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S1. SPATIALLY HETEROGENEOUS ACCESSIBILITY OBSERVED FOR MULTIPLE
ER STRUCTURES
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FIG. S1: Diffusive search times for extracted ER network structures. (A) Global mean first passage time
(GMFPT) to each node in the network is plotted against the local network edge length (Lloc) within σ = 5 µm
of the node. Compare to Fig. 1D. (B) Mean first passage time (MFPT) from a central node to target nodes
on the ER network is plotted against Euclidean distance to the target node. Compare to Fig. 1F. In both
plots, color indicates results for individual ER architectures (N=8 network regions extracted from 3 cells).

High spatial heterogeneity in network density and diffusive accessibility is observed across mul-
tiple excised ER networks. Using eight circular regions (radius 8.5 µm) of extracted ER network
structure, local edge lengths and mean first passage times are calculated, as for the example network
shown in Fig. 1.

The global mean first passage time (GMFPT) to every node in each network (Fig. S1A) again
scales inversely with local edge length. In individual networks, GMFPT can vary by nearly one order
of magnitude with similar variation observed in the distributions of local edge length. Notably, the
variation within a single network structure is comparable to the overall variation between networks
extracted from different cells. Thus, even a well-connected, highly-looped structure like the ER can
exhibit large spatial fluctuations in diffusive accessibility, an effect that is observed across multiple
peripheral ER architectures.

We next consider a more localized search process wherein a particle begins its search from a
central source node (Fig. S1B). The mean first passage time (MFPT) to each possible target node
in the ER structures exhibits the characteristic scaling with distance previously discussed in the
main text and elsewhere [1]. Fluctuations in ER density and connectivity lead to large deviations
from the smooth scaling seen in uniform networks (see Fig. 1E). This implies that in the ER search
times for targets that are equidistant from a central source can vary substantially depending on the
local geometry.

S2. COMPUTING MEAN FIRST PASSAGE TIMES ON RESERVOIR NETWORKS

Our base model treats regions of the ER as networks of edges connected at point-like junctions.
This model assumes that the size of the network junctions is comparable to the tubule width.
However, the peripheral ER can also include some sheet-like regions that are substantially larger
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than the tubule width [2]. Such peripheral sheet regions would form spatially expanded junctions
that could serve as localized traps for diffusing particles. We therefore consider an expansion of
our model that incorporates enlarged junction regions from which particles escape through narrow
holes along the boundary.

In addition, the perinuclear region of the ER forms a complex structure composed of inter-
connected stacks of sheets. The detailed structure of the perinuclear ER cannot be resolved with
confocal microscopy, but given the large extent of the region we might also expect it to serve as a
substantial trap for diffusing particles. A simplified representation of the perinuclear region would
also treat it as a disk-shaped reservoir connected to many tubules around its circumference. We use
the same mathematical approach to handle the large perinuclear region as we do for the enlarged
junction nodes. This approach is described below.

We propose a “reservoir network" model for calculating analytic mean first passage times in a
structure composed of tubes that are joined either at point-like nodes or at larger reservoirs. The
approximate analytical approach for transitions between reservoirs and tubes is inspired by previous
work describing diffusive escape from pores in cylindrical geometries [3].

In essence, the model represents transitions of particles between disk-shaped reservoirs and con-
necting tubules (Fig. S2A) by decomposing the system into several discrete spatial states (Fig. S2B),
in a manner analogous to the classic paper on diffusion-limited reactions by Berg and Purcell [4].
By using a state-based approach, it is then possible to calculate MFPTs on these hybrid reservoir
networks using the previously described graph-theoretic approach [5].

In Supplemental Section S3 we apply this model to study the effect of scattered reservoirs on
average search times on a network. Additionally, in the main text, a single reservoir representing
the sheet-like ER in the perinuclear region is used to more accurately capture search times on a
whole-cell scale.

S2A. State diagram for a single reservoir

Reservoirs are treated as disks of radius R+, with holes in the boundary of width 2δ representing
connected tubes (a typical geometry is shown in Fig. S2A with the corresponding state diagram in
Fig. S2B). An optional target at the center with radius R− is denoted the central state, C. When a
particle enters the reservoir from an adjoining tube it is placed in the boundary state, B, a distance
σ from the outer wall of the reservoir. The value of σ is chosen to be comparable to the tube size,
and represents a distance from which the particle can take independent samples of the domain wall
without maintaining a strong memory of the tubule from which it came. From state B, the particle
can either transition back towards the wall or take the long journey to the center of the reservoir,
with splitting probabilities (E±) and average waiting time until the transition (QB) given by:
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Here D is the particle diffusivity, E+ is the probability of hitting the wall before the central target,
and E− is the probability of first hitting the central target. If there is no target at the center of the
reservoir, then R− → 0 and E+ = 1. These expressions are derived from the standard solution of
first passage times for the diffusion equation in cylindrical coordinates [6].
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FIG. S2: Reservoir network model. (A) Representative geometry for a three-tube reservoir embedded in
the network. Dimensions of the system are highlighted in light blue. The five states and their locations in
space are denoted by circled capital letters. (B) The state diagram for the effective model with transition
probabilities labeled. The reservoir may be embedded in a larger network, so an additional neighboring node
state is depicted where the transition into P from the neighbor is given as in [5]. (C) Analytic MFPTs (lines)
reproduce MFPT from BD simulations (points) of 2000 particles diffusing (D = 1 µm2/s) across wide range
of symmetric triskelion geometries. Error bars show standard error of the mean. Inset: particles (active,
blue; absorbed, red) start at the green tip of one tube and diffuse until reaching the red target at the center
of the reservoir. (D) Simulations validate the reverse process. Inset: particles start at the center of the
reservoir (green) and diffuse until reaching the tip of the top tube (red).

If the particle first hits the wall, it has a chance ρ = δd
πR+

of entering a P state, where d is the
number of tubules connected to the reservoir. The particle is equally likely to hit each P state (this
does not mean it will reach the connected node with equal probability, which depends on the length
of the intervening edge). The P state can be thought of as a network node connected to two edges:
one of length L leading to the neighboring node outside the reservoir and one of length σ leading
into the reservoir. The splitting probability from P to B is simply Ee− = σ/(L+ σ). If the particle
instead hits the wall, W (probability 1 − ρ), it rapidly transitions back to state B. Assuming σ
is small compared to R+, the waiting time in W will be negligible compared to the time spent
performing searches of the bulk. This approach for exit out of a reservoir through a long tube has
been previously described for cylindrical geometries [3].

Included in the state diagram is an additional state, U , an optional initial state representing a
uniform distribution of particles throughout the reservoir. The splitting probabilities and waiting
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times unique to state U are given by:
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For simplicity, this state diagram represents a reservoir with one connected tubule. In practice,
there are often multiple P states, each connected to a neighboring node. Then the transitions from
U and B to each Pi would be symmetric and scaled by the degree (number of neighbors) of the
reservoir.

This reservoir model can be inserted into previously described network models of the ER. Using
the splitting probabilities and waiting times for each state, it is possible to calculate analytic mean
first passage times for diffusive search in the reservoir as previously described in [5].

S2B. BD simulations in triskelion geometries validate analytic approach

The analytic model is validated through the use of Brownian dynamics simulations on triskelion
geometries with a wide range of sizes (Fig. S2C,D insets). The radius of the reservoir, R+ is varied
between 0.2 − 1.0 µm and the length of the connected tubules is varied from 0.1 − 1.0 µm. The
radius of the tubes is fixed at δ = 0.05 µm, a typical size for ER tubules in COS7 cells [2, 7]. The
modified tube size, is set to σ = πδ/4 as in [3, 4]. In all of these tests (and later applications), the
central target has radius R− = δ so that targets placed in either a tube or a reservoir have the same
size.

Two representative search problems are analyzed on these geometries. In the first test, 2000
particles are placed at the end of a tube and allowed to diffuse until reaching an absorbing disk
at the center of the reservoir (Fig. S2C). In the second, 2000 particles begin at the center of the
reservoir and diffuse until reaching the end of a specific tube. The time step for both tests is 10−5 s,
with particle diffusivity D = 1 µm2/s. The MFPT is recorded and compared to the analytic MFPT
from the corresponding reservoir network (Fig. S2C,D).

Over a wide range of scales for both R+ and L the analytic model approximately reproduces
simulated mean first passage times. Having validated a single triskelion, it is now possible to
intersperse these reservoir structures throughout existing networks and obtain realistic mean first
passage times on reservoir networks.

S3. PRESENCE OF SCATTERED RESERVOIRS INCREASES TRAPPING, GMFPT

By treating the peripheral ER as a network of one-dimensional tubules we are able to focus on
large-scale structure and connectivity. This enables us to model transport in the ER as diffusion
on a network, where simple computational approaches provide powerful predictions that agree with
experimental results (Fig. 2E). Here we investigate the limits of the network model by considering
the effect of scattering enlarged junction reservoirs over a network.

A COS7 peripheral ER is modeled as a reservoir network by randomly selecting 20% of its nodes
and converting them into reservoirs. The reservoir radii (R+) are set to be 0.45 of the minimum
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FIG. S3: Reservoir network model of a COS7 ER. (A) Global mean first passage times (GMFPTs) to targets
on nodes on an example COS7 ER network (from Fig. 1A) where now 20% of network nodes are converted to
reservoirs. Reservoir nodes are shown as true size, point-like nodes are plotted with a fixed minimum size for
visibility. (B) GMFPT scales inversely with local network surface area. Color denotes radial position from
center of network, enlarged points indicate reservoirs and their relative size. (C) The GMFPT to central
targets in reservoirs scales linearly with GMFPT of the original nodes (prior to conversion to reservoir).

edge length connected to the node, giving an average size of 0.26 µm. Connected edges shrink to
accommodate the reservoirs. This avoids unphysical overlap of reservoirs and edges and allows for a
heterogeneous distribution of reservoirs to be randomly dispersed across the network. The GMFPT
is calculated to targets of radius R− = 0.05 µm placed in the center of each expanded node, as
well as to all the ordinary point-like junctions. Because the particles are meant to represent ER
membrane proteins, the starting probability for each node is set in proportion to surface area, with
non-reservoir nodes assigned surface area 2πδ2, while reservoirs have surface area 2πR2

+.
We find that even in the presence of many reservoirs, the qualitative trends for network search

times are the same. GMFPT still scales with the amount of locally accessible network (in this
case, surface area, Fig. S3B). For each individual reservoir target, we compare its GMFPT in a
network with many reservoirs versus the GMFPT to the same node on a network with point-like
junctions only (Fig. S3C). The main effect of enlarged junction reservoirs is a slight increase in
search times. This is due to the increase in network surface area and the trapping that occurs inside
of reservoirs; there is more space for particles to explore before finding any given target and thus
average search times increase. Notably, the breadth of the search-time distribution does not change
substantially upon the introduction of randomly scattered enlarged reservoirs. Thus, treating the
ER tubule junctions as point-like connections appears to be a reasonable simplification for these
network structures.

S4. ALTERNATIVE METHODS OF INCORPORATING NETWORK DYNAMICS INTO
SIMULATIONS OF PARTICLE DIFFUSION

When modeling the spread of photoactivated diffusing particles from a central region, the dy-
namic rearrangements of the ER network need to be considered. In the main text, we incorporate
the effects of the time-varying ER structure by averaging multiple simulations on static networks
extracted from individual frames of the experimental movie. Here, we analyze two alternatives: (1)
simulations run only on a single network extracted from the first frame; and (2) a “project and
propagate" approach incorporating many network snapshots in each simulation. In both cases, the
same two rounds of filtering are applied when comparing to the experimental signal.

For approach (1), the simulated fractional signal on the network extracted from frame 1 (fsim1ij )
is plotted in Fig. S4A.ii. We calculate the slope of the signal in each wedge j over the first 10
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seconds after photoactivation. These arrival rates are compared to the averaged simulated rates
from the main text (computed from the averaged fractional signal shown in Fig. S4A.iii). We see
strong agreement between the two (R2 = 0.91, Fig. S4B, blue dots and dashed line). Consequently,
this approach also does reasonably well in predicting the experimentally measured protein arrival
rates (extracted from Fig. S4A.i), with R2 = 0.6 (Fig, S4C, blue dots and dashed line). Approach
1 includes no information about the network rearrangements over time, but still captures much of
the behavior of proteins in the ER.

For the project and propagate simulations, 50000 particles commence diffusion from the pho-
toactivation region on the network extracted from the first frame of the movie. The photoactivated
particles then diffuse along the first network for time dt = 0.6s, at which point they are projected
from their location in space to the closest point on the network extracted from the second frame
of the experimental movie. The projection step tends to be small compared to the diffusive (or
propagation) step because the network evolves slowly in time compared to the diffusion of individ-
ual particles. The diffusive particles repeat this process, propagating and projecting, until the final
frame of the experiment is reached.

One advantage of this method is that it more realistically captures the expected spatial tra-
jectories of particles diffusing on a continuously rearranging network. As time progresses and the
proteins diffuse from the photoactivation region, the network evolves in time as well, albeit with a
large time step set by the experimental frame rate.

The same nine photoactivation runs are analyzed using the project and propagate simulation
method. We again define individual wedge regions of the same size and location as in the exper-
imental images and analyze the number of particles in each. The simulated signal in each wedge
(wpp

ij ) is then defined as the total number of particles in wedge j at time point i, and the fractional
signal (Fig. S4A.iv) is fpp

ij = wpp
ij /N . These fractional signals do not require averaging as in the

main text, because the effects of the dynamic network are already incorporated via the project and
propagate method. The fractional signals are then used to find the signal arrival rate (slope over
first 10 seconds), just as before.

Again, we see strong agreement between the project and propagate simulations and the results
from the main text when comparing the calculated arrival rates (Fig. S4B). The project and prop-
agate method is also able to predict the experimental arrival rates well: R2 = 0.64 (Fig. S4C), as
compared to R2 = 0.68 in the main text.

Both project and propagate and the frame-averaged approach outlined in the main text generate
simulated protein arrival rates that fit the experimental rates slightly better than the static approach
using the first frame only. These approaches for incorporating ER network dynamics thus help
account for the time-varying tubule density and connectivity within each ER region. Thus, although
ER network dynamics are shown to be quite slow, incorporation of the different network structures
over time allows for a better representation of observed particle motion.
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FIG. S4: Alternative simulations of diffusive spread in the ER. (A) Fractional photoactivated signal vs
time curves for a single cell from experiment and simulations: (i) experimental signal, (ii) simulated signal
on the network from the first frame, (iii) simulated signal averaged over networks from each frame of the
experimental movie (as used in main text, Fig. 1E), and (iv) simulated signal from the project and propagate
approach. (B) Correlation of signal arrival rates from alternative simulation approaches with the averaging
approach used in the main text. (C) Correlations of simulated rates with experimental protein arrival rates.
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