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Supplementary Figures 
 
 

 

Supplementary Figure 1: Dataset overview: sex, age, and ethnicity across groups.  ADD = 
Alzheimer’s disease dementia, RAD = resilient to Alzheimer’s disease, NC = normal control, ns = not 
significant. The box plot shows the median (middle line), interquartile range (bottom and upper edges), 
and the minimum and maximum values of the distribution (whiskers). P-values were derived using the 
adjusted two-sided Wilcoxon’s test. 

 
 
  

Female Male Age (+/- sd) White Black/African 
American Asian

NC 2 2 80.33 +/-
12.96 3 1 0

RAD 6 6 82.25 +/-
7.63 10 1 1

ADD 8 11 89.95 +/-
6.08 17 0 2



 

 

 
Supplementary Figure 2: Cellformer applied to PBMC ATAC-seq data from different cohorts. A. 
Leave-one-out cross-validated Cellformer performance stratified by cell type (n=13 samples). 
Cellformer output preserves cell type signature across 6 cell types: astrocytes (AST), microglia (MIC), 
oligodendrocytes (OLD) and oligodendrocyte progenitor cells (OPCs) and 2 major classes of neurons, 
excitatory (EXC) and inhibitory (INH). B. Cellformer outperforms the baseline models across cell types. 
C. Barplot comparing the number of generated features among CIBERSORT1, BayesPrism2 and 
Cellformer. D. Cellformer performance when trained using varying numbers of snATAC-seq samples. 
To limit confounders, we restricted our analysis to samples from the same brain region, SMTG. 
Cellformer is weakly impacted by sample size (Two-sided Krustal-Wallis P-value 0.98). The error band 
represents the 95% confidence interval. E. Cellformer successfully deconvoluted PBMC in-silico bulk 
ATAC-seq data (n=18 samples), predicting cell type-specific expression of 5 main cell types (B cell, T-
cell-CD4+ (CD4), T cell-CD8+ (CD8), Myeloid and NK cells), removing cell types present in less than 
1% per samples3. F. Cellformer outperforms the baseline models with a minimal cross-sample variation, 
with a significantly higher Spearman correlation than Linear regression and KNN across the different 
cell types (n=6). All box plots show the median (middle line), interquartile range (bottom and upper 
edges), and the minimum and maximum values of the distribution (whiskers). (P-values derived using 
two-sided Wilcoxon’s tests after multi-testing correction)  



 

 

 
Supplementary Figure 3: Cellformer evaluation in real-life scenarios. A. Simulation of a real-life 
scenario where a cell type is absent in bulk tissue. Boxplots illustrate Cellformer performance when two 
rare cell types, OPCs and MIC, are missing from the pseudo bulk samples used to test the model. Top 
panel represents the absence of OPCs, bottom panel represents the absence of MIC. P-values were 
derived using two-sided Wilcoxon’s tests. B. Simulation of a real-life scenario where a new cell type, 
previously unseen by the model, emerges in bulk tissue. Boxplots illustrate Cellformer performance 
when two rare cell types, OPCs and MIC, are intentionally removed from the synthetic pseudo bulk 
samples during training and added at testing. Top panel represents the absence of OPCs; bottom panel 
represents the absence of MIC. (n=13 samples). P-values were derived using two-sided Wilcoxon’s 
tests. All box plots show the median (middle line), interquartile range (bottom and upper edges), and 
the minimum and maximum values of the distribution (whiskers). “*”: P-value<0.05, “**”:P-value<0.01, 
“***”: P-value<0.001, “****”: P-value<0.0001. 
  



 

 

 

 
 

 

Supplementary Figure 4: Cellformer evaluation on synthetic datasets. A. Cellformer performance 
evaluated using synthetic pseudo bulk data, with varying percentages of cells per cell type. B. 
Cellformer performance when trained to deconvolute bulk ATAC-seq data at a lower resolution 
(n=13). All box plots show the median (middle line), interquartile range (bottom and upper edges), and 
the minimum and maximum values of the distribution (whiskers). 

 
  



 

 

 

Supplementary Figure 5: Model consistency evaluation. Quality of model predictions was assessed 
by comparing technical replicate cell type-specific expression using Spearman correlation between cell 
type expression (created with Biorender). 

  



 

 

 

Supplementary Figure 6: Cell classifier measured cell type signature preservation of Cellformer 
A. XGBoost model was trained to predict the cell type from synthetic cell type-specific ATAC-seq data 
created from real single-cells. Once trained and validated, the cell classifier was applied to Cellformer 
predictions from RAD and ADD (created with Biorender.com). B. Performance of the cell classifier 
across cross-validation iterations stratified by cell type (n=36 samples). C. Performance of the trained 
classifier applied to ADD deconvoluted cell type-specific expression. All box plots show the median 
(middle line), interquartile range (bottom and upper edges), and the minimum and maximum values of 
the distribution (whiskers). 

  



 

 

 
Supplementary Figure 7: Validation of the model output using an external single nucleus ATAC-
seq dataset from SMTG. A. Correlation matrices between Cellformer outputs and single nucleus 
ATAC-seq from the SEA-AD database, stratified by phenotype. P-values were derived using two-sided 
spearman correlations. B. snATAC-seq and deconvoluted ATAC-seq mean profile autocorrelation 
matrices. P-values were derived using two-sided spearman correlations. C. Regression plot of cell type-
specific OCR between deconvoluted and an external dataset in RAD, stratified per cell type. D. 
Correlation matrices between Cellformer outputs and single nucleus ATAC-seq from4. P-values were 
derived using two-sided spearman correlations. “*”: P-value<0.05, “**”:P-value<0.01, “***”: P-
value<0.001, “****”: P-value<0.0001.  



 

 

 

Supplementary Figure 8: Cellformer output acts as deconfounded in-silico single nucleus. A. 
Cellformer generated cell type-specific expression restoring known biological signature of ADD. B. ADD 
differentially regulated OCR enrichment in ADD GWAS. Our approach enabled the retrieval of already-
known signals. Enrichment of GWAS genetic candidates in ADD-specific OCR was assessed using the 
Fisher test. C. Minimal impact of biological and technical confounders on cell type-specific expression. 
D. Correlation between the mean protein expression and ATAC-seq accessibility from NC in HIPP. We 
used promoters associated with protein-coding genes. The error band represents the 95% confidence 
interval. P-value was derived using a two-sided spearman correlation test. E. The overlap between 
OCR-related genes and expressed proteins in HIPP. F. Proteomic expression levels of PGBD5 and 
VDAC2 which are also upregulated in RAD at the epigenetic level (n=36 samples). The box plot shows 
the median (middle line), interquartile range (bottom and upper edges), and the minimum and maximum 
values of the distribution (whiskers). P-values were derived using two-sided Wilcoxon’s tests after multi-
testing correction. G. Number of predicted enhancers per brain region using ABC model5. 

  



 

 

Supplementary Tables 
 

 Normal Control RAD ADD 

B Score < 3 > 2 > 2 

C score 0 > 1 > 1 

Cognitive Diagnosis 
No dementia within 

2 year of death 

No dementia within 

two year of death 
Dementia 

Vascular brain 

injury 
None None None 

Lewy Body None None None 

LATE-NC < 1 < 1 < 1 

 

Supplementary Table 1: Cases selection criteria for bulk ATAC-seq6 and single-cell ATAC-seq from 
the Seattle Alzheimer's Disease Brain Cell Atlas (SEA-AD) Cohort7.  
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