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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This is a valuable submission worthy of publication if the issues below can be addressed. The use of 

polymer membranes to achieve liquid phase separations of hydrocarbons has great potential for 

substantially reducing the energy consumed in the oil and gas industry. 

The approach is very specific to the hydrocarbon processing application outlined and my major concern 

is that the reader may consider its application to other situations where it is less sound. Even in the 

present case, the fit to the data shown in Figures 4b and d is not exceptionally good. Some of my 

comments below refer to this issue. 

The model is developed based on data available at 25 to 40C, while the tested temperature was 130C. In 

the present case, the authors argue that this discrepancy is justified as the permeability is not highly 

temperature dependent. However, this is not usually the case. The authors need to point this out and 

provide direction as to how temperature effects might be incorporated into the model in the future. 

Top of page 5 - The argument that all molecules have the same diffusivity has been examined by the 

authors in their reference 21. However, I think it needs to be noted here that this argument can only 

apply to penetrants of comparable nature. The hydrocarbons examined here are all similar, but if water 

was also present for example, it might not move as part of the cohort. It should also only apply to 

polymers that are strongly plasticised or swollen. I would not like to see such ‘cohort’ diffusion applied 

to low penetrant volume fractions, or in non-plasticised structures. These limitations need to be noted. 

The stage cut in experiments is high at 20% and 30%. Was any attempt made to assess the extent of 

concentration polarisation? This would lead to the accumulation of the larger, less permeable higher 

boiling point compounds on the membrane surface. Could this explain the higher measured permeance 

of these compounds for Arab light crude? 

The English in the SI needs correction. 

To assist the reader, add references for Eq. S1-S5. 

SI Page 5 – can you provide some validation for the assumption that ‘The activity coefficients (𝛾𝑖) of fluid 

mixtures on the upstream fluid were assumed as unit value’? This seems unlikely to be true. 

SI – I note that the authors use a Flory Huggins solubility model, whereas in reference 21 they conclude 

that a Langmuir-Flory Huggins model is better for glassy polymers. A justification needs to be provided 

as to why the LM-FH approach is not used in this paper. In particular, competitive sorption is often 

accounted for within the Langmuir term for glassy polymers and the use of FH for this purpose is not 

appropriate. Could this also be the reason that the high boiling point components do not fit the model 

as well? 

SI page 7 – clarify what you mean by the ‘Support fluid’. Do you mean the fluid in the permeate? 

Figure S1 – clarify what is meant by the change in symbol color, including the terminology of Polymer ID. 



Reviewer #2 (Remarks to the Author): 

The manuscript describes the methodology and results of applying a machine learning driven model for 

predicting permeation characteristics of multi-component organic mixtures through selective polymeric 

membranes. 

The application is important and I find the the contribution to be significant, as it introduces a 

framework not customarily used in the field, yet, and so can pave the way for others to follow. 

In particular, I like the approach that utilizes a physically-sound model framework (the Stephan-Maxwell 

equations for multi-component diffusion). 

The results are well-presented and the manuscript is quite easy to follow. The method well-illustrates its 

utility and so I believe it should be published and believe it will be a valuable contribution to the 

literature in the field. 

However, there are a few points I wish to raise for the authors to consider as a revision of this paper: 

1. The calculations are impressive, but there are some relatively large deviations between predicted and 

measured fluxes. what are the sources of this? Some discussion is provided but it feels like this is a point 

worth more thorough examination. 

2. Again, with reference to the possible model flaws - I imagine the authors have considered that the 

assumption of fickian diffusion might be questionable. despite the obvious utility of testing the model 

against a 'real', complex mixture, could it be worthwhile to first validate against a simpler mixture (even 

simpler than the one used in the preliminary trials, if that makes sense...?), and possibly fine-tune the 

model parameters? With that in mind, it seems that the sorption/diffusion coefficients are well-

represented, so perhaps other parameters could benefit from such 'training'? 

3. Curiously, in the mixture separation trials, the largest discrepancies seem to manifest at the highest 

and lowest fluxes (though the crude oil predictions at low fluxes are excellent, strangely enough). Do the 

authors have any possible explanations for this? 



Ultimately, the main point here are that in order to truly utilize a data-driven model for actual 

predictions, it is crucial to assess the ability of the physics (which 'grounds' the ML...) to capture the 

process well. So any sensible points on where discrepancies may come from is a great point for 

continued research. 

minor comments: 

1. consider using 'recovery' instead of 'stage-cut'. with are jargon but I believe the first one is commonly 

used in the membrane separation field, whereas the second isn't... 

2. A few details of the model description are a little hard to follow. For example, som of the notation is 

awkward in its use of brackets (some square, some circular, presumably to denote vectorial/tensorial 

quantities?). Some streamlining here would definitely benefit the reader interested in the actual details 

- which is the reader trying to implement the methodology in a future study... 

3. in the manuscript, a 'two-point boundary value problem' is mentioned. what does this mean? there is 

no second order ODE here, so this terminology is confusing to me. please clarify. 

Reviewer #3 (Remarks to the Author): 

Even though this paper is well written and surely relevant, I consider it of insufficient impact to allow 

publication in Nature Communication. The novelty is in my opinion limited and the application range of 

the model too. 

Nevertheless, some comments and suggestions: 

- The introduction needs to be enhanced by adding more relevant literature 

- Term Solvent resistant nanofiltration (SRNF) should come together with the term organic solvent 

nanofiltration (OSN) as they are equally used. 

- One of the most important challenges of OSN with polymer membranes is swelling which can change 

membrane performance. How do the authors see the effect of this phenomenon in their predicted 

model? 

- Do authors consider the interaction of solvents with each other as well in their model? 



- The authors consider chemical structures of the polymer membrane as the only parameter being used 

in their predicted model. How do they predict changing the voids of a polymer membrane being 

imposed to different solvents in their model? 
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Data-driven predictions of complex mixture permeation in polymer membranes  

______________________________________________________________________________ 

We thank the referees for their constructive feedback and time spent in reviewing this article. We 

uniformly implemented the suggestions given by the referees and believe the manuscript has been 

improved through the revision. Point-by-point responses are shown below.  

Overall, the changes can be summarized as follows: 

• More detailed descriptions about prediction errors and the potential limitations, 

future works, and perspectives of the data-driven prediction were thoroughly 

discussed in the manuscript, as suggested by the referees.  

• Additional permeation tests and predictions were conducted to assess the capability 

of the prediction framework and to validate the cohort diffusion assumption in a 

different mixture separation case (methanol/guaiacol binary mixture). Activity 

coefficients of solvents in 9-component hydrocarbon mixture were investigated to 

validate the use of unit activity coefficients in this work.  

• Grammatical errors and unclear descriptions in the main manuscript and the 

Supplementary Information were rectified.  

Formatting Note: Throughout this document, the referees’ comments will be shown in blue, our 

responses will be shown in black, and changes incorporated into the Manuscript or Supporting 

Information will be highlighted text.  

______________________________________________________________________________ 

Reviewer: 1 

 

Comments: 

This is a valuable submission worthy of publication if the issues below can be addressed. The use 

of polymer membranes to achieve liquid phase separations of hydrocarbons has great potential for 

substantially reducing the energy consumed in the oil and gas industry. 

The approach is very specific to the hydrocarbon processing application outlined and my major 

concern is that the reader may consider its application to other situations where it is less sound. 

Even in the present case, the fit to the data shown in Figures 4b and d is not exceptionally good. 

Some of my comments below refer to this issue 

 

1. The model is developed based on data available at 25 to 40 C, while the tested temperature was 

130 C. In the present case, the authors argue that this discrepancy is justified as the permeability 

is not highly temperature dependent. However, this is not usually the case. The authors need to 

point this out and provide direction as to how temperature effects might be incorporated into the 

model in the future. 
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We thank the referee for this kind summary of our manuscript and for the first point that was raised 

here. We entirely agree with the comment from the referee. Recent work (ref. 24) on the 

thermodynamics of ‘crude oil permeation’ showed that the temperature effect has only moderate 

effects on the separation; however, these moderate effects might be not necessarily be true beyond 

the hydrocarbon permeation systems included here. We do note that the “simple” crude oil 

experiments (i.e., Figure 3) were conducted at 22 °C, which is well-aligned with the temperatures 

in the diffusivity and solubility datasets. 

To address temperature effects on complex mixture permeation, information of the activation 

energy of diffusion and the heat of sorption of individual guest molecule should be incorporated 

into the prediction framework, and this information could potentially be provided by another data-

driven model or a simulation (i.e., molecular dynamics). We believe this is crucial future work and 

this point is added to the manuscript.  

• In the revised main manuscript, page 11-12 

o The relatively moderate temperature dependencies observed in the hydrocarbon 

permeation systems here may not necessarily apply to other systems, which is a current 

shortcoming of the model. To address this lack of built-in temperature dependence in 

the model, it will likely be beneficial to develop separate predictors for estimating the 

activation energy of diffusion and the heat of sorption for individual guest molecules 

and incorporating these parameters into the transport model. Estimation of these 

parameters can potentially be achieved through data-based methods and simulations 

such as molecular dynamics.  

2. The argument that all molecules have the same diffusivity has been examined by the authors in 

their reference 21. However, I think it needs to be noted here that this argument can only apply to 

penetrants of comparable nature. The hydrocarbons examined here are all similar, but if water was 

also present for example, the hydrocarbons examined here are all similar, but if water was also 

present for example, it might not move as part of the cohort. It should also only apply to polymers 

that are strongly plasticised or swollen. I would not like to see such ‘cohort’ diffusion applied to 

low penetrant volume fractions, or in non-plasticised structures. These limitations need to be noted.   

We thank the referee for the points that are raised here. This is a great point. We also agree with 

the comment from the referee. We believe that membrane dilation and plasticization in the 

presence of organic solvents is the main reason behind the apparent lack of diffusion selectivity 

(which is equivalent to the cohort diffusion case in the manuscript). However, very large molecules 

(e.g., high boilers in crude oil) likely have reduced diffusivities relative to the average diffusivity 

exhibited by the smaller molecules; we speculate that the deviations between experimental 

observations and predictions for high boilers in crude oil in SBAD-1 might derive from this. 

Moreover, as the referee mentioned, low chemical affinity between dissimilar molecules might 

also break the cohort diffusion assumption. We have added further clarity in our manuscript 

regarding potential limitations of the cohort diffusion assumption, as well as potential means in 

which these limitations can be addressed. Moreover, we have added a new experimental result 

to assess the validity of the cohort diffusion case using a biofuel-style separation (methanol 

and guaiacol).  
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The following changes have been made to the manuscript:  

• In the revised main manuscript, page 13 

o Additionally, it is important to note that very large molecules (e.g., high boilers in 

crude oil) likely have reduced diffusivities relative to the average diffusivity exhibited 

by the smaller molecules.  

 

• In the revised main manuscript, page 12 

o Additionally, in the presence of dissimilar molecules with low chemical affinity, the 

cohort diffusion assumption might be deemed invalid. 

 

• In the revised main manuscript, page 9-10 

o To further evaluate the prediction capability of the data-driven approach beyond 

hydrocarbon mixtures, we conducted a separation of a binary mixture consisting of 

methanol and guaiacol, as a biofuel-type mixture (Supplementary Fig. 7 and 

Supplementary Tables 11-13). The separation experiment was conducted using three 

DUCKY-9 membranes. As before, the ML dataset had not been previously trained 

with these specific solvent molecules for DUCKY-9. Notably, the separation factor of 

guaiacol was accurately predicted, and the flux was closely predicted to the 

experimental measurements. This outcome suggests that the data-driven permeation 

predictions may have broader applicability beyond simple hydrocarbons, which have 

been the focus of this work, although our limited set of experiments prevents further 

generalization of this conclusion.  

 

• In the revised Supplemental Information, page 17 
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Fig. S7.  

Separation of a binary mixture of oxygenated molecules as a bio-fuel type mixture via DUCKY-9 

membrane. The separation factors of guaiacol and total fluxes are indicated by bars and red circles, 

respectively. The separation factors were calculated via equation S17. The feed mixture in this 

crossflow permeation experiment was 80 mol% of methanol and 20 mol% of guaiacol. The test 

was conducted at 40 bar upstream pressure and 22 °C. The diffusivities and solubilities were 

predicted by the ML models, and the experimental operating conditions were applied in the 

transport modeling as described in the method section in this Supplementary Information. The 

model estimates and solvent properties are summarized in Supplementary Tables S11-S13. A 300 

nm membrane thickness was determined from an SEM image of the tested DUCKY-9 membrane 

(inset). The error bars in concentrations resulted from the deviations in sorption prediction by ML 

sorption model, and the uncertainty in flux predictions resulted from the deviations in diffusion 

prediction by ML diffusion model. SR-POLAR model in ASPEN plus was used in the activity 

coefficient calculation for the non-ideal mixture-based predictions. 

 

• In the revised Supplemental Information, page 28 

Table. S11.  

Feed concentrations and solvent properties of methanol and guaiacol. 𝛿𝐷, 𝛿𝑃, and 𝛿𝐻 are Hansen 

solubility parameters for dispersion, polarity, and hydrogen-bonding each.  
Hansen solubility parameter (MPa0.5) Vapor pressure (torr) Molar volume 

(cm3/mole) 

 𝛿𝐷 𝛿𝑃 𝛿𝐻 
  

methanol 14.7 12.3 22.3 94 40.46 

guaiacol 18 7 12 0.103 111.84 

 

• In the revised Supplemental Information, page 29 

Table. S12.  

Transport parameters of methanol and guaiacol in DUCKY-9 polymer predicted by the ML 

models: sorption uptakes at unit activity (mmol/g) and Maxwell-Stefan diffusion coefficients 

(Ð𝑖
𝑣,𝑚

) by thermodynamically correcting Fickian diffusion coefficients (𝐷𝑖
𝑣,𝑚

) predicted by the ML 

models at unit activity (cm2/s) of each component in the DUCKY-9 polymer (equation S12). The 

lowest, average, and highest value were from the uncertainty of the ML predictions. The Flory-

Huggins interaction parameters of single component at unit activity were calculated by eq. S6 and 

S7. 
 Lowest 

sorption 

(mmol/g) 

Sorption in 

average 

(mmol/g) 

Highest 

sorption 

(mmol/g) 

Lowest diffusion 

(Ð𝑖
𝑣,𝑚

, cm2/s) 

Diffusion in 

average  

(Ð𝑖
𝑣,𝑚

, cm2/s) 

Highest diffusion 

(Ð𝑖
𝑣,𝑚

, cm2/s) 

methanol 7.41 9.26 11.75 1.02·10-7 2.39·10-7 5.61·10-7 

guaiacol 1.91 2.36 2.88 4.58·10-9 1.32·10-8 3.81·10-8 

 

• In the revised Supplemental Information, page 30 

Table S13. 

Concentrations (mole fractions) of the binary biofuel mixture feed and permeates (experimentally 

measured permeate and predicted permeate) separated by DUCKY-9 TFC membrane. Ideal 

solution for the unity activity coefficient for all components was assumed (top), and the actual 
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activity coefficients were estimated using SR-POLAR model to account for the non-ideal behavior 

of the mixture (bottom). 

 
 Feed Measured 

permeate 
Std. of 

measurement 
Measured 
total flux 

(L/m2/hr) 

Predicted 
permeate 

Std. Of 
prediction  

Predicted 
total flux 

(L/m2/hr) 

methanol 0.8 0.822 0.002 4.88 ± 0.4 0.821 8.40·10-5 3.69 ± 2.4 

guaiacol 0.2 0.178 0.002 0.179 8.40·10-5 

 
 Activity coefficients 

at feed 
Activity coefficient 

at permeate 
Predicted 
permeate 

Std. Of 
prediction  

Predicted 
total flux 

(L/m2/hr) 

methanol 0.97 0.98 0.823 2.86·10-4 2.81 ± 1.85 

guaiacol 0.78 0.75 0.177 2.86·10-4 

*Std. indicates standard deviation. 

 

3. The stage cut in experiments is high at 20% and 30%. Was any attempt made to assess the extent 

of concentration polarisation? This would lead to the accumulation of the larger, less permeable 

higher boiling point compounds on the membrane surface. Could this explain the higher measured 

permeance of these compounds for Arab light crude? 

This is an important point. We agree with the referee that some of the deviations between the 

experiment and the model (especially for the high boiling point components) likely derive from 

concentration polarization effects at high stage cuts. We have now added this as discussion in the 

manuscript, as well as methods to account for that issue in future models.  

• In the revised main manuscript page 12-13 

o The higher flux measured here could be attributed to the batch-type fractionation test 

with a high stage-cut (e.g., 30%), where the feed concentration may have become 

polarized during the test. To account for the time-related concentration change in feed 

during batch-type fractionation systems, an additional step that considers the 

concentration change over time or stage-cut could potentially be included in transport 

modeling.  

4. The English in the SI needs correction and eq.S1-S5 need references. 

We thank the referee for this helpful tip. We added the related reference and also edited the SI 

thoroughly.  

5. can you provide some validation for the assumption that ‘The activity coefficients (𝛾𝑖) of fluid 

mixtures on the upstream fluid were assumed as unit value’? This seems unlikely to be true. 

This is an important point for predicting complex mixture permeation. We agree that even the 

relatively ‘simple’ hydrocarbon mixtures are likely not ideal solutions, but they are likely well-

approximated as ideal. More advanced thermodynamic models for the feed and permeate phases 

will be necessary for more complicated mixtures (e.g., biocrudes) in which the activity coefficients 

are likely to vary widely.  

We have updated our 9 component permeation models to account for solution non-ideality. We 

ran PC-SAFT model (as a common and universal activity coefficient model) to estimate the 
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activity coefficient values. Most of them are close to unity except a few of them despite the 

concentrated nature of the mixture. Thus, we feel that our assumption of ideal solutions is 

defensible for the hydrocarbon work but note that other solutions will need to account for these 

non-idealities. We appended this activity coefficient calculations and the prediction results with 

the actual activity coefficient values in the Supplementary Information.  

 

• In the revised Supplemental Information, page 16  

 

Fig. S6.  

Validation of ideal solution assumption in predicting hydrocarbon mixture separations (a-

Matrimid, b-DUCKY-9, c-DUCKY-10). Comparison between hydrocarbon mixture separation 

predictions with ideal solution assumption and with non-ideal solution assumption. All 

experiments and predictions were performed at 22 °C. The pressures in the plots indicate the 

applied pressure at upstream side with an atmospheric pressure at downstream. The errors in 

concentrations resulted from the deviations in sorption prediction by ML sorption model, and the 

uncertainty in flux predictions resulted from the deviations in diffusion prediction by ML diffusion 

model (Supplementary Tables 4-6). PC-SAFT in ASPEN plus was used in the activity coefficient 

calculation (Supplementary Tables S8-10). The use of non-ideal activity coefficients in the 

prediction resulted in slightly higher flux predictions that exhibited better agreement with the 

experimental measurements. Furthermore, the predicted permeate concentrations showed improve 

accuracy compared to the measured permeate concentrations, as demonstrated by lower RMSPE 

and AOME values (Supplementary Tables S8-10).  

 

• In the Supplementary Information, page 25 

Table S8. 

Concentrations (mole fractions) of the 9-component mixture feed and permeates (experimentally 

measured permeate and predicted permeate) separated by Matrimid TFC membrane. Ideal solution 

for the unity activity coefficient for all components was assumed (top), and the actual activity 

coefficients were estimated using PC-SAFT to account for the non-ideal behavior of the mixture 

(bottom). RMSPE and AOME were calculated by eq. S14 and eq. S15, respectively.  
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 Feed Measured 
permeate 

Std. of 
measurement 

Predicted 
permeate 

Std. Of 
prediction  

RMSPE (%) AOME 

iso-octane 0.117 0.081 0.005 0.104 0.001 11.0 0.16 

n-octane 0.188 0.174 0.003 0.190 0.001   

methylcyclohexane 0.197 0.213 0.004 0.203 0.001 

toluene 0.327 0.376 0.002 0.347 0.001 

decalin 0.089 0.080 0.001 0.081 0.001 

tert-butylbenzene 0.039 0.045 0.002 0.039 2.97·10-5 

iso-cetane 0.011 0.002 5.04·10-4 0.006 4.40·10-4 

1,3,5-triisopropylbenzene 0.014 0.003 6.52·10-4 0.012 2.74·10-4 

1-methylnaphthalene 0.016 0.022 0.002 0.017 5.09·10-5 

 
 Activity coefficients 

at feed 

Activity coefficient 

at permeate 

Predicted 

permeate 

Std. Of 

prediction  

RMSPE (%) AOME 

iso-octane 1.17 1.18 0.105 0.001 10.4 0.15 

n-octane 0.99 1.00 0.184 7.34·10-4   

methylcyclohexane 1.23 1.25 0.202 5.73·10-4 

toluene 1.27 1.25 0.354 9.79·10-4 

decalin 0.99 0.98 0.080 5.71·10-4 

tert-butylbenzene 1.00 0.98 0.039 2.97·10-5 

iso-cetane 0.83 0.83 0.006 4.49·10-4 

1,3,5-triisopropylbenzene 0.87 0.86 0.011 2.86·10-4 

1-methylnaphthalene 1.80 1.74 0.019 8.16·10-5 

*Std. indicates standard deviation.  

 

• In the Supplementary Information, page 26 

Table S9. 

Concentrations (mole fractions) of the 9-component mixture feed and permeates (experimentally 

measured permeate and predicted permeate) separated by DUCKY-9 TFC membrane. Ideal 

solution for the unity activity coefficient for all components was assumed (top), and the actual 

activity coefficients were estimated using PC-SAFT to account for the non-ideal behavior of the 

mixture (bottom). RMSPE and AOME were calculated by eq. S14 and eq. S15, respectively. 

 
 Feed Measured 

permeate 

Std. of 

measurement 

Predicted 

permeate 

Std. Of 

prediction  

RMSPE (%) AOME 

iso-octane 0.113 0.097 1.70·10-4 0.077 5.65·10-4 4.8 0.05 

n-octane 0.170 0.170 4.02·10-5 0.182 4.02·10-4   

methylcyclohexane 0.202 0.204 4.84·10-4 0.214 5.77·10-4 

toluene 0.325 0.368 2.09·10-4 0.367 4.12·10-4 

decalin 0.098 0.085 3.24·10-4 0.077 5.60·10-5 

tert-butylbenzene 0.041 0.041 1.79·10-4 0.041 1.40·10-4 

iso-cetane 0.014 0.006 3.98·10-4 0.005 3.73·10-4 

1,3,5-triisopropylbenzene 0.018 0.009 3.16·10-4 0.013 2.92·10-4 

1-methylnaphthalene 0.018 0.02 6.65·10-5 0.021 3.37·10-5 

 
 Activity coefficients 

at feed 

Activity coefficient 

at permeate 

Predicted 

permeate 

Std. Of 

prediction  

RMSPE (%) AOME 

iso-octane 1.17 1.19 0.081 6.94·10-4 5.5 0.05 

n-octane 0.99 1.01 0.194 4.89·10-4   

methylcyclohexane 1.23 1.28 0.203 4.49·10-4 

toluene 1.27 1.23 0.381 4.89·10-4 

decalin 0.99 0.98 0.068 1.63·10-4 

tert-butylbenzene 1.00 0.87 0.039 1.24·10-5 

iso-cetane 0.83 0.84 0.004 2.86·10-4 

1,3,5-triisopropylbenzene 0.87 0.85 0.009 2.44·10-4 

1-methylnaphthalene 1.80 1.67 0.021 4.71·10-5 

*Std. indicates standard deviation.  
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• In the Supplementary Information, page 27 

Table S10. 

Concentrations (mole fractions) of the 9-component mixture feed and permeates (experimentally 

measured permeate and predicted permeate) separated by DUCKY-10 TFC membrane. Ideal 

solution for the unity activity coefficient for all components was assumed (top), and the actual 

activity coefficients were estimated using PC-SAFT to account for the non-ideal behavior of the 

mixture (bottom). RMSPE and AOME were calculated by eq. S14 and eq. S15, respectively. 

 
 Feed Measured 

permeate 

Std. of 

measurement 

Predicted 

permeate 

Std. Of 

prediction  

RMSPE (%) AOME 

iso-octane 0.117 0.107 0.003 0.080 0.001 5.9 0.06 

n-octane 0.187 0.185 5.35·10-4 0.197 5.33·10-4   

methylcyclohexane 0.194 0.196 2.27·10-5 0.205 6.99·10-4 

toluene 0.336 0.359 0.007 0.377 3.89·10-4 

decalin 0.087 0.082 0.002 0.068 2.68·10-4 

tert-butylbenzene 0.037 0.038 2.40·10-4 0.039 4.12·10-5 

iso-cetane 0.011 0.006 6.94·10-4 0.004 3.32·10-4 

1,3,5-triisopropylbenzene 0.014 0.009 8.52·10-4 0.010 2.57·10-4 

1-methylnaphthalene 0.016 0.017 1.73·10-4 0.018 5.27·10-5 

 
 Activity coefficients 

at feed 

Activity coefficient 

at permeate 

Predicted 

permeate 

Std. Of 

prediction  

RMSPE (%) AOME 

iso-octane 1.17 1.19 0.084 0.001 5.7 0.06 

n-octane 0.99 1.01 0.192 6.12·10-4   

methylcyclohexane 1.23 1.28 0.203 5.71·10-4 

toluene 1.27 1.24 0.378 8.17·10-4 

decalin 0.99 0.98 0.069 3.68·10-4 

tert-butylbenzene 1.00 0.97 0.040 4.71·10-5 

iso-cetane 0.83 0.84 0.004 3.26·10-4 

1,3,5-triisopropylbenzene 0.87 0.85 0.009 2.86·10-4 

1-methylnaphthalene 1.80 1.67 0.021 9.43·10-5 

*Std. indicates standard deviation.  

 

Nevertheless, the reviewer’s comment is still valid with a concern from other mixture cases such 

as water-contained organic mixtures and polar/nonpolar mixture. Considering this, we have 

updated the ‘limitations’ section of the conclusions and highlight the need for incorporation of 

more sophisticated thermodynamic models in the conclusions.  

• In the Supplementary Information, page 5 

o The activity coefficients of hydrocarbons in a 9-component mixture were investigated 

using the PC-SAFT thermodynamic activity coefficient model in ASPEN Plus. To 

apply the activity coefficient model to the transport simulation, the phase equilibrium 

expressions (equation S4 and S9) are updated with values of the estimated activity 

coefficients each iteration for the downstream phase equilibrium. The upstream 

equilibrium is fixed at a given temperature, pressure, and composition. The result, 

presented in Supplementary Tables S8-10, reveals that most of the activity coefficients 

are nearly unity, despite the concentrated nature of the mixture. However, it is 

important to note that this ideal mixture assumption may not be applicable to other 

complex mixtures, particularly those containing water or a combination of polar and 

nonpolar components. In such cases, more sophisticated thermodynamic models for 
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both the feed and permeate phases will be necessary to accurately account for the wide 

variation in activity coefficients. 

 

6. I note that the authors use a Flory Huggins solubility model, whereas in reference 21 they 

conclude that a Langmuir-Flory Huggins model is better for glassy polymers. A justification needs 

to be provided as to why the LM-FH approach is not used in this paper. In particular, competitive 

sorption is often accounted for within the Langmuir term for glassy polymers and the use of FH 

for this purpose is not appropriate. Could this also be the reason that the high boiling point 

components do not fit the model as well? 

We thank the referee for this point. Langmuir+Flory-Huggins (LM-FH) requires two-parameter 

isotherm fitting (i.e., for the Langmuir part and the FH part), while FH and competitive FH 

isotherms can be developed with only one parameter (Flory-Huggins parameter noted as 𝜒𝑖𝑚 in 

Eq. S5). To streamline our machine learning predictions, we utilize a one parameter isotherm 

model (FH), while acknowledging that a two-parameter isotherm would be more accurate yet 

difficult to accurately predict with our current data set (the dataset is comprised of many ‘unit 

activity’ swelling experiments and a smaller subset of full isotherms). We have added this point to 

the discussion in the Supplementary Information.  

• In the revised Supplementary Information, page 6-7 

o Another solubility model proposed in a previous study to describe the solubility of a 

solvent in a polymer consists of two distinct components: Langmuir-type filling of 

microvoids and Flory-Huggins swelling-type sorption.7 However, this model requires 

fitting two-parameter isotherms for both the Langmuir and Flory-Huggins 

components. In contrast, the current study employs the Flory-Huggins and competitive 

Flory-Huggins models, which can be developed with only one parameter, the Flory-

Huggins parameter denoted as 𝜒𝑖𝑚in Eq. S7. While the two-parameter isotherm would 

likely be more accurate, the one-parameter Flory-Huggins models were utilized in this 

work to streamline the predictions of sorption uptakes at unit activity from the ML 

models. 

We also believe that Flory-Huggins (FH) is a useful model to describe sorption of organic 

liquids/vapors in a polymer system, even in glassy polymer systems, as the sorption of the organic 

solvent can reduce the glass transition temperature of the polymer sufficiently that FH-type 

sorption behavior is observed. Prior reports showcase that the FH sorption model can work well 

for glassy polymers.   

i. A R. Berens, sorption or organic liquids and vapors by rigid PVC, Journal of Applied 

Polymer Science, 1989, 37, 901-913) 

ii. Leibler et al., On the sorption of Gases and Liquids, in Glassy Polymers, Macromolecules, 

1993, 26, 6937-6939)  

iii. Miranda et al., Organic vapor sorption and transport in a thermotropic liquid crystalline 

polyester, Journal of Membrane Science, 1994, 94, 67-83 
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iv. Russell et al., Vapor sorption in plasma polymerized vinyl acetate and methyl methacrylate 

thin films, Polymer, 2001, 42, 2827-2836  

v. Lakshmanan et al., Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-

propyne], Journal of Membrane Science, 1990, 48, 321-331 

We added this description and the references above.  

• In the revised supplementary information, page 7 

o The Flory-Huggins model is still a useful tool for describing the sorption of organic 

liquids or vapors in polymer systems, even those that are glassy in nature. This is due 

to the fact that the sorption of organic solvents can decrease the glass transition 

temperature of the polymer to a point where Flory-Huggins-type sorption behavior is 

observed.8-12  

 

• In the revised supplementary information, page 33 

8. Berens, A. R. Sorption of organic liquids and vapors by rigid PVC. Journal of applied 

polymer science 37, 901-913 (1989). 

9. Leibler, L. & Sekimoto, K. On the sorption of gases and liquids in glassy polymers. 

Macromolecules 26, 6937-6939 (1993). 

10. Miranda, N., Willits, J., Freeman, B. & Hopfenberg, H. Organic vapor sorption and 

transport in a thermotropic liquid crystalline polyester. Journal of membrane science 94, 67-

83 (1994). 

11. Russell, S. & Weinkauf, D. Vapor sorption in plasma polymerized vinyl acetate and 

methyl methacrylate thin films. Polymer 42, 2827-2836 (2001). 

12. Witchey-Lakshmanan, L., Hopfenberg, H. & Chern, R. Sorption and transport of organic 

vapors in poly [1-(trimethylsilyl)-1-propyne]. Journal of membrane science 48, 321-331 

(1990). 

 

7. Clarify what you mean by the ‘support fluid’ and what is meant by the change in symbol color, 

including the terminology of polymer ID?  

Yes. The composition of ‘support fluid’ is essentially same with that of the permeate fluid. This 

was described in a somewhat confusing way in the original manuscript. We have now clarified 

this point.  

• In the revised Supplemental Information, page 7 

o Here, the composition of the support fluid (𝑥𝑖,ℓ
𝑠 ), which is the same as the permeate 

fluid, and the total flux (𝑁𝑡𝑜𝑡𝑎𝑙
𝑣 ) are unknown variables.  

In the Supplementary Figure S1, every polymer ID represents a unique polymer in the dataset, and 

the IDs are assigned arbitrarily. We included this information in the Supplementary Figure S1.  

• In the revised Supplemental Information, page 11 

o Fig. S1. Overview of the database that has been used to make ML models: (a) Fickian 

diffusion coefficients (cm2/s) and (b) sorption uptakes (mmol/g). Thermodynamic 

activities (vapor pressure over saturation vapor pressure at a given temperature and 
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unit activity in cases of liquid sorption) are described by circle sizes in the plots. Every 

polymer ID represents a unique polymer in the dataset, and the IDs are assigned 

arbitrarily.  

______________________________________________________________________________ 

Reviewer #2: 

Comments: 

The manuscript describes the methodology and results of applying a machine learning driven 

model for predicting permeation characteristics of multi-component organic mixtures through 

selective polymeric membranes. The application is important and I find the contribution to be 

significant, as it introduces a framework not customarily used in the field, yet, and so can pave the 

way for others to follow.  In particular, I like the approach that utilizes a physically-sound model 

framework (the Stephan-Maxwell equations for multi-component diffusion). The results are well-

presented, and the manuscript is quite easy to follow. The method well-illustrates its utility and so 

I believe it should be published and believe it will be a valuable contribution to the literature in the 

field. However, there are a few points I wish to raise for the authors to consider as a revision of 

this paper.  

 

1. The calculations are impressive, but there are some relatively large deviations between predicted 

and measured fluxes. What are the sources of this? some discussion is provided but it feels like 

this is a point worth more thorough examination.  

We thank the referee for this point. In general, we find that the fluxes are within factors of 1.3-5x 

of the experimental fluxes – considering the complexity of the permeation system, we are pleased 

with this level of accuracy, but acknowledge that it can be improved. Importantly, in the 9 

component separation experiments, we find that the model correctly “orders” the polymers in 

terms of their fluxes for that separation. 

That said, we agree that additional discussion on the flux deviations should be incorporated in the 

article. The errors in estimating the diffusivity are in general larger and more impactful than those 

for sorption on the estimated fluxes. The datasets represent diffusivities in a range of conditions, 

but often at unit activity for the solvent. In the complex mixture separations, the individual activity 

of the various compounds in the membrane will not be unity. Moreover, since there is a mixture 

of solvents in the real experiments, the polymer will be in a state of dilation that is distinct from 

the state of dilation in the unit activity diffusion experiments. We have considered this effect by 

changing the free volume in one previous study (reference 21); however, we did not use that 

approach in this work due to the simplicity of the use of average diffusivity approach. We now 

make reference to this effect in the manuscript as a potential source of error. 

• In the revised main manuscript, page 9 

o An important observation of the predictions made is that the data-driven approach was 

able to correctly order the polymers based on their respective fluxes for the given 

separation, even though the predicted fluxes were under-estimated when compared to 

the measured values. This discrepancy in the predicted and measured fluxes may have 

resulted from discrepancies in the diffusivity estimates, which were generally larger 
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and more impactful than the sorption estimates used for predicting the fluxes. The 

datasets represent diffusivities in a range of conditions but often at unit activity for the 

solvents. In complex mixture separations, the individual activity of the various 

compounds in the membrane will not be unity. Additionally, since a mixture of 

solvents is present in real experiments, the polymer will be in a state of dilation that is 

distinct from the state of dilation in unit activity diffusion experiments where 

diffusivity of a pure solvent was determined. A theory related to this effect was 

envisioned by introducing the free volume change of a polymer membrane when 

exposed to a complex mixture.21 However, this additional complexity was eschewed 

here due to acceptable prediction accuracy found using the significantly simpler 

average diffusivity approach. 

2. Again, with reference to the possible model flaws - I imagine the authors have considered that 

the assumption of fickian diffusion might be questionable. despite the obvious utility of testing the 

model against a 'real', complex mixture, could it be worthwhile to first validate against a simpler 

mixture (even simpler than the one used in the preliminary trials, if that makes sense...?), and 

possibly fine-tune the model parameters? With that in mind, it seems that the sorption/diffusion 

coefficients are well-represented, so perhaps other parameters could benefit from such 'training'? 

We appreciate this terrific point. It is worth noting that we are utilizing the ‘thermodynamically 

corrected’ diffusivity, not the Fickian transport diffusivity. We apologize for not being more clear 

on this point in the manuscript, and have updated the text to point this out and the tables 

(Supplementary Table S3 – S6) in the supplementary information with the thermodynamically 

corrected diffusivities   

• In the revised Supplementary Information, page 5 

o Ð𝑖,𝑛+1
𝑣,𝑚

 is the volume-based Maxwell-Stefan diffusivity of single component 𝑖 (which 

is thermodynamically corrected diffusivity by equation 12) 

We took the referee’s advice and conducted a simpler experiment using oxygenated molecules to 

evaluate the model performance for non-hydrocarbon binary mixtures. The experimental results 

are shown below and have been added to the SI along with a comment in the manuscript. 

• In the revised main manuscript, page 9 

o To further evaluate the prediction capability of the data-driven approach beyond 

hydrocarbon mixtures, we conducted a separation of a binary mixture consisting of 

methanol and guaiacol, as a biofuel-type mixture (Supplementary Fig. 7 and 

Supplementary Tables 11-13). The separation experiment was conducted using three 

DUCKY-9 membranes. As before, the ML dataset had not been previously trained 

with these specific solvent molecules for DUCKY-9. Notably, the separation factor of 

guaiacol was accurately predicted, and the flux was closely predicted to the 

experimental measurements. This outcome suggests that the data-driven permeation 

predictions may have broader applicability beyond simple hydrocarbons, which have 

been the focus of this work, although our limited set of experiments prevents further 

generalization of this conclusion.  
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• In the revised Supplemental Information, page 17 

 

Fig. S7.  

Separation of a binary mixture of oxygenated molecules as a bio-fuel type mixture via DUCKY-9 

membrane. The separation factors of guaiacol and total fluxes are indicated by bars and red circles, 

respectively. The separation factors were calculated via equation S17. The feed mixture in this 

crossflow permeation experiment was 80 mol% of methanol and 20 mol% of guaiacol. The test 

was conducted at 40 bar upstream pressure and 22 °C. The diffusivities and solubilities were 

predicted by the ML models, and the experimental operating conditions were applied in the 

transport modeling as described in the method section in this Supplementary Information. The 

model estimates and solvent properties are summarized in Supplementary Tables S11-S13. A 300 

nm membrane thickness was determined from an SEM image of the tested DUCKY-9 membrane 

(inset). The error bars in concentrations resulted from the deviations in sorption prediction by ML 

sorption model, and the uncertainty in flux predictions resulted from the deviations in diffusion 

prediction by ML diffusion model. SR-POLAR model in ASPEN plus was used in the activity 

coefficient calculation for the non-ideal mixture-based predictions. 

 

• In the revised Supplemental Information, page 28 

Table. S11.  

Feed concentrations and solvent properties of methanol and guaiacol. 𝛿𝐷, 𝛿𝑃, and 𝛿𝐻 are Hansen 

solubility parameters for dispersion, polarity, and hydrogen-bonding each.  
Hansen solubility parameter (MPa0.5) Vapor pressure (torr) Molar volume 

(cm3/mole) 

 𝛿𝐷 𝛿𝑃 𝛿𝐻 
  

methanol 14.7 12.3 22.3 94 40.46 

guaiacol 18 7 12 0.103 111.84 

 

• In the revised Supplemental Information, page 29 
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Table. S12.  

Transport parameters of methanol and guaiacol in DUCKY-9 polymer predicted by the ML 

models: sorption uptakes at unit activity (mmol/g) and Maxwell-Stefan diffusion coefficients 

(Ð𝑖
𝑣,𝑚

) by thermodynamically correcting Fickian diffusion coefficients (𝐷𝑖
𝑣,𝑚

) predicted by the ML 

models at unit activity (cm2/s) of each component in the DUCKY-9 polymer (equation S12). The 

lowest, average, and highest value were from the uncertainty of the ML predictions. The Flory-

Huggins interaction parameters of single component at unit activity were calculated by eq. S6 and 

S7. 
 Lowest 

sorption 

(mmol/g) 

Sorption in 
average 

(mmol/g) 

Highest 
sorption 

(mmol/g) 

Lowest diffusion 

(Ð𝑖
𝑣,𝑚

, cm2/s) 

Diffusion in 
average  

(Ð𝑖
𝑣,𝑚

, cm2/s) 

Highest diffusion 

(Ð𝑖
𝑣,𝑚

, cm2/s) 

methanol 7.41 9.26 11.75 1.02·10-7 2.39·10-7 5.61·10-7 

guaiacol 1.91 2.36 2.88 4.58·10-9 1.32·10-8 3.81·10-8 

 

• In the revised Supplemental Information, page 30 

Table S13. 

Concentrations (mole fractions) of the binary biofuel mixture feed and permeates (experimentally 

measured permeate and predicted permeate) separated by DUCKY-9 TFC membrane. Ideal 

solution for the unity activity coefficient for all components was assumed (top), and the actual 

activity coefficients were estimated using SR-POLAR model to account for the non-ideal behavior 

of the mixture (bottom). 

 
 Feed Measured 

permeate 
Std. of 

measurement 
Measured 
total flux 

(L/m2/hr) 

Predicted 
permeate 

Std. Of 
prediction  

Predicted 
total flux 

(L/m2/hr) 

methanol 0.8 0.822 0.002 4.88 ± 0.4 0.821 8.40·10-5 3.69 ± 2.4 

guaiacol 0.2 0.178 0.002 0.179 8.40·10-5 

 
 Activity coefficients 

at feed 
Activity coefficient 

at permeate 
Predicted 
permeate 

Std. Of 
prediction  

Predicted 
total flux 

(L/m2/hr) 

methanol 0.97 0.98 0.823 2.86·10-4 2.81 ± 1.85 

guaiacol 0.78 0.75 0.177 2.86·10-4 

*Std. indicates standard deviation. 

 

We agree with the referee that other parameters can be incorporated into the transport model to 

improve the robustness and accuracy of this approach. One parameter could be the 

concavity/convexity of the sorption isotherm, for instance. We feel that these are important points 

for future research, and we have added a comment to the manuscript.   

• In the revised Supporting Information, page 7 

o To improve the robustness and accuracy of the data-driven approach, it is possible to 

envisage the inclusion of other parameters such as the concavity/convexity of an 

isotherm through the use of additional machine learning algorithms in the future. By 

integrating these parameters with the existing Flory-Huggins sorption model utilized 

in this study, the predictive capability of the model could potentially be improved.  
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3. Curiously, in the mixture separation trials, the largest discrepancies seem to manifest at the 

highest and lowest fluxes (though the crude oil predictions at low fluxes are excellent, strangely 

enough). Do the authors have any possible explanations for this? 

This is a good observation. We note that the lowest fluxes are often high boiling point components 

in which we have the sparsest data, so there is the potential that the diffusivities are not as well 

predicted in that case. Beyond this, the “smallest” and “largest” molecules in the mixture are likely 

to deviate from the cohort diffusion assumption (it is likely that the diffusivities are on some sort 

of distribution – most are well-represented by the average, but some are not). We have added a 

comment to the manuscript based on this important observation from the referee.  

• In the revised main manuscript, page 12 

o We note that magnitude of the discrepancies between the model and the experiments 

are most significant for the components with the highest and lowest fluxes. While the 

cohort diffusion assumption implies that all penetrants have the same diffusivity within 

the membrane, in reality the diffusivities are likely to exist on a distribution such that 

the penetrants farthest away from the mean diffusivity exhibit the largest deviations 

from the experimental observations. 

Ultimately, the main point here is that in order to truly utilize a data-driven model for actual 

predictions, it is crucial to assess the ability of the physics (which grounds the ML…) to capture 

the process well. So any sensible points on where discrepancies may come from is a great point 

for continued research.  

We thank the referee for coming up with this important point for the article. We may be able to 

pull up two major points in general for this point.   

First, since solvent permeance is essentially driven by both diffusion and sorption of guest 

molecules in a polymer membrane in solution-diffusion type permeation regime, accurate 

predictions of these two parameters is of utmost importance for any transport model to be effective. 

This is a major distinction in our approach from other ML-based permeability predictors in the 

literature – we note that a pure component permeability (which is often a reliable predictor of 

transport rates in gas separations) is a poor predictor of solvent fluxes in mixtures. That said, the 

solvent solubility and diffusivity in a polymer membrane is dependent on the current state of the 

polymer (e.g., level of dilation, aging, processing history, etc.), and the mixture permeating 

through it. Our current model cannot address these issues, but nonetheless provides a surprisingly 

accurate estimate of the membrane performance even without these important but ultimately 

complicated ‘real world’ issues. We recommend that future models work to incorporate the physics 

of the polymer and polymer free volume into the transport framework. We added this potential 

future work into the conclusion in the main manuscript.  

• In the revised main manuscript, page 13-14 

o Accurate estimates of a solvent’s solubility and diffusivity within a polymer are 

necessary to enable predictions of solvent permeation through polymer membranes.  

These two parameters depend on the current state of the polymer, including its level 

of dilation, aging, and processing history, as well as the mixture that permeates through 
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the membrane. Although our current model can estimate membrane performance with 

surprising accuracy without taking into account these complicated issues, future 

models that incorporate the physics of the polymer and its free volume into the 

transport framework should result in improved model accuracy. 

*minor comments: 

1. consider using ‘recovery’ instead of ‘stage-cut’. 

We note that recovery and stage-cut are slightly different quantities. To avoid confusion, we have 

explicitly defined stage-cut in the SI.  

• In the revised Supplemental Information page 3 

o stage cut is the mass fraction of the feed that permeates through the membrane 

2. A few details for the model description are a little hard to follow. For example, some of the 

notation is awkward in its use of brackets (some square, some circular, presumably to denote 

vectorial/tensorial quantities?). Some streamlining here would definitely benefit the reader 

interested in the actual details - which is the reader trying to implement the methodology in a future 

study... 

The circular ones were used to indicate the n-dimensional vector and the brackets were used to 

indicate the matrix for diffusion and thermodynamic correction matrix. We edited the descriptions 

of the transport modeling in the Supplementary Information.    

• In the revised Supplemental Information, page 5 

o (𝑁𝑖
𝑣) is an 𝑛-dimensional vector of fluxes (L/m2/hr) of permeants, [𝐵] is an (𝑛 × 𝑛)-

dimensional diffusional matrix, [𝛤]  is an (𝑛 × 𝑛) -dimensional thermodynamic 

coupling matrix 

3. In the manuscript, a ‘two-boundary value problem’ is mentioned. What does this mean? There 

is no second order ODE here, so this terminology is confusing to me. Please clarify.  

We meant there are two boundaries (e.g., upstream and downstream) to solve the differential 

equations, and a ‘2-point boundary value problem’ was noted in the manuscript. However, we 

agree that this description might be somewhat confusing. We have included a parenthetical brief 

description. 

• In the revised main manuscript, page 7 

o Using this information, a 2-point boundary value problem (i.e., a boundary at the 

upstream and downstream sides of the membrane) must be solved for the N-component 

system, which includes the polymer membrane and all of the solvents in the mixture.  

______________________________________________________________________________ 

Reviewer #3: 

Comments: 

Even though this paper is well written and surely relevant, I consider if of insufficient impact to 
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allow publication in Nature Communication. The novelty is in my opinion limited and the 

application rage of the model too.  

We thank the referee for giving a critical opinion and spending time to review the paper.   

We want to highlight the potential impact and the novelty of this work. The importance of 

separating various type of complex mixtures such as crude oils has been growing, and polymer 

membranes have demonstrated promise for these critical separation tasks. Therefore, the ability to 

predict the performance of existing or new materials is very important in the design and selection 

of materials for development of new separation processes. Data science approaches such as 

machine learning have already significantly advanced gas separation membranes to the point that 

artificial intelligence is capable of drawing new structures of polymers that achieve targeted 

performance metrics. Recent attempts have been made to predict the performance of OSN/SRNF 

and OSRO-type polymer membranes, and some of these have used data-based methods. However, 

these works are narrowly limited in their use because the models were trained with a few 

commercial membranes and do not have any framework that can parameterize the separation 

conditions such as activities and pressures. In addition, most of the works were mainly designed 

to estimate the pure solvent permeance, which we argue is not a useful parameter when we look at 

a complex mixture separation.  

In this regard, our prediction strategy is unique and novel. The integration of ML predictors and 

mass transport modeling essentially enables the prediction that starts from the accessible 

information such as structures of the polymers and solvents and also separation operation 

conditions can be taken into as input parameters in the transport modeling.  

Importantly, the ML models can simply be used to predict solvent diffusivities and solubilities in 

polymers – this has wide applicability beyond membranes. Moreover, our objective for this paper 

was to predict the separation of any mixture through any linear polymer membrane – this has wide 

applicability and impact.  

 

1. The introduction needs to be enhanced by adding more relevant literatures 

We thank the referee for suggesting this. We think a unique feature of our work is not only 

generating diffusivities and solubilities of various component in a mixture, but also the ability to 

account for mixture concentrations and operation conditions. Incorporating these variables into the 

modeling is essential to capture the sheer variety of applications available to these types of 

membranes. We highlighted this point in the manuscript (introduction part) and added relevant 

literatures to enhance the introduction as the referee suggested.  

• In the revised main manuscript, page 3 

o Moreover, existing ML and modeling approaches are not generalizable to the sheer 

variety of solvent molecules nor a wide range of polymer materials under of the large 

phase space of operating conditions (e.g., feed concentrations, pressures), which is 

critical for predicting the performance of a membrane.18-20  
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• In the revised main manuscript, page 16 

18. Jang, H. Y. et al. Torlon® hollow fiber membranes for organic solvent reverse osmosis 

separation of complex aromatic hydrocarbon mixtures. AIChE Journal 65, e16757 (2019). 

19. Verbeke, R. et al. Solutes in solvent resistant and solvent tolerant nanofiltration: How 

molecular interactions impact membrane rejection. Journal of Membrane Science, 121595 

(2023). 

20. Hesse, L., Mićović, J., Schmidt, P., Górak, A. & Sadowski, G. Modelling of organic-

solvent flux through a polyimide membrane. Journal of membrane science 428, 554-561 

(2013). 

2. Term Solvent-Resistant nanofiltration (SRNF) should come together with the term organic 

solvent nanofiltration (OSN) as they are equally used.  

We have added a parenthetical noting that OSN is sometimes referred to as SRNF.  

• In the revised main manuscript, page 3 

o ML approaches have been recently applied to organic solvent nanofiltration (OSN, 

also referred to as solvent resistant nanofiltration, SRNF) to predict permeance of a 

single solvent and the rejection of a single solute.15, 16  

3. One of the most important challenges of OSN with polymer membranes is swelling which can 

change membrane performance. How do the authors see the effects of this phenomenon in their 

predicted model? 

This is a great point. Importantly, the solubility and diffusivity data are largely from experiments 

conducted at unit activity – thus, the experiments have the polymer membrane dilation physics 

‘baked into’ the dataset.  

One important challenge is that the polymer dilation will depend on the exact composition of the 

mixture permeating through the membrane and that this will influence the individual diffusivity of 

each compound permeating through the membrane. We have considered this challenge in prior 

work, but we ultimately find that the ‘average’ diffusion approach used here is robust.   

4. Do authors consider the interaction of solvents with each other as well in their model.  

The interaction between solvents is taken into the Flory-Huggins type competitive sorption (Eq. 

S5 in the original manuscript). In this equation, 𝜒𝑖𝑗  indicates the chemical interaction between 

different solvents, and this is calculated by the equation S8. The closer chemical affinity to each 

other solvent results in lower values of this solvent-solvent interaction parameters. We have further 

emphasized this in the manuscript:  

• In the revised Supplemental Information, page 6 

o 𝜒𝑖𝑗 is the binary solvent-solvent interaction parameter that is calculated using a 

modified Hansen solubility theory. This accounts for the chemical interaction between 

the molecules within the membrane 
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5. The authors consider chemical structures of the polymer membrane as the only parameter being 

used in their predicted model. How do they predict changing the voids of a polymer membrane 

being imposed to different solvents in their model?  

As noted in the previous comment, our hypothesis is that ‘hidden information’ such as this is 

intrinsically captured in the experimental data. We agree that deviations in the free volume and 

levels of dilation will occur between pure solvent experiments and mixture experiments, yet we 

find that the average diffusion approach is workable despite these deviations. We added this point 

and described a perspective on future work in the conclusion part.  

• In the revised main manuscript, page 13-14 

o Accurate estimates of a solvent’s solubility and diffusivity within a polymer are 

necessary to enable predictions of solvent permeation through polymer membranes.  

These two parameters depend on the current state of the polymer, including its level 

of dilation, aging, and processing history, as well as the mixture that permeates through 

the membrane. Although our current model can estimate membrane performance with 

surprising accuracy without taking into account these complicated issues, future 

models that incorporate the physics of the polymer and its free volume into the 

transport framework should result in improved model accuracy. 



REVIEWERS' COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have addressed all my comments and I am happy for the paper to be accepted. 

Reviewer #2 (Remarks to the Author): 

I have gone over the revised manuscript and the response letter. 

The authors have made all necessary corrections and I recommend its publication. 

One minor outstanding comment: 

the notion of a two-boundary problem, in relation to a 1st order ODE, remains confusing to me. there 

can only be one boundary condition for this equation. see how this can be made clearer to the reader. 

Reviewer #3 (Remarks to the Author): 

I think the authors have taken all remarks and comments very seriously, and responded very well to 

them. 

However, and despite the high quality of this manuscript as such, I still think that impact and novelty are 

somewhat too limited for such high-IF journal with broad audience as Nature Communications. 

Nevertheless, as both other reviewers seem more positive and if the editor also agrees, I can anyhow 

agree with acceptance of the paper. 



Data-driven predictions of complex organic mixture permeation in polymer 
membranes  

We thank the referees for their time spent in reviewing this article and our response to the 
reviewers’ comments. Point-by-point responses are shown below.  

Formatting Note: Throughout this document, the referees’ comments will be shown in blue, our 
responses will be shown in black, and changes incorporated into the Manuscript or Supporting 
Information will be highlighted text. 

Reviewer #1: 
 
The authors have addressed all my comments and I am happy for the paper to be accepted. 

We thank the referee for giving very helpful feedback and reviewing all response made in this 
article.  
 
Reviewer #2: 
 
I have gone over the revised manuscript and the response letter.  
The authors have made all necessary corrections and I recommend its publication.  

One minor outstanding comment: 
the notion of a two-boundary problem, in relation to a 1st order ODE, remains confusing to me. 
there can only be one boundary condition for this equation. see how this can be made clearer to 
the reader. 

We thank the referee for reviewing all response made in this article and coming up this important 
point for the article. As the referee suggested, we added more detailed description in the main 
text to clarify the ODE solver, as below: 

While it is true that the ordinary differential equation (ODE) solvent only requires on initial 
boundary condition at the upstream side of the membrane, the unknown variables of the total 
flux and permeate composition make the downstream boundary condition an unknown as well. 
This necessitates an iterative numerical procedure, thus creating the 2-point boundary value 
problem. (see Methods section for further details).  
 
 
Reviewer #3: 
 
I think the authors have taken all remarks and comments very seriously, and responded very well 
to them.  
However, and despite the high quality of this manuscript as such, I still think that impact and 
novelty are somewhat too limited for such high-IF journal with broad audience as Nature 
Communications. 



Nevertheless, as both other reviewers seem more positive and if the editor also agrees, I can 
anyhow agree with acceptance of the paper. 

We thank the referee for reviewing all responses made in this article and for providing 
constructive feedback. The input ultimately improved the article, for which we are thankful.  
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