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Supplemental Notes 

Limited clinical details were available for three individuals: two within the 

BHCMG/GREGoR, BAB4646 and M42-1, and an individual from a simplex autism spectrum 

disorder (ASD) cohort19. BAB4646 and M42-1 have the only two DHX9 pLoF variants within the 

BHCMG database of 12,266 exomes and genomes. BAB4646’s phenotype is severe DD/ID and 

primary immunodeficiency. Proband ES identified two heterozygous pathogenic variants in 

TRNT1(NM_182916.2): c.1246A>G, p.(Lys416Glu) and c.608+1G>T. As TRNT1 causes 

autosomal recessive syndrome sideroblastic anemia with B-cell immunodeficiency, periodic 

fevers, and developmental delay [MIM: 616084], these variants likely contribute to the 

individual’s DD/ID and immunodeficiency. Further confirmation of this contention was 

obfuscated by the lack of additional DNA samples from the proband or his parents precluding 

variant phasing and determination of de novo status.  

          M42-1 was enrolled in a mitochondrial disease cohort and is one of two affected siblings 

with encephalopathy, stroke-like episodes, and drug-resistant epilepsy. Proband ES failed to 

identify a candidate variant to explain the individual’s mitochondrial disease, and sibling DNA is 

not available for testing. While DHX9 pLoF variants are unlikely to completely explain the 

phenotypes of BAB4646 and M42-1, they may contribute to their neurologic dysfunction via 

multi-locus pathogenic variation to a blended traits phenotype52. 

 



Age (weeks)

Lab/Screen Methods 7 8 9 10 11 12 13 14 15 16

Behaviour Openfield

Acoustic startle response & PPI

Neurology Modified SHIRPA, grip strength

Rotarod

Dysmorphology Anatomical observation

Energy Metabolism Indirect calorimetry

Cardiovascular Awake ECG / Echo cardiography

Clinical Chemistry IpGTT

Neurology Auditory brain stem response (ABR)

Dysmorphology X-Ray, DEXA

Eye Scheimpflug imaging, Laser-interference-biometry (LIB), Optical coherence tomography (OCT), 
Virtual drum test

Clinical Chemistry Clinical Chemical analysis, hematology

Immunology Flow cytometry, plasma (IgE, IL6, TNF, insulin)

Pathology Macro & microscopic analysis

Figure S1 - Phenotyping pipeline used for Dhx9-/- mice
Mouse age in weeks for each phenotypic examination is highlighted in blue.
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Figure S2 - DHX9 protein-protein interactions
DHX9 interactome data from STRING database 
(https://string-db.org/)
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Nuclear localization signalA)

B) WT DHX9

C) p.(Lys1163Arg)

D) p.(Arg1166Pro)



Fg. S3 

(A) Conservation of all amino acids which fall within the NLS. Lys1163 and
Arg1166 are highlighted.
(B) cNLS Mapper prediction for reference sequence. Red letters indicate
predicted NLS. Yellow highlight indicates known NLS.
(C) cNLS prediction for p.(Lys1163Arg) variant sequence. A NLS was not 
identified.
(D) cNLS prediction for p.(Arg1166Pro) variant sequence. A NLS was not
identified. 

Figure S3 - Analysis of nuclear localization missense variantsts 
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Figure S4 - Visualization of DHX9 variant alleles with 3D AlphaFold 
structure of DHX9
The AlphaFold predicted structure of DHX9 (UniProt: Q08211) is shown at 
center. The amino acids affected by reported missense variants are 
highlighted by a red circle in the whole protein structure modeled at 
center, and by a red circle or ellipse at the periphery in local structures at 
the periphery. The confidence level of AlphaFold predicted structure is 
denoted by color, and a key representing the per-residue confidence level 
for each color is shown at right4,5.
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Exon 7Intron 6A)
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C)

(A) Diagram demonstrating impact of DHX9: c.627-4dupA on splicing junction.
(B) In silico prediction from Human Splice Finder (http://www.umd.be/hsf/)
(C) In silico prediction from Splice AI 
      (https://spliceailookup.broadinstitute.org/).up.broadinstitute.org/).

Figure S5 - In silico analysis of DHX9 variant c.627-4dupA
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Figure S6 - Visualization of DHX9 variant alleles used in HPO analysis
(A) Diagram of DHX9 mRNA showing location of DHX9 variants used in HPO analysis. Group 1 
(mild NDD) = pink, Group 2 (severe NDD) = green, Group 3 (mild NDD) = teal, Group 4 (CMT) = 
purple.
(B) Diagram of DHX9 protein showing functional domains including double-stranded RNA-binding
domains (dsRBD1&2), minimal transactivation domain (MTAD), helicase domains, helicase
associated domain 2 (HA2), oligonucleotide/oligosaccharide-binding fold (OB-fold), and the RGG 
box. Protein domains were obtained from Uniprot. The sequence of the nuclear localization signal is



magnified and the two key residues Lys1163 and Arg1166 are underlined. DHX9’s protein tolerance
landscape is shown below the figure as calculated by Metadome.
Protein domains were obtained from Uniprot. The sequence of the nuclear localization signal is
magnified and the two key residues Lys1163 and Arg1166 are underlined. DHX9’s protein tolerance
landscape is shown below the figure as calculated by Metadome.
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Figure S7 - Subcellular localization of DHX9 variant proteins and the levels of R-loop and DNA damage
Scale bar = 10 μm. Subcellular localization of EGFP-tagged DHX9 variant proteins. Nucleolar loci were co-stained by the fibrillarin (FBL)
marker and DNA stained by DAPI. Staining of levels of R-loop formation by the S9.6 marker and DSB by the γ-H2AX marker.
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Figure S8 - Subcellular localization of remaining DHX9 variant proteins and the levels of R-loop and DNA damage
Scale bar = 10 μm. Subcellular localization of EGFP-tagged DHX9 variant proteins. Nucleolar loci were co-stained by the fibrillarin (FBL) 
marker and DNA stained by DAPI. Staining of levels of R-loop formation by the S9.6 marker and DSB by the γ-H2AX marker.
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(A) Schematic representation of patients’ variants with regards to functional domains of the DHX9 protein. Amino acid sequence of the helicase ATP-binding
and helicase C-terminal domains of DHX9 is listed. The eight conserved motifs of these functional domains are marked within boxes. Corresponding
sequence of DHX8 is aligned together to demonstrate the high conservation of the eight motifs. Truncating variants (R229*, E693Gfs*7 and R764*) are
labeled in orange, missense variants located within conserved motifs (G411E and R761Q) are labeled in dark blue, and the remaining missense variants
(V473I and C608G) are labeled in light blue.

(B) Assays demonstrated the relative ATPase activities of DHX9 variant proteins with various missense changes compared to WT protein. In each
experiment, ATPase activity was normalized to the amount of purified protein. A representative Coomassie blue staining image demonstrating the sizes and
expression levels of purified DHX9 proteins is shown here. Experiments were repeated at least three times for each DHX9 variant. See Table S2 for raw data
on absorbance values of each sample. Note that for truncating variants (R229*, E693Gfs*7 and R764*), the absorbance values were comparable to the
baseline (no transfection blank and EGFP backbone only expression), therefore, their relative ATPase activities to WT protein were not calculated. Also note
that for the p.R761Q protein, its much lower expression level relative to WT caused its higher calculated ATPase activity, given the calculation was
normalized based on corresponding protein amount. Its actual ATPase activity values (raw data on absorbance values) were consistently lower than the WT
values (Table S2). **, p<0.005; *, p<0.05; One-Way ANOVA.

Figure S9 - DHX9 missense variants located within the ATP binding and hydrolysis conserved motifs affected ATPase activity. 

E693Gfs*7



Figure S10 - Loss of Dhx9 in mice causes differences in clinical chemistry indices indicative 
of altered metabolism and renal function.
Results of blood chemistry tests are compared between control (WT) mice and mutant mice (Dhx9-/-). 
Red = female controls, yellow = female mutants, blue = male controls, green = male mutants.

IpGTT results female male linear model linear model linear model

con mut con mut genotype sex genotype:sex
n=26 n=9 n=19 n=6
mean ± sd mean ± sd mean ± sd mean ± sd p-value p-value p-value

Glucose (T=0) 5.35 ± 0.81 5.42 ± 0.56 6.23 ± 1.04 6.03 ± 1.27 0.822 0.014 0.664
AUC 0-30 295.39 ± 94.35 330.05 ± 74.5 366.05 ± 51.65 384.82 ± 65.12 0.302 0.018 0.758
AUC 30-120 417.75 ± 176.08 551.57 ± 208.3 724.27 ± 183.29 1050.96 ± 226.25 < 0.001 < 0.001 0.123

A B C ED



Figure S11 - Loss of Dhx9 in mice causes hematological alterations indicative of effects on
erythropoiesis and thrombopoiesis
Hematological testing comparing control (WT) mice and mutant mice (Dhx9-/-). * indicates statistical 
significance (p<0.05). Red = female controls, yellow = female mutants, blue = male controls, green = male 
mutants.
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Assay Age (weeks) Number (n)

+/+ -/-

Males Females Males Females

Open field 8 19 26 6 9

SHIRPA 9 19 26 6 9

Grip strength 9 19 26 6 9

Acoustic startle 10 19 26 6 9

Indirect calorimetry 11 18 26 6 9

Glucose tolerance test 13 19 26 6 9

Auditory brainstem response 14 14 16 4 4

Clinical chemistry/hematology 16 19 26 6 9

Table S1 - Number of Dhx9-/- mice tested in the assays where relevant differences were detected..



Individual 1 2 3 4 5 6 7 8 9 10 11 12 

Sex M F M M F M M F F M M M 

Age at last examination 16 y 16 y 5 y 3.5 y 19 y 8 y 7 y 15 y 11 y 23 y 3 y 12 y 

Phenotype NDD NDD NDD NDD NDD NDD NDD NDD NDD NDD NDD NDD 

Developmental delay + + + + + + + + + + + + 

Intellectual disability Severe Borderline Severe n/a - Severe Mild Mild Mild - n/a Severe 
Microcephaly 

(Z-score) 
+ 

(-2.14) - +
(-2.49) - - +

(-3.16) - - - - - +
(-3.22)

Abnormal brain MRI + - + - - + - - - n.d. - +

Neuropsychiatric disorders - + + + + - + + + - + - 

Seizures + - - - + - - + + - - - 

Drug-resistant epilepsy + - - - + - - - + - - - 

Axial hypotonia + + + - + + - - - - - +

Appendicular hypertonia + - - - - + - - - - - - 

Abnormal reflexes Incr. - Incr. - - Incr. - - - - - - 

Ataxia - - + - - - - - - - - + 

Axonal neuropathy + n.r. n.r. n.r. n.r. n.r. n.r. n.r. n.r. - n.r. n.r.

Dysmorphic features - + + - - + + + + - - + 

Heart disease - + + - + - - - - + - - 

Short stature + - - - - + - - - - - - 

Failure to thrive + - - - - + - - - - - - 

Recurrent infections + - - - - + - - - - - - 

Abbreviations: M, male; F, female; NDD, neurodevelopmental disorder; CMT, Charcot-Marie-Tooth disease; n.r., not reported; n.d., not done.; 
n/a, not applicable; Incr., increased; Dim., diminished.; Mod, moderate. 



Table S2 - Phenotypic Summary of Individuals with DHX9-related Neurodevelopmental Disorders and CMT

Individual 13 14 15 16 17 Total NDD Total All 

Sex F M F M M - - 
Age at last 

examination 8 y 6 mo 45 y 54 y 58 y - - 

Phenotype NDD NDD CMT CMT CMT - - 

Developmental delay + + - - - 14/14 14/17 

Intellectual disability Mod. n/a - - - 8/11 8/14 
Microcephaly 

(Z-score) 
+ 

(-2.3) 
+ 

(-3.39) - - - 6/14 6/17 

Abnormal brain MRI + n.d. n.d. n.d. n.d. 5/12 5/12 
Neuropsychiatric 

disorders - - - - - 8/14 8/17 

Seizures + + - - - 6/14 6/17 
Drug-resistant 

epilepsy - - - - - 3/14 3/17 

Axial hypotonia - + - - - 7/14 7/17 
Appendicular 

hypertonia - - - - - 2/14 2/17 

Abnormal reflexes - - Dim. Dim. Dim. 3/14 6/17 

Ataxia - - + - - 2/14 3/17 

Axonal neuropathy n.r. n.r. + + + 1/14 4/17 

Dysmorphic features + - - - - 8/14 8/17 

Heart disease - - - - - 4/14 4/17 

Short stature + - - - - 3/14 3/17 

Failure to thrive - - - - - 2/14 2/17 

Recurrent infections - - - - - 2/14 2/17 

Abbreviations: M, male; F, female; NDD, neurodevelopmental disorder; CMT, Charcot-Marie- 
Tooth disease; n.r., not reported; n.d., not done.; n/a, not applicable; Incr., increased; Dim., 
diminished.; Mod, moderate. 



Absorbance at 620nm
Transfected expression plasmid Trial 1 Trial 2 Trial 3 Average 

No transfection blank 0.442 0.441 0.441 0.441
EGFP-backbone 0.435 0.342 0.343 0.373
EGFP-DHX9 WT 0.646 0.647 0.66 0.651

DHX9 p.(Arg229Ter) 0.377 0.433 0.417 0.409
DHX9 p.(Gly411Glu)             0.457 0.419 0.466 0.447
DHX9 p.(Val473Ile) 0.628 0.653 0.634 0.638

DHX9 p.(Cys608Gly) 0.648 0.688 0.656 0.664
DHX9 p.(Glu693GlyfsTer7) 0.438 0.358 0.421 0.406

DHX9 p.(Arg764Ter) 0.41 0.447 0.428 0.428
DHX9 p.(Arg761Gln) 0.6 0.614 0.593 0.602

Table S3 - Raw data on absorbance values of ATPase activity experiments.
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