Supporting Information

Symmetry breaking and cooperative spin crossover in a Hofmann-type coordination polymer based on negatively charged {Fe^{II}(μ_2 -[M^{II}(CN)₄]₂}_{n²ⁿ⁻} layers (M^{II} = Pd, Pt).

Alejandro Orellana-Silla, Manuel Meneses-Sánchez, Rubén Turo-Cortés, M. Carmen Muñoz, Carlos Bartual-Murgui and José Antonio Real

Contents

 Experimental and calculated X-ray diffraction patterns for dpyanM (Figure S1). 	Page 2
- Room-temperature Infra-red spectrum of dpyanM (Figure S2).	Page 2
- Selected crystallographic data for dpyanM (M = Pd, Pt). (Table S1).	Page 3
- Relative angles defined between the different aromatic rings for dpyanM (Table S2).	Page 3
- Short intermolecular contacts at 120 K for dpyanM (M = Pd, Pt) (Figure S3).	Page 4
- Short intermolecular π - π contacts at 120 K for dpyanM (M = Pd, Pt) (Figure S4).	Page 5

Figure S1. Experimental (blue line) and calculated (red line) X-ray diffraction patterns for **dpyanPt** and **dpyanPd**. Experimental patterns were recorded at 295 K while the simulated ones correspond to the single crystal data recorded at 230 K, both in the HS state.

Figure S2. Room temperature Infra-red spectrum of **dpyanPt** (black line) and **dpyanPd** (red line).

Table S1. Crystal data for dpyanM (M = Pd, Pt).

	dpyanPd		dpyanPt	
Empirical formula	$C_{40}H_{28}N_{14}Pd_2Fe$		$C_{40}H_{28}N_{14}Pt_2Fe$	
Mr	973.41		1150.79	
Crystal system	monoclinic		monoclinic	
Т (К)	120	230	120	230
Space group	Pn	P21/n	Pn	P21/n
a (Å)	10.3482(2)	10.4699(4)	10.3331(2)	10.5387(3)
<i>b</i> (Å)	14.2651(2)	13.4013(6)	14.3472(2)	13.2045(5)
<i>c</i> (Å)	13.7781(4)	14.9020(6)	13.6750(2)	14.8914(4)
β(°)	109.309(3)	104.836(4)	109.665(2)	104.138(3)
V (ų)	1919.49(8)	2021.20(15)	1909.09(6)	2009.49(11)
Ζ	2	2	2	2
D _c (mg cm ⁻³)	1.684	1.599	2.002	1.902
F(000)	968	968	1096	1096
μ (Mo-K _α) (mm ⁻¹)	1.351	1.283	7.736	7.349
Crystal size (mm)	0.03x0.15x0.15		0.02x0.10x0.10	
No. of total reflections	7797	4208	7645	4366
No. of reflections $[I>2\sigma(I)]$	6448	2813	7013	3465
R [I>2 <i>o</i> (I)]	0.0411	0.0499	0.0339	0.0404
wR [I>2 <i>o</i> (I)]	0.0824	0.1083	0.0649	0.0940
S	1.065	1.058	1.149	1.071

 $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; wR = [\Sigma [w(Fo^2 - Fc^2)^2] / \Sigma [w(Fo^2)^2]]^{1/2}.$ $w = 1/ [\sigma^2(Fo^2) + (m P)^2 + n P] \text{ where } P = (Fo^2 + 2Fc^2) / 3;$ m = 0.0271 (1), 0.0435 (2), 0.0219 (3), and 0.0485 (4);n = 4.0407 (1), 5.5143 (2), 3.0495 (3), and 10.0038 (4)

Table S2. Relative angles between the different aromatic rings for **dpyanM** (M = Pd, Pt). See atom numbering in Figure 3.

Aromatic	dpyanPt		Aromatic	dpyanPt	dpyanPd
Ring A/Ring B			Ring A/Ring B		
	Angle(°)	Angle(°)		Angle(°)	Angle(°)
	(120 K)	(120 K)		(230 K)	(230 K)
Py(N12)/PhN(14)H ₂	45.56	47.38	Py(N1)/PhN(4)H ₂	43.77	46.23
PhN(14)H ₂ /Py(N13H13) ⁺	30.54	28.05	PhN(4)H ₂ /Py(N3H3) ⁺	8.19	7.06
Py(N12)/Py(N13H13)*	76.06	75.39	Py(N1)/Py(N3H3) ⁺	37.82	40.83
Py(N1)/PhN(11)H ₂	36.70	37.18			
PhN(11)H ₂ / Py(N10H10) ⁺	27.46	25.71			
Py(N1)/Py(N10H10)*	63.17	61.97			
Py(N1)/Py(N12)	78.51	78.86	Py(N1)/ Py(N1)	0	0

Figure S3. Short intermolecular contacts at 120 K for **dpyanM** (M = Pd, Pt) (marked in red correspond to those which are smaller than the sum of the van der Waals radii). Only interactions between layers n+1 and n are shown (red-blue rods). An equivalent distribution of short contacts occurs between layers n and n-1.

Figure S4. Short intermolecular π - π contacts at 120 K for **dpyanM** (M = Pd, Pt) (marked in red correspond to those close to the sum of the van der Waals radii).