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ABSTRACT The endoplasmic reticulum (ER) is a dynamic network of interconnected sheets and tubules that orchestrates the
distribution of lipids, ions, and proteins throughout the cell. The impact of its complex, dynamic morphology on its function as an
intracellular transport hub remains poorly understood. To elucidate the functional consequences of ER network structure and
dynamics, we quantify how the heterogeneity of the peripheral ER in COS7 cells affects diffusive protein transport. In vivo im-
aging of photoactivated ER membrane proteins demonstrates their nonuniform spreading to adjacent regions, in a manner
consistent with simulations of diffusing particles on extracted network structures. Using a minimal network model to represent
tubule rearrangements, we demonstrate that ER network dynamics are sufficiently slow to have little effect on diffusive protein
transport. Furthermore, stochastic simulations reveal a novel consequence of ER network heterogeneity: the existence of ‘‘hot
spots’’ where sparse diffusive reactants are more likely to find one another. ER exit sites, specialized domains regulating cargo
export from the ER, are shown to be disproportionately located in highly accessible regions, further from the outer boundary of
the cell. Combining in vivo experiments with analytic calculations, quantitative image analysis, and computational modeling, we
demonstrate how structure guides diffusive protein transport and reactions in the ER.
SIGNIFICANCE The endoplasmic reticulum (ER) is the largest organelle in the eukaryotic cell, forming a web of
interconnected hollow tubules and sheets. The ER is central to the transport of many cellular components such as lipids,
ions, and proteins. However, the impact of the ER’s complex network architecture on these transport processes remains
opaque. Using live-cell experiments and simulations, we demonstrate that structural heterogeneity leads to nonuniform
transport of proteins to nearby regions of the ER. As a consequence, certain regions of the network function as ‘‘hot spots’’
where diffusive reactants are more likely to find each other. In live cells, sites of protein export are preferentially localized to
regions of greater accessibility.
INTRODUCTION

The eukaryotic cell contains myriad complex structures and
compartments, each serving a specialized functional role.
These include the tortuous interior of interconnected mito-
chondria (1), the stacked sheets (2) and tubular networks
(3,4) of the perinuclear and peripheral endoplasmic reticu-
lum (ER), and the intertwined actin and microtubule net-
works of the cytoskeleton (5–7). The morphology of these
intracellular structures modulates the long-range active
and passive transport of particles within them (8). For
example, the winding cristae of mitochondria slow down
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the long-range spread of particles (1), whereas spiral dislo-
cations connecting ER sheets facilitate more rapid diffusive
transport (2,9).

A number of theoretical studies have demonstrated that
the architecture of the domain can play an important role
in determining reaction rates, a general phenomenon
described as ‘‘geometry-controlled kinetics’’ (10). Emergent
kinetic behaviors such as ultrasensitivity, bistability, and
proofreading can be promoted or suppressed when enzyme
and reactant diffusion is perturbed by crowding or by asso-
ciation with cellular structures (11–13). Additional effects
arise when the domain structure is dynamic, leading to
time-varying effective diffusivity (14,15) and broadening
the distribution of search times (16).

One important class of intracellular geometries includes
network structures, consisting of effectively one-dimensional
Biophysical Journal 122, 3191–3205, August 8, 2023 3191

mailto:ekoslover@uscd.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2023.06.022&domain=pdf
https://doi.org/10.1016/j.bpj.2023.06.022
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Scott et al.
edges connected at junction nodes. The transport properties of
spatial networks (17) have been studied in a variety of con-
texts, from porous media (18) to neuronal maintenance
(19,20). For instance, particles diffusing through networks
of tubes and containershavebeen shown toexhibit novel trans-
port properties such as wavelike concentration fluctuations
(21), as well as enhanced reaction rates (22).

The peripheral ER (23–25) and the mitochondrial net-
works of yeast and mammalian cells (26,27) can both be
described as spatial networks of interconnected hollow
tubules. Studies of search kinetics in these networks have
highlighted the importance of network connectivity, as
described by the number of loops within the network
(26,28). The connectivity of the organelles can be biologi-
cally perturbed by mutations in ER morphogens (3,25)
and mitochondrial fusion and fission proteins (26,27). Prior
studies have focused largely on global network architecture
and transport properties, such as mean first-passage times
(MFPTs) averaged over the entire network. Cellular net-
works, however, are not homogeneous lattices, implying
that a significant amount of variability should be expected
in local transport to specific regions (29). This variability
has the potential to modulate encounter kinetics and
dispersal to different regions of the cell.

The dynamic, interconnected web of the ER plays an
important biological role as a delivery network for proteins,
ions, and lipids throughout the cell (30–33). For example,
phospholipids manufactured in the ER must diffuse through
its membrane to contact sites with lipid droplets, mitochon-
dria, and other organelles in order to be transferred to their
eventual cellular destinations (33,34). Additionally, alter-
ation of network structure through modulating expression
of ER morphogens has been shown to affect the magnitude
of calcium release, possibly due to altered transport through
the ER lumen (30).

The ER also serves as a quality control hub for newly
synthesizedproteins destined for secretion (35,36).Thesepro-
teins are co- or posttranslationally inserted into the ER lumen
or membrane, interact with a variety of ER-resident chaper-
ones to ensure correct folding, and exit the organelle after
encountering one of several ER exit sites (ERES). The
ERES are punctate, persistent structures that package secre-
tory cargo into coat protein complex II (COPII)-coated vesi-
cles for subsequent transport to the Golgi apparatus (37–40).
While they are in the ER, the proteins targeted for secretion
engage in diffusive transport to encounter their chaperone
binding partners and to find the exit sites. Furthermore, certain
steps in the protein quality control pathways are thought to
occur in specialized local regions of the ER (41,42), necessi-
tating transport of proteins into and out of these regions.Given
thatmany of the biological functions of the ER rely on its abil-
ity to serve as a topologically isolated transport network
throughout the cell, understanding how network architecture
modulates particle transport and encounter kinetics forms an
important problem in cell biology.
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In thiswork,we focus on the spatial heterogeneity of the pe-
ripheral ER network inmammalian (COS7) cells.We demon-
strate that structural variability across individual ER networks
translates to heterogeneous diffusive accessibility for different
ER regionswithin the samecell. Live-cell imaging data is used
to show that locally photoactivatedmembrane proteins spread
nonuniformly to nearby regions of the ER, in agreement with
simulation results that predict preferential transport to better-
connected regions of the network. The contribution of dy-
namic ER network rearrangements is quantified using a min-
imal network model (23,43) and shown to have little effect on
membrane protein spreading. Furthermore, with the aid of sto-
chastic simulations, we demonstrate that the heterogeneity of
the ER leads to the formation of ‘‘hot spots’’ where diffusing
reactants are more likely to find each other. In live cells, we
additionally find that ERES are preferentially localized to re-
gions of higher accessibility as dictated by network connectiv-
ity and proximity to the perinuclear region. By examining the
impact of ER network heterogeneity on diffusion-limited
reactions and local protein spread, this work sheds light on
the structure-function relationship of a biologically crucial
organelle.
MATERIALS AND METHODS

DNA plasmids

ERplasmids (mCherry_KDEL,KDEL_VenusorBFP_KDEL)were described

previously (44–46). Plasmids expressing fluorescently tagged COPII proteins

GFP_Sec16s,GFP_Sec23A,GFP_Sec24D, andEYFP_Sec31Awere acquired

fromaddgene (gifts fromBenjaminGlick#15775,DavidStephens #66609and

#66613, Henry Lester #32678) (47–49). Generation of PAGFP_Calnexin

was performed by PCR amplification of calnexin from mEmerald_Calnexin

(gift from Michael Davidson, addgene #54021) using iProof high-fidelity

DNAMaster mix (Bio-Rad) and primers flankedwith Xho1 or BamH1 recog-

nition sites (Primer Fwd: 50-AGATCTCGAGCTCATGGAAGGGAAGTG
GTTGCTG -30 and Primer Rev: 50-CCGATGGATCCCGCTCTCTTCGT
GGCTTTCTGTTTCT-30) according to manufacturer instructions. Amplified

DNAwaspurifiedusing theMonarchGelExtractionKit (NewEnglandBiosci-

ence) according tomanufacturer protocol and digestedwithXho1 andBamH1

(NEB). The digested calnexinwas then ligated into PAGFP_N1 (gift from Jen-

nifer Lippincott-Schwartz, addgene #11909) (50) using T4DNA ligase (NEB)

according to manufacturer protocol. Bacterial clones were screened for inser-

tion of calnexin sequence and confirmed by sequencing.
Photoactivation experiment

COS7 cells were purchased from ATCC and cultured in Dulbecco’s modi-

fied Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum

and 1% penicillin/streptomycin. For all imaging experiments, COS7 cells

were seeded in six-well, plastic-bottom dishes at 7:5� 104 cells/ml about

16 h before transfection. Plasmid transfections were performed using lipo-

fectamine 3000, as described previously (51). The following standard DNA

amounts were transfected per mL: 0:2 mg mCherry_KDEL, 0:2 mg

BFP_KDEL, and 0:4 mg PAGFP_Calnexin. Cells were transferred to

35-mm imaging dishes (CellVis) at least 16 h before imaging.

All photoactivation experiments were performed at the Van Andel Institute

Optical Microscopy Core on a Zeiss LSM 880, equipped with an Axio

Observer 7 invertedmicroscope body, stage surround incubation,Airyscan de-

tector, two liquid-cooled MA_PMT confocal detectors, and one 32-channel
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GaAsParray confocal detector. Imageswere acquiredwith aPlan-Apochromat

63x (NA1.4) oil objectivewith 3xoptical zoomusingZeiss Zen 2.3BlackEdi-

tion software. Photoactivated target regions of interest (60 x 60 pixels) in the

peripheral ER network were stimulated with 405-nm light (single pass with

0:51 msec pixel dwell) to selectively activate defined regionswithin the periph-

eral ER. Cells were tracked for at least 2 min after stimulation with constant

acquisition (0.629 s/frame) to track diffusion of photoactivated signal into

the surrounding ER network.
Image analysis and network structure extraction

The machine learning segmentation toolkit ilastik (52) was employed to

segment ER network structures from live-cell images using the mCherry_

KDEL marker. A custom-written skeleton tracing subroutine in

MATLAB (53) was used to extract a network structure from the probability

file output by ilastik. This code is publicly provided at https://github.com/

lenafabr/networktools and includes data structures for storing the network

morphology as a set of nodes connected by edges with curved spatial paths.

The networks were manually curated (using a network editing GUI pro-

vided as part of the networktools package) to remove unphysical terminal

nodes arising from skeletonization artifacts. Compact circular regions

were cut out from the extracted networks for statistical analysis of local

edge length, global mean first passage times, and pair-wise reaction times.
Mean first-passage times on tubular and reservoir
networks

In our base model, MFPTs are computed on networks consisting of edges

joined at point-like nodes. Details of the computation are outlined in

Ref. (29). In short, we find the splitting probability Pik and waiting time

Qi for a diffusive particle starting at node i to first reach neighboring

node k:

Pik ¼ 1=likPdi
j ¼ 11

.
lij
; Qi ¼ 1

2D
:

Pdi
j ¼ 1lijPdi

j ¼ 11
.
lij
: (1)

Here, di is the node degree, and lik is the length of the connecting edge, and
D is the particle diffusivity. The MFPT from node i to a target node is then
given by the following (29):

ti ¼ �ðI � PÞ� 1
$Q

�
i
; (2)

where I is the identity matrix, and the matrix and vector P;Q are defined by

Eq. 1, with the row and column corresponding to the target removed. The
global mean first-passage time (GMFPT) is defined as the MFPT to a given

target k, averaged over all starting nodes i.

In this work, we also introduce a novel extension to the base model that

allows calculation of search times on networks with enlarged nodes or ‘‘res-

ervoirs’’ (details in supporting material, Section S2). The model represents

the motion of particles between disk-shaped reservoirs and connecting tu-

bules as transitions between distinct spatial states. Waiting times for transi-

tion out of the reservoir are set by two-dimensional diffusive escape into the

narrow tube entrances. The additional states associated with trapping in the

reservoirs are included in the transition matrix P and waiting time vector Q

to compute the MFPTs according to Eq. 2.

We consider two extended network models. In supporting material,

Fig. S3, we randomly select nodes to be expanded into larger reservoirs.

GMFPTs are computed to both the point-like remaining nodes of the

network and to a central target inside each reservoir, where the radius of

the target is equal to the network tubule radius. Particles are assumed to

start on the nodes, in proportion to the node area. When computing first pas-

sage times on a network with observed exit site positions, we introduce a

single, large, disk-like reservoir representing the perinuclear region.

GMFPTs are computed for particles starting uniformly distributed along
the network edges and the reservoir, in proportion to the associated surface

area for the tubules and the disk. Details for computing MFPTs for a parti-

cle starting on a network edge can be found in Ref. (29).
Analysis of photoactivated spreading data

Imaging datasets for nine individual cells are selected for analysis, each of

which has a photoactivation region surrounded by a well-defined tubular

network structure with primarily three-way junctions. The net signal over

time is computed in 10 distinct wedge regions comprising an annulus

around the photoactivation region with inner radius 3:5 mm and outer radius

6 mm. The photoactivated signal in wedge j at time i is defined as wPAGFP
ij .

The fractional signal is then given by f PAGFPij ¼ wPAGFP
ij =PPAGFP

0 where

PPAGFP
0 is the total initial signal within the photoactivated zone. We find

the slope (‘‘signal arrival rate’’) of the fractional signal via a linear fit

over the first 10 s of imaging time after photoactivation.

Two rounds of filtering are applied to ensure a meaningful relationship

between the photoactivated signal dynamics and the observed network

structure. The first filter removes regions with extremely rapid and/or large

fluctuations in the ER signal. We calculate the time-variance in the frac-

tional signal in each wedge as

Vj ¼ vari

�
wPAGFP

ij

.
mPAGFP

i

�
; (3)

where mPAGFP
i ¼ P

jw
PAGFP
ij is the total signal in the annular region at

time i. Given the distribution of these time-variances, a threshold of 2:5�

ðMAD � 1:4826Þ, where MAD is the median absolute deviation, is used

to define outliers with extreme ER dynamics, in keeping with commonly

used outlier detection methods (54).

The second round of filtering removes instances where network extrac-

tion does not accurately capture the underlying ER morphology. For

example, small peripheral sheet regions, expanded junctions, or dense

tubular matrices (4) can complicate the extraction of a well-defined

network structure. Outlier regions are defined as those where the extracted

total tubule length and the ER marker (mCherry_KDEL) signal

levels are mismatched. Specifically, we compute the time-averaged

fractional mCherry_KDEL signal for each wedge region in each cell as

sj ¼ CwmCherry
ij =mmCherry

i Di. A linear fit is performed relating sj with the total

extracted network length for each wedge, averaged over time. Any wedge

with a residual above 2:5� ðMAD�1:4826Þ is filtered out of the analysis.

Wedge regions filtered out due to either criterion are shown as gray dots in

statistical plots.
Simulations of photoactivation on static networks

For each frame in a photoactivation video, the ER network structure is ex-

tracted from the mCherry_KDEL fluorescence channel, as described in the

image analysis and network structure extraction section. On each individual

network structure, simulations of diffusing particles are conducted via a ki-

netic Monte Carlo method, as described in prior work (29). Briefly, analyt-

ically computed propagator functions are used to sample the time required

for each particle to transition between neighboring nodes and edges, obvi-

ating any artifacts associated with a fixed time discretization. This method

allows the particle to propagate in larger timesteps than would be achiev-

able through classic Brownian dynamics simulations on a network.

Batches of N ¼ 10; 000 particles are initiated within the experimentally

photoactivated region, a 3� 3 mm patch in the peripheral ER. Particles

propagate through the network with a diffusivity of D ¼ 1 mm2=s, consis-

tent with previous measurements of ER membrane protein diffusivity (24).

All particle positions are saved at a frame rate matching the experimental

imaging rate, dt ¼ 0:629 s.

To process the simulated data, we define individual wedge regions of the

same size and location as in the experimental images and analyze the num-

ber of particles in each. Note that each simulation is run on a static network
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extracted from a single frame (k) of the experimental image. The simulated

signal in each wedge (wsim
kij ) is then defined as the total number of particles

in wedge j and time point i on the network extracted from frame k, and the

fractional signal is f simkij ¼ wsim
kij =N.

We next average this fractional signal over the different networks,

defining f simij ¼ Cf simkij Dk (see supporting material, Fig. S2 A.iii for example

averaged signal versus time curves). The resulting values are used to find

the signal arrival rate (slope over first 10 s), exactly as for experimental

data. Alternative methods for incorporating the time-varying ER network

structure are considered in the supporting material.

The simulations make it possible to incorporate a range of values for the

particle diffusivity. We accomplish this by rescaling the simulation time in

our analysis, which leads to a rescaling of the diffusivity (assuming static

networks). For example, to test whether Deff ¼ 0:5 mm2=s is a better rep-

resentation of the protein diffusivity than Dorig ¼ 1 mm2=s, we can find the

slope of f simij over time Tscale ¼ Deff

Dorig
� 10s ¼ 5 s. The slope is then multi-

plied by
Dorig

Deff
to arrive at a simulated arrival rate with an effective diffusivity

of Deff ¼ 0:5 mm2=s.

We perform a linear fit of the rescaled simulated rates to the experimental

protein arrival rates (slopes over 10 s). Repeating over a range of effective

diffusivities, the value ofDeff with the optimal fit indicates the best estimate

of ER membrane protein diffusivity given the photoactivated spreading

data.
Minimal model for dynamic ER networks

To estimate the effects of ER network rearrangements on particle spreading,

we conduct Brownian dynamics simulations on synthetic dynamic net-

works. To represent the dynamic network, we use a modified version of

the previously published ‘‘minimal network model’’ (23,43). In this model,

the network consists of mobile nodes connected by edges, where the node

positions xiðtÞ obey an overdamped Langevin equation:

dxi
dt

¼ � bVf ðxiÞ þ
ffiffiffiffiffiffiffiffi
2Dn

p
hðtÞ; (4)

where Dnz10� 3 mm2=s (23) is the node diffusivity, b is the node mobility

in units of mm/s, and f ðxiÞ is the total edge length attached to each node.P � �

Specifically, f ðxÞ ¼ d

j¼ 1
�x � yj�, where the sum is over neighbor no-

des, and yj are the neighbor positions. The stochastic variable hðtÞ is a

Gaussian distributed noise term with mean zero and standard deviation 1.

This model represents a network of edges that are under a constant tension,

driving a minimization of their length.

As the edges of the network shrink, neighboring nodes approach each

other. When two nodes are sufficiently close together, topological rear-

rangements of network connectivity can occur. If the two nodes are both de-

gree 3 junctions, they undergo a T1 rearrangement (55) if and only if this

decreases the total edge length. If one of the nodes has degree 2, or if

they are connected by two edges (forming a short loop), then the two nodes

can fuse together into a single node. The combination of these processes al-

lows for ring-closure events, as observed in live-cell imaging of ER dy-

namics (32,56).

To maintain a steady-state network structure, new edges are generated by

a tube spawning and growth process. A new tube spawns at a fixed growth

rate per existing total edge length (k, units of s� 1mm� 1). The new tube loca-

tion is uniformly selected along existing edges. The nascent tube grows at a

right angle from the parent edge, with fixed velocity v ¼ 2 mm=s, compa-

rable to rapid rates observed in dynamic ER images (40,57). When the tip of

a nascent tube crosses an existing tube, it stops growing and fuses to form a

new junction node.

Similar to (43), the balance between new tubule growth and shrinking

due to length minimization enables the dynamic network to reach a

stable steady state. Of the parameters in the model, the diffusivity is

sufficiently low (D � vl, where lz1 mm is the characteristic edge

length) to have little effect on network structure. Additionally, the tubule
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growth speed (v[ b) is high enough that newly spawned tubules

fuse much quicker than the node rearrangement timescales. The

network structure is thus largely determined by the remaining two pa-

rameters k; b, which are set to match observations of COS7 ER in

live-cell images.

The approximate growth rate k is extracted from videos of COS7 pe-

ripheral ER, labeled with 0:2 mg KDEL_Venus (transfected as described

above) and imaged on the Zeiss LSM 880 at a frame rate of 0.315 s, by

manually counting new growth events (Video S3). The number of growth

events in a region of size 10 mm� 10 mm is manually counted over time

interval 63 s. This number is normalized by the time interval and the

time-averaged total segmented ER length within the region, giving:

kz0:005 mm� 1s� 1.

Dimensional analysis indicates that the average steady-state edge length

in the network scales as l � ffiffiffiffiffiffiffiffi
b=k

p
. We tune the node mobility b to set a

typical ER network edge length lz1 mm (24), corresponding to an estimate

of b ¼ 0:05 mm=s.

The resulting dynamic network model thus has tubule lengths and turn-

over timescales that approximately represent those of the COS7 ER

(‘‘normal ER model’’). For comparison, we consider also a model where

b and k are both increased by twofold, allowing for more rapid turnover

but the same steady-state structure (‘‘fast ER model’’).
Simulating photoactivated spread on the dynamic
network model

Diffusive particles (N ¼ 10; 000) are simulated on the dynamic network

using Brownian dynamics, with particles moving along the network edges

in discrete timesteps dt ¼ 10� 3 s, with diffusivity D ¼ 1 mm2=s and

network structure updated at each timestep. After each network update,

the particle position is projected to the closest location in the new network.

The network architecture is first evolved for a total time of 1000 s to allow it

to reach steady state before initiating the diffusive particles. The particles

are placed within a square 3 mm� 3 mm region of the network, and the joint

simulations of particle and network evolution then proceed for an additional

15 s of simulated time.

The number of particles arriving in each wedge region surrounding the

starting center is analyzed on both the dynamically evolving network and

on each individual static network structure extracted at 0.6-s intervals

from the simulation. The signal arrival rates are obtained as described in

the previous section.
Paired particle simulations

Simulations of reactive particle pairs are run using the propagator-based

approach, which enables particles to hop rapidly from node to node of

the network until they come within the same neighborhood of each

other. Details of the methodology, including the appropriate propagator

functions for two reactive particles on the same edge, are provided in

prior work (29). Each simulation is run until the two particles

encounter each other, and the reaction position on the network is re-

corded. A total of N ¼ 1:6� 104 particles are simulated on each

network structure.

Two other families of network are also analyzed. Eight circular honey-

comb networks are generated, each with the same diameter (18 mm) and to-

tal edge length as one of the eight ER structures analyzed. Mikado networks

are generated by scattering Nrod randomly oriented rods of length Lrod in a

square of size Lspace x Lspace. The intersections of these rods define the nodes

of the network, and the segments of rods between intersections define the

edges of the network. This algorithm generates highly heterogeneous net-

works with a density that is tunable by changing any of the three input pa-

rameters (58). However, Mikado networks tend to have degree 4 junctions,

whereas ER (and honeycomb) networks are composed of mostly degree 3

junctions. Our modification to the Mikado networks is thus to remove
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degree 4 nodes by iteratively removing one random edge from a randomly

chosen degree 4 node until all nodes in the network have degree 3 or less.

The Mikado parameters are chosen to be Nrod ¼ 80, Lrod ¼ 12 mm, and

Lspace ¼ 24 mm, and a circular portion of the network is extracted with

diameter 18 mm m, matching the circular ER networks. We generate

many copies of these circular modified Mikado networks and select for

analysis only those that have a total length within 5% of the corresponding

ER network.
ERES localization on ER network

COS7 cells were seeded in plastic six-well dishes and transfected as

described in the photoactivation experiment section. Cells were then

imaged as previously described (40). The following standard amounts

of DNA were transfected per mL: 0:1 mg GFP_Sec16s, 0:1 mg

GFP_Sec23a, 0:1 mg GFP_Sec24d, 0:1 mg EYFP_Sec31a, and 0:2 mg

mcherry_KDEL. Images were acquired on an inverted fluorescent micro-

scope (TE2000-U; Nikon) equipped with a 100x oil objective (NA 1.4)

on an electron-multiplying charge-coupled device camera (Andor). Live-

cell imaging was performed at 37+C after media change to prewarmed im-

aging media (fluorobrite DMEM (Invitrogen) þ 10% fetal bovine serum).

Images of 22 different COS7 cells are analyzed as described in the image

analysis and network structure extraction section to extract the peripheral

ER network structure. The perinuclear region is manually excised from

each one. ERES locations are identified as puncta in the GFP or EYFP fluo-

rescent signal using a previously published implementation of the standard

particle localization algorithm by Crocker and Grier (59,60). We identify a

total of 1443 peripheral and 2327 perinuclear ERES. The peripheral puncta

are projected onto the nearest point along the extracted network structure.

To convert these structures into reservoir networks (model described in

supporting material, Section S2), the centroid of the nodes bounding the

excised perinuclear region is set to be the center of the reservoir. The
A B C

E F

FIGURE 1 Heterogeneity in ER network structure and mean first-passage ti

(KDEL_Venus, gray) with extracted network structure overlay (green). (B) The

sponding distribution across multiple (n¼ 3) cells (right). (C) Global mean first-

in (A). (D) GMFPT scales inversely with local edge length; color denotes radial p

diffusing outward from the center of a circular honeycomb network. (F) MFPTs

example ER network. Vertical lines highlight heterogeneity in a ring from 3:5 to

as highlighted in (F). Particle diffusivity is set to D ¼ 1 mm2=s throughout. To
average distance of the bounding nodes to the centroid determines the

radius of the reservoir, Rþ. Each bounding node is then connected to

the reservoir via a tubule of length equal to the mean edge length of the

network.

The GMFPT to each projected ERES is computed for particles starting

uniformly distributed across the network. For comparison, an equivalent

number of target points are selected uniformly at random along the edges

of each network structure, and the GMFPT is computed to each of those

points individually.
RESULTS AND DISCUSSION

ER network structures exhibit spatially
heterogeneous accessibility

The peripheral ER forms an intricate web of tubules, with
primarily three-way junctions scattered at varying densities
across the cell periphery. We aim to characterize the hetero-
geneity of the network structure and its effects on the acces-
sibility of different regions by particles diffusing on the
network.

ER network morphologies are extracted from confocal
images of the peripheral ER in cultured COS7 cells
(Fig. 1 A), where these network structures are largely planar.
The network structure is simplified into effectively one-
dimensional edges (not necessarily straight), connected at
point-like nodes. Although more complex peripheral struc-
tures, including hole-studded sheets (61) and dense local-
ized matrices (4), have been observed, we focus here on
D

G

mes. (A) Confocal image of COS7 cell expressing fluorescent ER marker

distribution of local edge lengths in one cell (left) is similar to the corre-

passage times (GMFPTs) to nodes on the example COS7 ER network shown

osition from center of network. (E) MFPT to each network node for particles

to all network nodes for particles diffusing outward from the center of the

6 mm around the center. (G) MFPTs for nodes in the ring from 3:5 to 6 mm,

see this figure in color, go online.
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regions composed primarily of well-defined tubules and
junctions. In the supporting material, we show that enlarged
junctions between the tubules do not substantially affect the
results (Fig. S3).

The ER density in different spatial regions can be charac-
terized by computing the local edge length Llocðx; sÞ,
defined as the total length of network tubules that falls
within distance s ¼ 5 mm of position x. We sample local
edge length for random points scattered across the domain
of an example network (shown in Fig. 1 A). The values of
Llocðx; sÞ span one order of magnitude, demonstrating sub-
stantial spatial heterogeneity in the ER density (Fig. 1 B).
Notably, spatial variation in the local edge length within a
single network is comparable to the variation between
networks extracted from different cells.

While local edge length provides a purely structural
metric of heterogeneity, we further consider the conse-
quences of network variability on the diffusive transport
of particles within the ER. One useful metric for quantifying
search efficiency on spatial networks is the GMFPT (28),
which gives the MFPT for a diffusing particle to reach a
given node in the network, averaged over all starting nodes.
This quantity can be computed analytically from the edge
lengths and topology of the network (29) (see materials
and methods).

The GMFPTs for different nodes in a single ER network
can vary substantially (Fig. 1 C). Nodes near the boundary
have a higher GMFPT, whereas more centrally located no-
des and those in denser regions of the network exhibit the
lowest GMFPTs. Some of the variation in GMFPT can be
explained by the local edge length surrounding a node, as
well as proximity to the boundary of the domain (Fig. 1
D), both a measure of centrality within the network (17).
However, even nodes with similar local edge lengths and
radial position can have GMFPTs that vary by a factor of
2. We note that the ER networks form a highly looped struc-
ture composed primarily of three-way junctions, with less
than 5% terminal nodes. Thus, although network search
times are known to vary with node degree (62), the degree
of each node is insufficient to account for the observed
variability of the GMFPTs. Furthermore, we consider a
modified network where a randomly selected subset of
node junctions is enlarged, with a target of size comparable
to the tube width placed in their center. As shown in support-
ing material (Fig. S3), targets inside the enlarged nodes have
similar search times to targets on ordinary tubule junctions.
Thus, the heterogeneity in search times appears to be
dictated by the edge connectivity of the network rather
than by junction size.

Individual MFPTs between pairs of nodes in the network
can be used to further assess heterogeneity in local transport
processes. The MFPT for a particle diffusing outward from
a central point to each possible target node in a uniform
honeycomb network exhibits a characteristic scaling with
distance, as shown in Fig. 1 E. Unsurprisingly, nodes that
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are located farther from the source tend to have higher
MFPTs, with the search time increasing exponentially for
the most distant population of nodes. This particular scaling
of the diffusive search time relative to distance has also been
observed for particles that hop actively across edges in
planar network structures (63). Similar scaling is found in
diffusive search for targets on the ER (Fig. 1 F). However,
the heterogeneity of the ER network structure gives rise to
a broad range of mean search times for nodes at similar dis-
tances from the source. A factor of 3 range is observed
among nodes that fall within a ring from 3:5 to 6 mm from
the center (Fig. 1 F and G).

Overall, we use analytic MFPTs as a measure of accessi-
bility for different regions of the ER, either by particles
starting throughout the network, or those originating from
a localized source. This accessibility is shown to vary be-
tween different regions of an ER network, due to the hetero-
geneous density and connectivity patterns of the tubules.
Network morphology governs the nonuniform
spread of photoactivated proteins

Although MFPTs are a convenient, easily computed metric
of diffusive accessibility, they are difficult to probe experi-
mentally. To directly observe the heterogeneity of diffusive
spreading within the ER, we consider instead the short-time
rate of arrival to nearby regions surrounding a particle
source. This process is visualized by photoactivating ER
membrane-associated proteins within a localized region of
the network and watching their spread into surrounding
regions. We note that past measurements of single-particle
trajectories (24) and bulk spreading (30) of several ER
membrane proteins have demonstrated that they undergo
diffusive dynamics along the tubules of the peripheral ER.
By contrast, aqueous proteins in the ER lumen may in
some cases exhibit rapid active motion between neighboring
junctions (30,64). Such active motion can substantially alter
long-range transport across a network (63), and we thus do
not include luminal proteins in this study.

Cultured COS7 cells are transfected with PAGFP_
Calnexin, a membrane-bound ER protein with a photoacti-
vatable fluorescent tag, as well as mCherry_KDEL as a gen-
eral marker for ER structure. A single-pass photoactivating
pulse is applied in a 3 mm� 3 mm square of the peripheral
ER. Several frames from an example video (Video S1) are
shown in Fig. 2 A with mCherry_KDEL in red and the
PAGFP_Calnexin in green. The initial dense bolus of photo-
activated proteins can be seen spreading outward through
the network. We track the signal in individual small regions
located equidistant from the photoactivation site. Diffusive
spreading of particles over a homogeneous continuum
would be expected to yield similar time courses of signal
arrival to each of these regions. However, the observed
PAGFP fluorescence signal over time varies substantially
between the individual wedges in a single cell (Fig. 2 B).
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FIGURE 2 Spreading of localized bolus of particles over the ER network. (A) ER membrane protein PAGFP_Calnexin (green) is pulse-activated in a local

region, whereas ER luminal marker mCherry_KDEL (red) serves to visualize network structure. Equidistant surrounding regions (colored wedges) are used

to analyze signal spread. (B) Photoactivated signal arriving in each analyzed region, normalized by initial total signal in photoactivated zone. Gray region

denotes time before photoactivation. (C) Snapshots of simulations on frozen ER structures extracted from first frame in A. (D) Simulated particle counts

arriving in individual analysis regions, normalized by total number of particles. Gray region denotes time before photoactivation. (E) Correlation between

signal arrival rates (slopes of signal versus time curves) for experimental and simulated data. Color indicates cell (n ¼ 9 distinct cells). Inset: simulated pro-

tein arrival rates best match experimental arrival rates when effective diffusivity is rescaled from Dorig ¼ 1 mm2=s to Deff ¼ 1:3 mm2=s (dashed line). (F)

Correlation of experimental signal arrival rate in individual regions versus the fraction of ER marker signal in that region. (G) Correlation of experimental

signal arrival rate with the number of edges intersecting the boundary of each region. Regions removed due to filtering are shown in gray in (E)–(G). To see

this figure in color, go online.

Diffusion in heterogeneous ER network
This variability can be attributed to the heterogeneous distri-
bution and connectivity of the ER tubules. Intuitively, the
blue region contains dense, highly connected tubules and
has the strongest and fastest-growing photoactivation signal.
By contrast, the orange region is poorly connected to the
activation site and exhibits the smallest initial signal growth.

To account for the observed differences in signal arrival
rates due to ER morphology, we extracted the ER network
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structure in the vicinity of the photoactivation site and car-
ried out agent-based simulations of diffusing particles initi-
ated at the site (Fig. 2 C, Video S2). Quantifying the number
of simulated particles accumulating in each region over time
allows for a direct comparison between simulated and
observed fluorescent signal. For both the experimental and
simulated data, we normalize the measured signal in each
region by the initial total signal within a disk of 3:5 mm
radius centered on the photoactivation zone (inner circle
in Fig. 2 A and C). Thus, the reported signal traces are given
in terms of the fraction of initially photoactivated particles
present in a given region at a given time. The normalized
simulated signal (Fig. 2 D) exhibits similar behavior to the
experimental results, with well-connected dense regions
receiving more signal faster than poorly connected and
sparse ER regions.

To partially incorporate the effect of ER network rear-
rangement over time, the photoactivation simulations are
run on network structures extracted for every frame of the
experimental movie (at time interval 0.6 s). The signal
over time is then averaged across the ensemble of simula-
tions on all of these different network structures. This
ensemble-averaged simulated signal is used in the subse-
quent analysis. Analogous results using only a single
network structure can be found in the supporting material.

To quantitatively compare protein arrival rates in the
experimental and simulated ER networks, we extract the
slope of the normalized signal curves up to 10 s after photo-
activation. These slopes (referred to as ‘‘arrival rates’’) serve
as a simple metric that provides information about the
spatial heterogeneity of protein spreading around the photo-
activation site. Because our simulations are carried out on
network structures extracted from the experimental images,
it is possible to directly compare the rate of signal arrival in
matched regions between experimental and simulated data
(Fig. 2 E). Regions where the extracted network length
was a poor match for the observed ER marker (mCherry_K-
DEL) fluorescence, or where the ER marker showed large
fluctuations over time, were filtered out of the analysis
(gray dots; see materials and methods for details). Notably,
the variability of measured rates between regions within
each individual cell (same color dots) is comparable to the
intercell variability (different color dots), indicating that
the arrival rates are similarly heterogeneous in all the
observed cells. The experimental and simulated arrival rates
show a direct correlation: R2 ¼ 0:68, obtained from a
linear fit. The high correlation implies that diffusive particle
motion over an ER network is a good predictor of signal
arrival to different regions.

Notably, the simulation time can be rescaled to effectively
represent particles of different diffusivity (see materials and
methods for details). We compare the correlation of signal
arrival rates between experimental measurements and simu-
lations with different time scaling. The simulations that best
correlate with experimental values correspond to a particle
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diffusivity of Deffz1:3 mm2=s (Fig. 2 E, inset), a value
that is similar in magnitude to previous measurements of
diffusivity via single-particle tracking for other ER mem-
brane proteins (24). This result demonstrates that particle
diffusivity in the ER can be measured by quantifying signal
arrival rates to different structural regions of network, all
located relatively close to the photoactivated zone, without
the need for tracking longer-range spread across the
cell (30).

In order to test whether particle diffusion simulations are
more predictive than simpler metrics of network structure,
we also compare the experimental arrival rates to the
mCherry_KDEL ER signal in each region. A linear fit
(Fig. 2 F) demonstrates there is some correlation between
the two (R2 ¼ 0:44), but variation in the ER volume within
each region (as measured by mCherry_KDEL signal) cannot
capture the full variability in protein spreading rates. A sim-
ple metric for local connectivity, the number of edges
crossing the boundary of each wedge region, is shown to
be roughly correlated (Fig. 2 G, R2 ¼ 0:2), but it also
does not provide a strong predictor of protein arrival rates.
Thus, the distribution of protein spreading rates in live cells
is best modeled by simulations that take into account not
just the local ER density in a region but also the connectivity
of the surrounding network together with the dynamics of
diffusive particles moving through this network.
Slow ER network dynamics have little effect on
particle spreading

The ER network in a living cell is itself a dynamic structure,
with network rearrangements occurring over tens-of-
second timescales as a result of attachment to motile organ-
elles, molecular motors, and growing microtubule tips
(32,57,65). In comparing the measured rates of protein
spread to simulations of diffusing particles (Fig. 2 E), we ac-
count for time variation in ER architecture by averaging
over network structures extracted from each frame.

To gain a better sense of how ER tubule dynamics may
contribute to the spread of photoactivated proteins, we
incorporate network rearrangements directly into our simu-
lations, by treating the ER as a ‘‘minimal network’’ with tu-
bules subject to growth and constant tension (43). These
synthetic dynamic networks (described in the materials
and methods) mimic the rearrangements of the ER over
time, including new tubule growth, junction sliding, and
the merging of junctions.

The two parameters primarily responsible for deter-
mining the equilibrium properties are node mobility (units
of mm/s, sets speed with which nodes rearrange) and new tu-
bule growth rate (units of mm� 1s� 1, rate at which new tu-
bules are pulled out of existing tubules). Other parameters,
such as node diffusivity and new tubule growth speed,
play a secondary role in the parameter regimes considered
here. Input parameters to the model are set so that network
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properties at equilibrium match the ER network in COS7
cells. Specifically, the modeled networks match the
measured rate of new tubule formation (Video S3) and the
steady-state average edge length in the network. For com-
parison, we also ran simulations of networks that exhibit
faster dynamics, with both tubule growth rate and node
mobility increased by a factor of 2. These faster networks
have the same steady-state network structure but rearrange
twice as rapidly.

For each of these dynamic networks, 16 separate photoac-
tivation events are simulated in different regions of the
network. Particles are initiated within 3 mm� 3 mm patches
and allowed to diffuse through the structure either on a static
network or concurrently with the network dynamics (Fig. 3
A, Video S4). We compare the rate of particles arriving to
equidistant regions surrounding the initiation zone both
with and without network dynamics.

When the particle simulations are run on a single static
network structure, the arrival rates are moderately well
correlated (R2 ¼ 0:87) with the rates observed for simula-
tions on dynamic networks (Fig. 3 B). Faster dynamics in
the synthetic networks reduces this correlation to R2 ¼
0:78. Intuitively, as the rearrangements occur more quickly,
diffusive particles encounter more extensive changes in
structure during the 10-s timescale of the measurement.

Notably, even when network dynamics are twice as rapid
as the experimentally observed dynamics of the ER network,
the static network approximation is a good predictor for par-
ticle arrival rates. We can estimate the importance of active
network rearrangements versus the diffusive motion of the
particles by considering an effective P�eclet number for the
A

B C
system. The mobility parameter for the dynamic networks
(b ¼ 0:05 mm=s) sets a typical velocity for tension-driven
sliding. Over a length scale of 10 mm (the size of the analyzed
region), the corresponding P�eclet number for a protein within
the network is Pe ¼ vL=Dz0:5. Doubling the rate of ER re-
arrangement doubles this P�eclet number. Because this dimen-
sionless quantity is close to or below Pe ¼ 1, the motion of
the particles is dominated by their diffusivity rather than by
the tubule rearrangement dynamics.

The moderate effect of network dynamics on particle
spreading can be partly accounted for by running simulations
on many individual static network structures extracted at
different points in time. We perform this analysis using snap-
shots of our simulated dynamic networks and averaging the
signal in each region at each time point. For this ensemble-
averaged data, the arrival rates on static and dynamic net-
works become more closely correlated (Fig. 3 C), even in
the case of rapid network rearrangements (R2 ¼ 0:91).
Thus, the effect of network dynamics is almost entirely ac-
counted for by averaging multiple static simulations on
consecutive network structures. These results on synthetic
dynamic networks validate the use of the same ensemble
averaging approach when analyzing experimental data.
ER structure directs reaction locations

The ER does more than simply serve as a transport hub for
proteins, lipids, and ions; it also plays a role in protein syn-
thesis and quality control (35,42), as well as forming func-
tionally important contact sites with other organelles (33).
The formation of reactive complexes, exit sites for protein
FIGURE 3 ER network dynamics does not sub-

stantially affect particle spreading. (A) Snapshots

from simulation of diffusing particles spreading

from a local region, on a minimal network dynamic

model. Network edges are blue, and a subset (500)

of the simulated particles (D ¼ 1 mm2=s) are

shown in orange. White arrows highlight several

new edges that grew between the first and second

snapshots. (B) Correlation of signal arrival rate

(slope of signal-versus-time curves) to individual re-

gions, comparing simulations on a single static

network structure and on dynamic minimal network

model with turnover timescales comparable to ER

dynamics (blue) or 2� faster (red). (C) Comparison

of signal arrival rates for simulation on a dynamic

network versus simulations of particles diffusing

on a static network, averaged over static structures

from individual snapshots of the minimal network.

The average static rates are obtained in the same

manner as in the analysis of experimental data. To

see this figure in color, go online.
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export, and contact site assemblies requires multiple intra-
ER particles to find each other within the network. In order
to better understand how diffusion-mediated biochemical
reactions are impacted by ER morphology, we simulate
reactive particle pairs diffusing on extracted ER network
structures (Fig. 4 A). From these simulations, both the
spatial locations of reactions on the network as well as the
distribution of reaction times are extracted.

Many previous studies of diffusive processes on networks
have focused on the temporal properties of reactions or exit
times (e.g., MFPTs, extreme statistics, and full FPT distribu-
tions (16,26,29)), without considering in detail where those
reactions occur. Here, we provide fresh insight by analyzing
the spatial locations, as well as temporal distributions, of
pairwise reactions on the ER. Pairs of particles are distrib-
uted randomly across the network to begin the simulation.
Each pair diffuses along the edges of the network until the
two particles come into contact with one another. At this
point, they react, and the position and time of reaction is re-
corded. The network edges are meshed into segments of
A B

C
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FIGURE 4 ER heterogeneity leads to hot spots of paired particle encounters. (

circles) diffuse through the network (dashed lines indicate trajectories) until th

networks, each with similar total edge length and spatial size. For each discretiz

that segment is normalized by the fraction of total edge length contained within t

average edge length as the ER network in the middle panel. Middle panel, ER ne

of higher reaction density than the homogeneous honeycomb (bright yellow seg

erogeneous synthetic, Mikado-like network, exhibiting even more pronounced ho

roughly correlated with the inverse of the global mean first-passage time (GMFP

segments in honeycomb, ER, and Mikado-like networks, showing increasing he

log-log axes. Mean for each distribution is 1, and red overlay denotes standard

structures. Dotted lines mark the mean reaction time. Dashed lines show expone

GMFPTon the ER networks indicated by the purple arrow is more than twice the

circular regions of the ER (17 mm diameter), extracted from three different cell
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length lz0:2 mm, and the normalized reaction density in
mesh cell i is defined as

gi ¼ # of reactions in cell i

# of particle pairs
� total network length

l
: (5)

When averaged over an entire network, CgD ¼ 1. Simu-
lations on the ER network structure demonstrate that paired
particle reaction locations are heterogeneous (Fig. 4 B, mid-
dle panel), with some regions showing a particularly high
reaction density g. Certain tubule segments are more likely
to serve as the reaction site, due to their enhanced connec-
tivity to the rest of the network. The normalized reaction
density correlates with the inverse of the GMFPT (Fig. 4
C), indicating that these highly reactive regions are in fact
easier to find by diffusing particles.

These simulations imply that heterogeneity in ER structure
and accessibility is expected to result in diffusive particle reac-
tions becoming concentrated within certain regions. For com-
parison, we repeat the simulations on two synthetic network
structures: a homogeneous honeycomb network (Fig. 4 B,
E

A) Schematic of paired particle simulations. Pairs of particles (pink and blue

ey encounter and react. (B) Normalized reaction density on three example

ed segment of network, the fraction of simulated reactions occurring within

hat segment. Left panel, a homogeneous honeycomb network with the same

twork is extracted from a section of COS7 peripheral ER; it exhibits regions

ments). In the right panel, the normalized reaction density on a highly het-

t spots than the ER. (C) Paired reaction density on each segment of the ER is

T) to that segment. (D) Distribution of reaction densities for all discretized

terogeneity in the densities. Insets show long tail of distribution plotted on

deviation. (E) Distributions of paired reaction times in the three network

ntial decay for a Poisson process with the same mean. The target-averaged

mean pair reaction time. Results in (C–E) were computed for eight distinct

s.To see this figure in color, go online.
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left panel) and a highly heterogeneous modified Mikado
network (58) (Fig. 4 B, right panel; see materials and methods
for details). Both of these networks have the same spatial
extent and total network length as the extracted ER networks.
This allows for a quantitative comparison of the reaction den-
sity and reaction time distributions between all three families
of networks.

As expected, reaction locations aremore uniformly distrib-
uted on the honeycomb network. Within this homogeneous
network, reactions are slightly more likely to occur at junc-
tion nodes rather than along the edges, in keeping with past
work showing random walkers are more likely to encounter
each other at higher-degree network nodes (62). There is
also a dearth of reactions at the network boundary, mirroring
the increased GMFPT in the boundary region (Fig. 1 C). The
ERnetworks showa similar drop-off in reaction density along
edges compared with junctions, as well as at the boundary.
Moreover, due to the heterogeneous network density and con-
nectivity, reactions are more concentrated into certain junc-
tions within the network, with a higher maximum reaction
density at these select junctions than is observed in the
more uniform honeycomb. Reactions are further concen-
trated in the modified Mikado networks, demonstrating that
more heterogeneous networks exhibit a broader range of reac-
tion densities. This effect is quantified in Fig. 4 D, where a
FIGURE 5 Concentration of ERES in regions of the peripheral ER with high

(green, GFP_Sec24d) of a COS7 cell. (B) Extracted network structure of perip

colored by their effective search time (GMFPT, units of s). ERES positions are s

region, with interior color corresponding to GMFPT to a target at the center. (C)

example network shown in (B). Orange star indicates GMFPT to target in reservo

network. Distributions include 1443 exit sites and the same number of random po

magenta vertical lines indicate mean of each distribution; orange dotted line indi

voir center; black dotted line gives mean GMFPT to full population of peripher

reservoir for 1443 exit sites and 1443 random points extracted from the periphe
longer tail is visible in the distribution of normalized reaction
densities for ER and Mikado networks, compared with the
honeycomb. The morphology and connectivity of a network
can thus tune the spatial distribution of reaction locations.

Network structure is not only responsible for shaping the
spatial profileof reactiondensity, but can also affect theoverall
reaction time (26,28). The distribution of pairwise reaction
times on each network exhibits exponential scaling (Fig. 4
E), as for a Poisson process with a single dominant timescale.
As noted in previous work, the mean reaction time on the ER
(dashed purple line) is less than half of the target-averaged
GMFPT (purple arrow) (29). Even though there are higher
spatial reaction densities in themore heterogeneous networks,
mean reaction time is lowest in the homogeneous honeycombs
and highest in themodifiedMikado networks (Fig. 4E). Thus,
there is a trade-off between locally concentrating reactions in
space versus minimizing overall reaction time.
Proximity to well-connected perinuclear ER
enhances accessibility

In addition to variations in local connectivity, a further
source of heterogeneity for the peripheral ER network arises
from the presence of extended sheet-like structures in the
perinuclear zone (Fig. 5 A). Although the morphology of
search rate. (A) Image of the ER (magenta, mCherry_KDEL) and ERES

heral ER (excluding nucleus and perinuclear sheet regions). Junctions are

hown in green. Dashed line indicates excised nucleus and perinuclear sheet

The GMFPT scales with graph distance to the perinuclear reservoir, for the

ir. (D) ERES positions exhibit lower search times than random points on the

ints extracted from the peripheral ER of 22 different COS7 cells. Green and

cates the mean GMFPT (averaged over all networks) to a target in the reser-

al and perinuclear ERES targets. (E) Distributions of graph distance to the

ral ER of 22 different COS7 cells. To see this figure in color, go online.
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the perinuclear region cannot be well resolved with confocal
microscopy, electron microscopy studies have shown that
the ER near the cell nucleus consists of stacks of sheet-
like structures, connected with spiral ramps (2). We consider
how the presence of a large perinuclear ER reservoir may
affect search times for targets in the peripheral network.
For simplicity, we do not directly model the structure of
the perinuclear ER, but we rather treat it as a large, flat,
disk-like region connected along its boundary to the
peripheral network. This approximation neglects transport
between the stacked ER sheets themselves, which has previ-
ously been shown to be accelerated by spiral connecting
ramps (9).

We expand our model to treat the perinuclear reservoir as
an extremely large node, connected to many network tu-
bules. We then compute the GMFPT to each peripheral
node, assuming that particles can start anywhere in the pe-
ripheral network or the perinuclear region, in proportion
to the available surface area. Within the perinuclear zone,
particles effectively move through two-dimensional diffu-
sion, returning to the peripheral network through narrow
exits into individual tubules, as described in supporting ma-
terial, Section S2. Due to the large area of the perinuclear
zone, most particles enter this region before finding any
given target on the peripheral network. As a result, targets
located near the perinuclear region have lower GMFPTs.
This effect leads to a gradient of accessibility for the periph-
eral ER as a function of distance from the perinuclear zone
(Fig. 5 B and C). A target placed in the center of the perinu-
clear zone has a search time comparable with the lowest
values for the peripheral network.

Given the variation in search times for different regions
of the peripheral ER, we next sought to examine whether
certain ER-associated protein assemblies may be more
likely to localize to more accessible regions. Specifically,
we explore the distribution of ERES, which serve as the
export hubs for newly synthesized proteins in the ER
(39, 40). The mechanism underlying the distribution of
exit sites on the network is not well understood, although
prior work has suggested they may arise from a process
of confined diffusive aggregation (66). The ERES are
found both on the perinuclear and the peripheral ER
(Fig. 5 A). Because puncta in the well-mixed perinuclear
region are expected to all have similar accessibilities, we
focus here on those ERES located in the peripheral
network.

We extract ERES puncta locations using several different
markers for the exit sites (Fig. 5 A, details in materials and
methods) and project the peripheral ERES locations onto
the extracted ER network structure (Fig. 5B).We next calcu-
late the GMFPT to each peripheral ERES position and
compare the distribution of these times to that expected for
randomly selected locations along the networks (Fig. 5 D).
The distribution of search times at the exit sites (mean 5
std: 5:952:8� 103 s) is shifted to smaller values compared
3202 Biophysical Journal 122, 3191–3205, August 8, 2023
with the randomized control (mean5 std: 6:553:1� 103 s).
Although themagnitude of the shift is modest, this difference
is statistically significant (p � 10� 6 by a one-sided Stu-
dent’s t-test) due to the large number of ERES puncta
sampled. The ERES are thus disproportionately likely to be
found in more accessible regions of the peripheral network.
The lower search times to peripheral ERES locations can
be explained by their tendency to be located near the perinu-
clear zone and their depletion from the distal regions of the
periphery (Fig. 5 E). Exit sites located in the perinuclear
zone itself (approximated as targets in the center of the reser-
voir) are expected to have the lowest search times (Fig. 5 D,
dotted orange line). Because a substantial fraction of ERES
are found in the perinuclear zone, the overall average search
time to the exit sites (black dotted line) is approximately
twofold lower than the search time to randomly selected pe-
ripheral targets. Overall, localization of ERES within and
nearby the perinuclear region is expected to enhance their
accessibility for diffusively searching particles.

These results indicate a potential structure-function rela-
tionship for the peripheral ER network. Structural heteroge-
neity in the network, both in terms of connectivity and in
terms of proximity to the perinuclear ER, translates to het-
erogeneous search times for diffusing particles. In turn,
certain multiprotein assemblies within the ER network
appear to be localized to the more accessible regions,
where they can be more easily reached by other diffusive
particles.
CONCLUSION

In this work, we highlight the heterogeneous connectivity of
the tubular ER network and its consequences for diffusive
particle transport. We extract peripheral ER network struc-
tures from live-cell confocal images of COS7 cells and
analytically compute MFPTs for particles diffusing over
these networks. These calculations allow us to quantify
the variability in diffusive accessibility within individual
ER architectures. The GMFPT to individual nodes within
the network is found to vary by up to fourfold due to the het-
erogeneous connectivity of the network.

We then directly visualize the local spreading of ER
membrane proteins from an initial region of pulsed photoac-
tivation. Signal arrival rates to distinct regions equidistant
from the photoactivated center show marked disparities
(varying by more than a factor of 4 within a single cell).
We compare these measurements to simulations of diffusing
particles on the visualized ER network structure and show
that the simulated rates of arrival to distinct regions
show strong agreement with experimental data. These re-
sults demonstrate the importance of network structure in
guiding the observed heterogeneity in protein spread.

By modifying and extending a model for ‘‘minimal net-
works’’ driven by membrane tension and new tubule growth
(43), we assess the effect of ER network rearrangements on
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protein spread. The substantial separation of timescales be-
tween network dynamics and protein diffusivity leads to
only a marginal predicted effect of tubule rearrangement
on the motion of proteins within the ER.

Additionally, we simulate pairs of reactive particles
diffusing through the ER and demonstrate that the structural
heterogeneity of the network gives rise to effective hot spots
where encounters are more likely to occur. The proximity of
targets to the well-connected perinuclear zone provides
another source of variable accessibility with the network.
Notably, an analysis of ERES positions across the peripheral
ER indicates that the location of these structures is biased
toward the more accessible regions near the perinuclear
zone and away from the less accessible distal periphery of
the cell.

We note that the ER models in this study are intentionally
highly simplified, reducing the complex membrane-en-
closed geometry of the ER to a network of effectively
one-dimensional tubules. These simplifications make it
possible to focus on the role of cellular-scale network con-
nectivity and rearrangements in particle transport. The sim-
ple structural model is sufficient to reproduce the observed
heterogeneous protein arrival rates to different network re-
gions in photoactivation experiments. More detailed struc-
tural models could include variability in tubule diameter
(67,68) as well as scattered peripheral sheets (69), which
may themselves be perforated with holes (61) or composed
of dense tubular matrices (4). Exploring the effect of these
structures on particle transport forms a potentially inter-
esting avenue for future work.

The network dynamics model employed here aims to
isolate the key important features governing ER rearrange-
ments—namely, the formation of new tubules and the ten-
sion-driven movement of junctions (32,43,70). Although
network dynamics are shown to have little impact on protein
diffusion, they are expected to play a greater role in the mo-
tion of larger and slower-moving ER-associated bodies such
as the ERES (71). Furthermore, it is possible that directed
flows of luminal and/or membrane contents may be associ-
ated with the growth and shrinking of ER tubules, as implied
by recent evidence that new tubule growth is followed by a
delayed widening and infilling with Climp63 spacer pro-
teins (68). Although the spatial extent and magnitude of
such flows is not currently established, they could more
extensively contribute to modulating intra-ER protein
motion.

The transport, quality control, and export of proteins in
the ER are essential biological processes in the early secre-
tory pathway. These processes require a variety of encoun-
ters between newly manufactured proteins, chaperones,
and regulatory factors. The structural heterogeneity of the
ER network implies that certain regions may allow for
more efficient encounters between binding partners.
Notably, however, the effect of morphology becomes impor-
tant only in the regime of diffusion-limited kinetics when
the particles are sparsely scattered over the network (26).
The sequestration of some quality control machinery to spe-
cific regions of the ER (42) implies that long-range diffusive
search by proteins through the network may be an important
factor in the kinetics of such pathways.

In addition to protein transport, the results described here
apply to any diffusive particles contained in the membrane
or lumen of the peripheral ER network. This includes ions
such as calcium, as well as the buffer proteins that bind to
them. In particular, we would expect the demonstrated struc-
tural heterogeneity of the ER to lead to more rapid calcium
release in better-connected regions of the network. Given
that calcium homeostasis and signaling is one of the key
functional roles of the ER, heterogeneous transport could
thus provide an important link between physical structure
and biological function. Furthermore, it would be inter-
esting to explore whether contacts between the peripheral
ER and other cellular structures, such as mitochondria,
tend to preferentially occur at highly connected regions,
which may facilitate the delivery of lipids or ions across
these contacts (72–74).

Through the use of experiments paired with quantitative
image analysis and computational modeling, our results
demonstrate how morphology guides particle transport and
reactions in the ER, with broad implications for diffusive
transport in any intracellular network structure.
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S1. SPATIALLY HETEROGENEOUS ACCESSIBILITY OBSERVED FOR MULTIPLE
ER STRUCTURES

A B

FIG. S1: Diffusive search times for extracted ER network structures. (A) Global mean first passage time
(GMFPT) to each node in the network is plotted against the local network edge length (Lloc) within σ = 5 µm
of the node. Compare to Fig. 1D. (B) Mean first passage time (MFPT) from a central node to target nodes
on the ER network is plotted against Euclidean distance to the target node. Compare to Fig. 1F. In both
plots, color indicates results for individual ER architectures (N=8 network regions extracted from 3 cells).

High spatial heterogeneity in network density and diffusive accessibility is observed across mul-
tiple excised ER networks. Using eight circular regions (radius 8.5 µm) of extracted ER network
structure, local edge lengths and mean first passage times are calculated, as for the example network
shown in Fig. 1.

The global mean first passage time (GMFPT) to every node in each network (Fig. S1A) again
scales inversely with local edge length. In individual networks, GMFPT can vary by nearly one order
of magnitude with similar variation observed in the distributions of local edge length. Notably, the
variation within a single network structure is comparable to the overall variation between networks
extracted from different cells. Thus, even a well-connected, highly-looped structure like the ER can
exhibit large spatial fluctuations in diffusive accessibility, an effect that is observed across multiple
peripheral ER architectures.

We next consider a more localized search process wherein a particle begins its search from a
central source node (Fig. S1B). The mean first passage time (MFPT) to each possible target node
in the ER structures exhibits the characteristic scaling with distance previously discussed in the
main text and elsewhere [1]. Fluctuations in ER density and connectivity lead to large deviations
from the smooth scaling seen in uniform networks (see Fig. 1E). This implies that in the ER search
times for targets that are equidistant from a central source can vary substantially depending on the
local geometry.

S2. COMPUTING MEAN FIRST PASSAGE TIMES ON RESERVOIR NETWORKS

Our base model treats regions of the ER as networks of edges connected at point-like junctions.
This model assumes that the size of the network junctions is comparable to the tubule width.
However, the peripheral ER can also include some sheet-like regions that are substantially larger
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than the tubule width [2]. Such peripheral sheet regions would form spatially expanded junctions
that could serve as localized traps for diffusing particles. We therefore consider an expansion of
our model that incorporates enlarged junction regions from which particles escape through narrow
holes along the boundary.

In addition, the perinuclear region of the ER forms a complex structure composed of inter-
connected stacks of sheets. The detailed structure of the perinuclear ER cannot be resolved with
confocal microscopy, but given the large extent of the region we might also expect it to serve as a
substantial trap for diffusing particles. A simplified representation of the perinuclear region would
also treat it as a disk-shaped reservoir connected to many tubules around its circumference. We use
the same mathematical approach to handle the large perinuclear region as we do for the enlarged
junction nodes. This approach is described below.

We propose a “reservoir network" model for calculating analytic mean first passage times in a
structure composed of tubes that are joined either at point-like nodes or at larger reservoirs. The
approximate analytical approach for transitions between reservoirs and tubes is inspired by previous
work describing diffusive escape from pores in cylindrical geometries [3].

In essence, the model represents transitions of particles between disk-shaped reservoirs and con-
necting tubules (Fig. S2A) by decomposing the system into several discrete spatial states (Fig. S2B),
in a manner analogous to the classic paper on diffusion-limited reactions by Berg and Purcell [4].
By using a state-based approach, it is then possible to calculate MFPTs on these hybrid reservoir
networks using the previously described graph-theoretic approach [5].

In Supplemental Section S3 we apply this model to study the effect of scattered reservoirs on
average search times on a network. Additionally, in the main text, a single reservoir representing
the sheet-like ER in the perinuclear region is used to more accurately capture search times on a
whole-cell scale.

S2A. State diagram for a single reservoir

Reservoirs are treated as disks of radius R+, with holes in the boundary of width 2δ representing
connected tubes (a typical geometry is shown in Fig. S2A with the corresponding state diagram in
Fig. S2B). An optional target at the center with radius R− is denoted the central state, C. When a
particle enters the reservoir from an adjoining tube it is placed in the boundary state, B, a distance
σ from the outer wall of the reservoir. The value of σ is chosen to be comparable to the tube size,
and represents a distance from which the particle can take independent samples of the domain wall
without maintaining a strong memory of the tubule from which it came. From state B, the particle
can either transition back towards the wall or take the long journey to the center of the reservoir,
with splitting probabilities (E±) and average waiting time until the transition (QB) given by:

E+ = log

(
R+ − σ
R−

)
/ log

(
R+

R−

)
,

E− = 1− E+,

QB =
1

4D log
(
R−
R+

) ((R+ − σ)2 log
(
R+

R−

)
+R2

+ log

(
R−

R+ − σ

)
+R2

− log

(
R+ − σ
R+

))
.

(S1)

Here D is the particle diffusivity, E+ is the probability of hitting the wall before the central target,
and E− is the probability of first hitting the central target. If there is no target at the center of the
reservoir, then R− → 0 and E+ = 1. These expressions are derived from the standard solution of
first passage times for the diffusion equation in cylindrical coordinates [6].
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A

DC

B

FIG. S2: Reservoir network model. (A) Representative geometry for a three-tube reservoir embedded in
the network. Dimensions of the system are highlighted in light blue. The five states and their locations in
space are denoted by circled capital letters. (B) The state diagram for the effective model with transition
probabilities labeled. The reservoir may be embedded in a larger network, so an additional neighboring node
state is depicted where the transition into P from the neighbor is given as in [5]. (C) Analytic MFPTs (lines)
reproduce MFPT from BD simulations (points) of 2000 particles diffusing (D = 1 µm2/s) across wide range
of symmetric triskelion geometries. Error bars show standard error of the mean. Inset: particles (active,
blue; absorbed, red) start at the green tip of one tube and diffuse until reaching the red target at the center
of the reservoir. (D) Simulations validate the reverse process. Inset: particles start at the center of the
reservoir (green) and diffuse until reaching the tip of the top tube (red).

If the particle first hits the wall, it has a chance ρ = δd
πR+

of entering a P state, where d is the
number of tubules connected to the reservoir. The particle is equally likely to hit each P state (this
does not mean it will reach the connected node with equal probability, which depends on the length
of the intervening edge). The P state can be thought of as a network node connected to two edges:
one of length L leading to the neighboring node outside the reservoir and one of length σ leading
into the reservoir. The splitting probability from P to B is simply Ee− = σ/(L+ σ). If the particle
instead hits the wall, W (probability 1 − ρ), it rapidly transitions back to state B. Assuming σ
is small compared to R+, the waiting time in W will be negligible compared to the time spent
performing searches of the bulk. This approach for exit out of a reservoir through a long tube has
been previously described for cylindrical geometries [3].

Included in the state diagram is an additional state, U , an optional initial state representing a
uniform distribution of particles throughout the reservoir. The splitting probabilities and waiting
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times unique to state U are given by:

Eu+ =
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+
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+ −R2

−
+

1

2 log
(
R−
R+

) ,
Eu− = 1− Eu+,
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+
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(S2)

For simplicity, this state diagram represents a reservoir with one connected tubule. In practice,
there are often multiple P states, each connected to a neighboring node. Then the transitions from
U and B to each Pi would be symmetric and scaled by the degree (number of neighbors) of the
reservoir.

This reservoir model can be inserted into previously described network models of the ER. Using
the splitting probabilities and waiting times for each state, it is possible to calculate analytic mean
first passage times for diffusive search in the reservoir as previously described in [5].

S2B. BD simulations in triskelion geometries validate analytic approach

The analytic model is validated through the use of Brownian dynamics simulations on triskelion
geometries with a wide range of sizes (Fig. S2C,D insets). The radius of the reservoir, R+ is varied
between 0.2 − 1.0 µm and the length of the connected tubules is varied from 0.1 − 1.0 µm. The
radius of the tubes is fixed at δ = 0.05 µm, a typical size for ER tubules in COS7 cells [2, 7]. The
modified tube size, is set to σ = πδ/4 as in [3, 4]. In all of these tests (and later applications), the
central target has radius R− = δ so that targets placed in either a tube or a reservoir have the same
size.

Two representative search problems are analyzed on these geometries. In the first test, 2000
particles are placed at the end of a tube and allowed to diffuse until reaching an absorbing disk
at the center of the reservoir (Fig. S2C). In the second, 2000 particles begin at the center of the
reservoir and diffuse until reaching the end of a specific tube. The time step for both tests is 10−5 s,
with particle diffusivity D = 1 µm2/s. The MFPT is recorded and compared to the analytic MFPT
from the corresponding reservoir network (Fig. S2C,D).

Over a wide range of scales for both R+ and L the analytic model approximately reproduces
simulated mean first passage times. Having validated a single triskelion, it is now possible to
intersperse these reservoir structures throughout existing networks and obtain realistic mean first
passage times on reservoir networks.

S3. PRESENCE OF SCATTERED RESERVOIRS INCREASES TRAPPING, GMFPT

By treating the peripheral ER as a network of one-dimensional tubules we are able to focus on
large-scale structure and connectivity. This enables us to model transport in the ER as diffusion
on a network, where simple computational approaches provide powerful predictions that agree with
experimental results (Fig. 2E). Here we investigate the limits of the network model by considering
the effect of scattering enlarged junction reservoirs over a network.

A COS7 peripheral ER is modeled as a reservoir network by randomly selecting 20% of its nodes
and converting them into reservoirs. The reservoir radii (R+) are set to be 0.45 of the minimum
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A B C

FIG. S3: Reservoir network model of a COS7 ER. (A) Global mean first passage times (GMFPTs) to targets
on nodes on an example COS7 ER network (from Fig. 1A) where now 20% of network nodes are converted to
reservoirs. Reservoir nodes are shown as true size, point-like nodes are plotted with a fixed minimum size for
visibility. (B) GMFPT scales inversely with local network surface area. Color denotes radial position from
center of network, enlarged points indicate reservoirs and their relative size. (C) The GMFPT to central
targets in reservoirs scales linearly with GMFPT of the original nodes (prior to conversion to reservoir).

edge length connected to the node, giving an average size of 0.26 µm. Connected edges shrink to
accommodate the reservoirs. This avoids unphysical overlap of reservoirs and edges and allows for a
heterogeneous distribution of reservoirs to be randomly dispersed across the network. The GMFPT
is calculated to targets of radius R− = 0.05 µm placed in the center of each expanded node, as
well as to all the ordinary point-like junctions. Because the particles are meant to represent ER
membrane proteins, the starting probability for each node is set in proportion to surface area, with
non-reservoir nodes assigned surface area 2πδ2, while reservoirs have surface area 2πR2

+.
We find that even in the presence of many reservoirs, the qualitative trends for network search

times are the same. GMFPT still scales with the amount of locally accessible network (in this
case, surface area, Fig. S3B). For each individual reservoir target, we compare its GMFPT in a
network with many reservoirs versus the GMFPT to the same node on a network with point-like
junctions only (Fig. S3C). The main effect of enlarged junction reservoirs is a slight increase in
search times. This is due to the increase in network surface area and the trapping that occurs inside
of reservoirs; there is more space for particles to explore before finding any given target and thus
average search times increase. Notably, the breadth of the search-time distribution does not change
substantially upon the introduction of randomly scattered enlarged reservoirs. Thus, treating the
ER tubule junctions as point-like connections appears to be a reasonable simplification for these
network structures.

S4. ALTERNATIVE METHODS OF INCORPORATING NETWORK DYNAMICS INTO
SIMULATIONS OF PARTICLE DIFFUSION

When modeling the spread of photoactivated diffusing particles from a central region, the dy-
namic rearrangements of the ER network need to be considered. In the main text, we incorporate
the effects of the time-varying ER structure by averaging multiple simulations on static networks
extracted from individual frames of the experimental movie. Here, we analyze two alternatives: (1)
simulations run only on a single network extracted from the first frame; and (2) a “project and
propagate" approach incorporating many network snapshots in each simulation. In both cases, the
same two rounds of filtering are applied when comparing to the experimental signal.

For approach (1), the simulated fractional signal on the network extracted from frame 1 (fsim1ij )
is plotted in Fig. S4A.ii. We calculate the slope of the signal in each wedge j over the first 10



6

seconds after photoactivation. These arrival rates are compared to the averaged simulated rates
from the main text (computed from the averaged fractional signal shown in Fig. S4A.iii). We see
strong agreement between the two (R2 = 0.91, Fig. S4B, blue dots and dashed line). Consequently,
this approach also does reasonably well in predicting the experimentally measured protein arrival
rates (extracted from Fig. S4A.i), with R2 = 0.6 (Fig, S4C, blue dots and dashed line). Approach
1 includes no information about the network rearrangements over time, but still captures much of
the behavior of proteins in the ER.

For the project and propagate simulations, 50000 particles commence diffusion from the pho-
toactivation region on the network extracted from the first frame of the movie. The photoactivated
particles then diffuse along the first network for time dt = 0.6s, at which point they are projected
from their location in space to the closest point on the network extracted from the second frame
of the experimental movie. The projection step tends to be small compared to the diffusive (or
propagation) step because the network evolves slowly in time compared to the diffusion of individ-
ual particles. The diffusive particles repeat this process, propagating and projecting, until the final
frame of the experiment is reached.

One advantage of this method is that it more realistically captures the expected spatial tra-
jectories of particles diffusing on a continuously rearranging network. As time progresses and the
proteins diffuse from the photoactivation region, the network evolves in time as well, albeit with a
large time step set by the experimental frame rate.

The same nine photoactivation runs are analyzed using the project and propagate simulation
method. We again define individual wedge regions of the same size and location as in the exper-
imental images and analyze the number of particles in each. The simulated signal in each wedge
(wpp

ij ) is then defined as the total number of particles in wedge j at time point i, and the fractional
signal (Fig. S4A.iv) is fpp

ij = wpp
ij /N . These fractional signals do not require averaging as in the

main text, because the effects of the dynamic network are already incorporated via the project and
propagate method. The fractional signals are then used to find the signal arrival rate (slope over
first 10 seconds), just as before.

Again, we see strong agreement between the project and propagate simulations and the results
from the main text when comparing the calculated arrival rates (Fig. S4B). The project and prop-
agate method is also able to predict the experimental arrival rates well: R2 = 0.64 (Fig. S4C), as
compared to R2 = 0.68 in the main text.

Both project and propagate and the frame-averaged approach outlined in the main text generate
simulated protein arrival rates that fit the experimental rates slightly better than the static approach
using the first frame only. These approaches for incorporating ER network dynamics thus help
account for the time-varying tubule density and connectivity within each ER region. Thus, although
ER network dynamics are shown to be quite slow, incorporation of the different network structures
over time allows for a better representation of observed particle motion.
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FIG. S4: Alternative simulations of diffusive spread in the ER. (A) Fractional photoactivated signal vs
time curves for a single cell from experiment and simulations: (i) experimental signal, (ii) simulated signal
on the network from the first frame, (iii) simulated signal averaged over networks from each frame of the
experimental movie (as used in main text, Fig. 1E), and (iv) simulated signal from the project and propagate
approach. (B) Correlation of signal arrival rates from alternative simulation approaches with the averaging
approach used in the main text. (C) Correlations of simulated rates with experimental protein arrival rates.
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