-91-001

AML-88-001

AML-32-001

ASXL1 p.G646fs(chr20)

EZH2 p.R684C(chr7)
236 cells
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RUNX1 p.Q335*(chr21)
CNLOH RUNX1:REF (chr21)
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18%

FLT3-ITD(chr13)
4680 cells

74%

95 cells
2%

RUNX1 p.R166G(chr21)
CNLOH RUNX1:REF (chr21)

FLT3-ITD(chr13) FLT3-ITD(chr13) FLT3 p.D835Y(chr13)
363 cells

4%

354 cells
4%

DNMT3A p.R882H(chr2)

SF3B1 p.K700E(chr2)
119 cells

1%

57 cells
1%

859 cells
11%

5625 cells
69%

728 cells
9%

SNP RUNX1 intronic(chr21)

NRAS p.G12R(chr1)
DNMT3A splice-donor(chr2)

DNMT3A p.G800S(chr2)
TET2 splice-donor(chr4)
TET2 p.H1889Y(chr4)

ASXL1 p.W796fs(chr20)

74 cells
2%

CNLOH RUNX1:REF (chr21) CNLOH DNMT3A:REF,ALT (chr2)
293 cells

8%

CNLOH DNMT3A:REF,ALT (chr2) CNLOH DNMT3A:ALT,REF (chr2)
2443 cells

65%

443 cells
12%

44 cells
1%

438 cells
12%

DNMT3A p.R882H(chr2)
TET2 p.S1267*(chr4)
NPM1 p.W288fs(chr5)

PTPN11 p.E76K(chr12) FLT3 p.L610FFYVDFRE(chr13)
501 cells

8%

175 cells
3%

CNLOH FLT3:REF,REF (chr13)
2125 cells

34%

SNP FLT3 intronic(chr13)

53 cells
1%

3407 cells
54%

SRSF2 p.P95R(chr17)

KIT p.D816V(chr4) PTPN11 p.A72V(chr12) NRAS p.G12D(chr1) NRAS p.Q61K(chr1)
0 cells

0%

2652 cells
69%

610 cells
16%

180 cells
5%

120 cells
3%

TET2 p.Q1567*(chr4)
RUNX1 p.R320fs(chr21)
CNLOH TET2:REF (chr4)

222 cells
6%

77 cells
2%

A B

C D

E F

G

Supplementary Figure 17: Trees inferred by COMPASS and corresponding ASCAT profiles for samples
AML-03-001 (A), AML-11-01 (B), AML-25-001 (C), AML-32-001 (D), AML-71-001 ((E), AML-88-001 (F)
and AML-91-001 (G).
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5.4 CNLOH events detected with SNP array but missed by COMPASS

There are 4 samples for which we detected CNLOH events with SNP array data, but not with COMPASS:
19p in AML-20-001, 19q in AML-53-001, 10q in AML-71-001 and 7q in AML-91-001. All of these CNLOH
events are either in regions not covered by the targeted panels or for which we did not detect SNVs, so there
was no possibility for COMPASS to detect them.
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Supplementary Note 6 Additional trees

6.1 Trees with CNAs

We show here all of the remaining trees where COMPASS inferred gains or losses, but for which we did not
have bulk data to orthogonally validate the CNA calls.

IDH2 p.R140Q(chr15)

RUNX1 p.D123fs(chr21)
Gain FLT3 (chr13)
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13%

Loss RUNX1:REF (chr21)
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Supplementary Figure 18: Inferred trees for samples for which COMPASS inferred gains or losses: AML-07-
001, AML-78-001, AML-79-001, AML-103-001, AML-107-001, AML-111-001, AML-112-001, AML-117-001.
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6.2 Longitudinal samples for patient AML-99

We had 5 longitudinal samples for patient AML-99, and the copy number gain on chromosome 8 and the
CNLOH on RUNX1 were detected in all of them.
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Supplementary Figure 19: Inferred trees for the longitudinal samples of patient AML-99.
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6.3 Trees with JAK2 pV617F mutation and CNLOH

All 3 samples for which we detected the JAK2 pV617F mutation also had a CNLOH at this locus.
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Supplementary Figure 20: Inferred trees for the samples with JAK2 mutations: AML-02-001, AML-89-001
and AML-92-001.
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6.4 Samples with differences between COMPASS and SCITE

Since they are based on similar probabilistic models, COMPASS and ∞SCITE generally produce similar
trees, at least when there are no CNAs. However, even in the absence of CNAs, there can be differences for
two reasons.

First, when computing the likelihood of a tree, SCITE marginalizes over the attachments of cells to nodes,
and assumes that each node has an equal prior probability, which is not a valid assumption when different
clones have very different sizes. In such cases, SCITE might place a mutation corresponding to a small
clone below a mutation corresponding to a larger clone, even when these two mutations actually occurred
in parallel. The cells belonging to the larger clone can then also be attached to the node corresponding to
the smaller subclone, albeit with a smaller likelihood since it requires a dropout of the mutation that they
do not actually have. If the larger clone is much larger than the smaller one, the small gain in likelihood
for a high number of cells can lead to a higher likelihood for the false tree. COMPASS allows each node
to have a different attachment probability, which solves this problem. For example, in sample AML-02-001,
COMPASS places the JAK2 mutation in a different clone that the SF3B1, RUNX1 and FLT3 mutations,
which is in accordance with the small number of cells which have both mutations and probably correspond
to doublets (Supplementary Figure 21A). However, SCITE places the JAK2 mutation below the main clone,
for the reasons explained above.

Another difference between SCITE and COMPASS is that SCITE assumes that all SNVs have the same
dropout rate, whereas COMPASS allows each SNV to have its own dropout rate. This can lead to differ-
ences in the order of mutations. In general, if mutation A and mutation B are approximately present in the
same cells but mutation A has a higher dropout rate, SCITE will place mutation A below mutation B in the
tree. This is because there are more cells having mutation B without mutation A, than cells having mutation
B without mutation A. For example, in sample AML-02-001, 175 cells have the FLT3 mutation without the
RUNX1 mutation, whereas only 136 cells have the RUNX1 mutation without the FLT3 mutation (Supple-
mentary Figure 21A). Consequently, SCITE placed the FLT3 mutation before RUNX1. However, among
the FLT3 mutated cells, there are as many RUNX1 WT and mutated cells (175 and 165), indicating that,
assuming both alleles are equally likely to be dropped out, all cells having the RUNX1 mutation also have
FLT3. Conversely, among cells with the RUNX1 mutation, there are more cells without the FLT3 mutation
than with it (136 vs 84), indicating that the FLT3 likely occurred after the RUNX1 mutation, although
the RUNX1 mutation has a higher dropout rate. Similarly, in sample AML-16-001, the DNMT3A mutation
has a higher dropout rate than IDH1, resulting in SCITE placing DNMT3A after IDH1 (Supplementary
Figure 21B), even though the single-cell data dos not provide evidence for it, and DNMT3A mutations are
known to be early events. A similar phenomenon is observed in sample AML-17-001 for DNMT3A and
NRAS (Supplementary Figure 21C).
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NPM1 p.W288fs(chr5)

270 cells
4%

NRAS p.G12D(chr1)
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3%
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93%

NRAS p.G12D
434 cells

6%

DNMT3A p.F868L
120 cells

1%

NPM1 p.W288fs
407 cells

6%

5649 cells
85%

AML-02-001

#cells JAK2 WT JAK2 HET JAK2 HOM

SF3B1 WT 346 6 195

SF3B1 HET 2876 31 1

SF1B1 HOM 115 0 0

#cells RUNX1 WT RUNX1 HET RUNX1 HOM

FLT3 WT 445 136 14

FLT3 HET 175 3085 165

FLT3 HOM 4 84 5

#cells DNMT3A WT DNMT3A HET DNMT3A HOM

NRAS WT 240 204 19

NRAS HET 269 3968 250

NRAS HOM 11 127 14

#cells IDH1 WT IDH1 HET IDH1 HOM

DNMT3A WT 4971 159 7

DNMT3A HET 86 2834 70

DNMT3A HOM 4 138 5

AML-16-001

AML-17-001

A

B

C

Supplementary Figure 21: Example samples for which COMPASS and SCITE inferred a different order of the
mutations. A Trees inferred by COMPASS and∞SCITE for sample AML-02-001, and number of cells having
each possible genotypes for the pairs of mutations (JAK2,SF3B1) and (RUNX1,FLT3). B Trees inferred by
COMPASS and ∞SCITE for sample AML-16-001, and number of cells having each possible genotypes for the
pair of mutations (DNMT3A,IDH1). C Trees inferred by COMPASS and ∞SCITE for sample AML-17-001,
and number of cells having each possible genotypes for the pair of mutations (DNMT3A,NRAS).

31



6.5 Other AML samples with TP53 mutations treated with venetoclax
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Loss ETV6 (chr12)
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Venetoclax
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Venetoclax
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SNP FLT3 intronic(chr13)
SNP SETBP1 p.V1101I(chr18)

TP53 splice-donor(chr17)
Loss BRAF (chr7)
Loss EZH2 (chr7)
Gain ATM (chr11)

Gain KMT2A (chr11)
Gain CBL (chr11)

Loss FLT3:REF (chr13)
CNLOH TP53:REF (chr17)
Loss SETBP1:ALT (chr18)
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30%

CALR p.L367fs(chr19)
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SNP FLT3 intronic(chr13)
SNP SETBP1 p.V1101I(chr18)

TP53 splice-donor(chr17)
Gain ATM (chr11)

Gain KMT2A (chr11)
Gain CBL (chr11)
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Loss EZH2 (chr7)
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3%

CALR p.L367fs(chr19)
3098 cells

80%
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5%

Supplementary Figure 22: Inferred trees for the AML samples with TP53 mutations treated with venetoclax,
from Thijssen et al. 2021.
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6.6 Other MPN samples with TP53 mutations

MPN2 MPN3
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16%
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11%
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25%

535 cells
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50%
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92%

TP53 p.S241P(chr17)
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3%
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3%
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1%
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24%

TP53 p.I255F(chr17)
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14%
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1%
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7%
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29%

DNMT3A p.R882H(chr2)
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11%

ASXL1 p.G819fs(chr20) JAK2 p.V617F(chr9)
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0%
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2%

TP53 p.Y163C(chr17)
6059 cells

70%

1464 cells
17%

Supplementary Figure 23: Inferred trees for the MPN samples with TP53 mutations, from Maslah et al.
2022.
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