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Peer Review File



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors present a new deep learning method, Cellformer, that conducts deconvolution of bulk 

ATAC-seq into cell type-specific expression across the whole genome. Cellformer integrates attention 

mechanisms that establish links between elements that are far apart and a powerful method called 

dual-path, which involves breaking down the input sequence into smaller segments to capture both 

local and global dependencies while also reducing the computational demands of attention-based 

architectures. Applying Cellformer on 191 bulk samples from three regions of the brain, specific gene 

regulatory mechanisms associated with certain cell types and potential mediators implicated in 

resilience to Alzheimer's disease (AD) are identified. 

 

This manuscript is nicely written. And the proposed method, Cellformer, has achieved OK performance 

in Spearman correlation coefficient, AUROC, and AUPRC on the synthetic bulk ATAC-seq. However, to 

improve the confidence in Cellformer’s performance, the authors should conduct more experiments. 

Specific comments are as follows: 

 

(1) In figure 2c, the evidence provided to support the improvement in Cellformer over existing 

algorithms is given over all cell-types present in the synthetic bulk ATAC-seq brain samples. While this 

is a good comparison in evaluating a method overall, it does not provide any information about how 

Cellformer performs on different cell types. 

(2) Since lack of ATAC-Seq data of cell type proportion-known mixture samples, it is reasonable and 

essential to conduct evaluations on comprehensive synthetic datasets. However, the authors only 

generate via the setting ‘5000 pairs of synthetic bulk and cell-type specific bulk were generated from 

each subject, composed of a random number of cells ranging from 100 to 800’. What happens if 

certain cell types are missing from the bulk or single-cell data? 

(3) How does Cellformer perform on cells that have only 5% and 2% out of all the samples? One of 

the main unresolved issues is a good performance on rare cell types. 

(4) Since Cellformer uses reconstruction loss to aid in learning, how does the sample size of the data 

affect the performance? 

(5) The considered benchmark methods are limited and are rather simple. Moreover, the authors only 

compare the performance of Cellformer to other benchmarks in Figure 2, but failed to incorporate any 

comparison in Figure 3 and Figure 4. From my knowledge, the idea of cell-type specific ‘deconvolution’ 

is not new in this area; maybe the author should consider conducting comprehensive evaluations with 

existing works like scDeconv, DeconPeaker, CoRE-ATAC, and references therein. 

 

 

 

 

Reviewer #2 (Remarks to the Author): 

 

Comments for Author 

General comments: 

In this manuscript, the authors have developed a novel approach for deconvoluting bulk ATAC-seq 

data to infer cell type-specific ATAC-seq expression as well as sample composition. The authors use a 

reference-based deep learning method, which they show outperforms other machine learning methods 

for this task. On the biological side, they compare the cell type-specific expression betw 

een resilient to AD (RAD), normal control, and AD dementia (ADD) individuals, and find that open 

chromatin regions (OCRs) differences between RAD and the other groups are strongly localized to the 

hippocampus region, and identify key pathways and cell types whose genes may have altered 

accessibility. 

 

Overall, the manuscript presents a promising approach for deconvoluting bulk ATAC-seq data to infer 



cell type-specific ATAC-seq expressions. However, the manuscript still leaves some key questions 

unanswered, and some additional validation is required to fully support the authors' conclusions. 

 

Major comments: 

1. The schematic of the model in Figure 2 could use a little more detail. In particular, it shows the 

reconstruction of cell type-specific profiles, but does not show where/how the cell type composition 

measures are derived. Some of these details are in the methods, but it would be good to show them 

up front, particularly for non-experts. 

 

2. It would be helpful if the authors could provide more details about the batch effects that were 

adjusted for in their processing pipeline. This could include information about the experimental design, 

such as the sequencing batches, sample collection dates, and any other relevant factors that may 

introduce batch effects. The methods used to adjust for batch effects should also be described in more 

detail. For example, did the pre-processing or model incorporate any batch normalization techniques, 

such as ComBat or SVA, to adjust for batch effects? If so, they should describe how these methods 

were applied and any parameters that were used in the process. In addition, the authors should 

include quantification of batch mixing (e.g. LISI scores or other measures on the plots shown in Fig. 

S5) to show that batch effects were essentially removed by the model. 

 

3. While the Cellformer approach appears to be effective at deconvoluting bulk ATAC-seq data to infer 

cell type-specific ATAC-seq expressions, it may not be able to fully capture the cell type 

subpopulations that are available through single-cell sequencing methods. Is Cellformer limited to the 

resolution of major cell classes in the brain, or can it also recapitulate OCRs in distinct subtypes within 

a class e.g. SST+ versus PVALB+ neurons in cortex and hippocampus? Although it is not necessary to 

test every subtype, it is possible that the Cellformer approach could be rerun with finer resolution 

clusters in the training set to identify composition/OCR profiles of subpopulations of cells within bulk 

sequencing data? 

 

4. The authors used Chipseeker to annotate peaks to genes may not be the most precise method, as it 

relies on assigning regions to genes based on proximity. This can lead to false positives or false 

negatives in the annotation of peaks to genes, as well as potential ambiguities in the assignment of 

peaks to specific genes. How robust are the biological results regarding RAD robust to different peak-

to-gene annotations? 

 

5. It is important for the authors to explore the biological implications of the observed OCR differences 

between RAD and the other groups. While the authors have performed functional annotation and 

pathway analysis to identify enriched biological pathways or functions that are associated with the 

differentially expression open chromatin regions. The authors could perform further validation studies 

to confirm the significance of the observed OCR differences, for example through staining or ISH of a 

few predicted cell type-specific genes in the hippocampus tissue. Overall, validating the key biological 

implications of the observed OCR differences would provide a more complete picture of the 

mechanisms underlying resilience to Alzheimer's disease, and could have important implications for 

the development of novel therapeutic approaches. 

 

6.In Fig. 2G, the cross-comparison between model predicted OCRs and SEA-AD OCRs shows some off-

diagonal correlations. These are likely biological, given cell type similarity, but it would be good to 

have “baseline” heatmaps of the same type showing cross-cell type correlations within the SEA-AD 

data alone and the Cellformer predictions alone. In the likely event that this looks very similar to the 

existing Fig. 2G, it would strength the argument that Cellformer can deconvolute cell types with a 

range of similar OCRs. 

 

 

Minor comments 

1. Figure 2 would be improved by increasing the asterisk size in panels C, E and G. 



2. It would be highly informative if the authors could provide the age, sex and ethnicity information of 

the RAD, NC and ADD donors the authors used in this study. Although Figure S5C shows there is no 

strong sex effect at the top cell type level, it would be good to know the balance between sexes, as 

well as the age distributions between the three groups. 

3. In Figure S5C, suggestion to replace “Expired Age” with “Age at death” 

4. In the methods (line 461): “For each pair in the synthetic dataset, a random number of same type 

single nucleus within was merged using single nucleus data from one snATAC-seq, 462 preserving 

regional and individual diversity in our synthetic dataset”, it seems there are some words missing. 

“single nucleus samples”? “one snATAC-seq donor”? 



Response to Reviewer’s comments. 
 
All the authors wish to thank the reviewers for their helpful suggestions and for the 
opportunity to improve our manuscript. As detailed below, we have carefully modified the 
manuscript in response to every point. All changes are in blue in the manuscript unless 
otherwise noted. We have performed additional experiments to answer the reviewer's 
concerns. The only change to the main Figures is that additional details have been added to 
the schematic of the model (Figure 2A) in response to R2, Point 1 and asterisk size is 
increased (R2, minor point 1). 
 

Please note that in this table, new figures are bolded and revised figures are underlined. 
Original Figure Number Revised Figure Number 

- Supp Figure 1 (added two panels showing sex/age 
data distribution in the study) 

Supp Figure 1 Supp Figure 2 (added new panels A, B, C and D: 
Cellformer performance across cell-types, comparison 
with other previous methods and sample size effect on 
model’s performance).  

- Supp Figure 3-4 (added new evaluation results) 

Supp Figure 2 Supp Figure 5 

Supp Figure 3 Supp Figure 6 

Supp Figure 4 Supp Figure 7 (added panel B: cross-cell type baseline  
heatmaps) 

Supp Figure 5 Supp Figure 8 (added new panels D,E and F: validation 
on external proteomics data) 

 
 

Point-by-Point Revisions to Reviewers’ Critiques 
 

Reviewer #1 (Remarks to the Author): 
 

The authors present a new deep learning method, Cellformer, that conducts 
deconvolution of bulk ATAC-seq into cell type-specific expression across the whole 
genome. Cellformer integrates attention mechanisms that establish links between 
elements that are far apart and a powerful method called dual-path, which involves 
breaking down the input sequence into smaller segments to capture both local and global 
dependencies while also reducing the computational demands of attention-based 
architectures. Applying Cellformer on 191 bulk samples from three regions of the brain, 
specific gene regulatory mechanisms associated with certain cell types and potential 
mediators implicated in resilience to Alzheimer's disease (AD) are identified.  



 
This manuscript is nicely written. And the proposed method, Cellformer, has achieved OK 
performance in Spearman correlation coefficient, AUROC, and AUPRC on the synthetic 
bulk ATAC-seq. However, to improve the confidence in Cellformer’s performance, the 
authors should conduct more experiments. Specific comments are as follows: 

 
(1) In figure 2c, the evidence provided to support the improvement in Cellformer over 
existing algorithms is given over all cell-types present in the synthetic bulk ATAC-seq brain 
samples. While this is a good comparison in evaluating a method overall, it does not 
provide any information about how Cellformer performs on different cell types.  
Response: We added information about how Cellformer performs on different cell types as 
new panels A and B of (now) Supplementary Figure 2, and introduced it in the Results 
section as: “Stratified by cell type, Cellformer accurately deconvolutes bulk ATAC-seq OCR 
with Spearman correlation superior to 0.75 (Supplementary Fig. 2A).” 
 

 

 
 

Supplementary Fig. 2: 
A. Cross-validated Cellformer performance stratified by cell type. 
B. Cellformer outperforms the baseline models across cell types. 

 
(2) Since lack of ATAC-Seq data of cell type proportion-known mixture samples, it is 
reasonable and essential to conduct evaluations on comprehensive synthetic datasets. 
However, the authors only generate via the setting ‘5000 pairs of synthetic bulk and cell-
type specific bulk were generated from each subject, composed of a random number of 



cells ranging from 100 to 800’. What happens if certain cell types are missing from the bulk 
or single-cell data? 
Response: We conducted additional evaluations to determine the effect of missing or new 
cell types and added our findings (new Supplementary Fig. 3) to the Results section. New 
text is: “In real-life scenarios, the cell type composition of bulk tissue remains unknown. 
For instance, a rare cell type can be missing or a new (unidentified) cell type can emerge in 
bulk tissue. In both scenarios, Cellformer is minimally affected by the presence or absence 
of one cell type, as there are no significant differences in the model’s performance across 
different cell types (Supplementary Fig. 3).” 

 



Supplementary Figure 3: Cellformer evaluation in real-life scenarios. 
A. Simulation of a real-life scenario where a cell type is absent in bulk tissue. Boxplots 

illustrate Cellformer performance when two rare cell types, OPCs and MIC, are 



missing from the pseudo bulk samples used to test the model. Top panel represents 
the absence of OPCs, bottom panel represents the absence of MIC. 

B. Simulation of a real-life scenario where a new cell type, previously unseen by the 
model, emerges in bulk tissue. Boxplots illustrate  Cellformer performance when two 
rare cell types, OPCs and MIC, are intentionally removed from the synthetic pseudo 
bulk samples during training and added at testing. Top panel represents the absence 
of OPCs; bottom panel represents the absence of MIC. 

 
 
(3) How does Cellformer perform on cells that have only 5% and 2% out of all the samples? 
One of the main unresolved issues is a good performance on rare cell types. 
Response: We performed additional analysis to determine Cellformer performance on rare 
cell types (OPCs and microglia) (panel A of new Supplementary Fig. 4) and added text in 
the Results section: ”We evaluated Cellformer’s performances on pseudo bulk samples 
made with different percentages of cell type-specific cells. We observed a slight decline in 
Cellformer's performance when cells make up less than 10% of the total bulk cells. For 
biologically rare cells such as OPCs (constituting less than 3% in white matter) or microglia 
(constituting less than 10% in brain), Cellformer achieves an average Spearman 
correlation of 0.7 when deconvoluting pseudo bulk data, with OPCs which account for less 
than 3% of the overall composition. Similarly, an average correlation of 0.68 is achieved 
when deconvoluting pseudo bulk samples containing less than 10% of microglia 
(Supplementary Fig. 4A).” 
 

 
Supplementary Figure 4A: Cellformer performance evaluated using synthetic pseudo bulk 
data, with varying percentages of cells per cell type. 

  
(4) Since Cellformer uses reconstruction loss to aid in learning, how does the sample size 
of the data affect the performance? 
Response: Thank you for this important question. We performed additional experiments 
(new panel D of Supplementary Fig. 2) to determine the effect of sample size on 
performance and added the following text in the Results section: “As a learning-based 
algorithm, Cellformer relies on snATAC-seq to learn cell type profiles. Using our proposed 
synthetic pseudo bulk data generation strategy, we show that Cellformer can be trained 
effectively with a limited number of snATAC-seq samples, with minimal effect of sample 
size on its performance ( Krustal-Wallis P-value 0.98)(Supplementary Fig. 2D).” 



 
Supplementary Figure 2D: Cellformer performance when trained using varying numbers 
of snATAC-seq samples. To limit confounders, we restricted our analysis to samples from 
the same brain region (SMTG). Cellformer is weakly impacted by sample size  (Krustal-
Wallis P-value 0.98). 
 
(5) The considered benchmark methods are limited and are rather simple. Moreover, the 
authors only compare the performance of Cellformer to other benchmarks in Figure 2, but 
failed to incorporate any comparison in Figure 3 and Figure 4. From my knowledge, the 
idea of cell-type specific ‘deconvolution’ is not new in this area; maybe the author should 
consider conducting comprehensive evaluations with existing works like scDeconv, 
DeconPeaker, CoRE-ATAC, and references therein. 

 
Response: We added new text to clarify that in contrast to previous methods to deconvolute 
bulk sequencing data, Cellformer is not designed to predict cellular abundance in bulk tissue, 
but rather to “fully” deconvolute bulk ATAC-seq data, i.e., retrieve the chromatin accessibility 
for each cell type.  
We also compared Cellformer to two established deconvolution methods (new panel C in 
Supplementary Fig. 2). We added the following text to the Results: “Current state-of-the-art 
deconvolution methods such as scDeconv (Liu 2022), DeconPeaker(Li et al. 2020), 
BayesPrism (Chu et al. 2022) and CIBERSORT (Newman et al. 2015), rely on a cell type-
specific expression matrix, using the most highly distinguished markers per cell type, to 
predict the cellular composition of bulk tissue. In contrast, Cellformer predicted cell type-
specific expression of more than 41954 OCR, which is 2.5 fold more output than established 

deconvolution methods (Supplementary Fig. 2C). This enables more comprehensive 
downstream analysis of biological systems at the cell type level and highlights the ability of 
more extensive deconvolution to gain deeper insight from bulk data.” 
 



 
Supplementary Figure 2C: Barplot comparing the number of generated features among 
CIBERSORT (Newman et al. 2015), BayesPrism (Chu et al. 2022) and Cellformer. 

 
 
Reviewer #2 (Remarks to the Author): 
 
Comments for Author 
General comments: 
In this manuscript, the authors have developed a novel approach for deconvoluting bulk 
ATAC-seq data to infer cell type-specific ATAC-seq expression as well as sample 
composition. The authors use a reference-based deep learning method, which they show 
outperforms other machine learning methods for this task. On the biological side, they 
compare the cell type-specific expression between resilient to AD (RAD), normal control, 
and AD dementia (ADD) individuals, and find that open chromatin regions (OCRs) 
differences between RAD and the other groups are strongly localized to the 
hippocampus region, and identify key pathways and cell types whose genes may have 
altered accessibility.  
 
Overall, the manuscript presents a promising approach for deconvoluting bulk ATAC-seq 
data to infer cell type-specific ATAC-seq expressions. However, the manuscript still 
leaves some key questions unanswered, and some additional validation is required to 
fully support the authors' conclusions.  
 
Major comments: 



1. The schematic of the model in Figure 2 could use a little more detail. In particular, it 
shows the reconstruction of cell type-specific profiles, but does not show where/how the 
cell type composition measures are derived. Some of these details are in the methods, 
but it would be good to show them up front, particularly for non-experts. 
Response: We expanded Figure 2a to show how the cell type-specific profiles used for  
reconstruction were derived, with additional explanation in the legend. 
 
 

 
 

Figure 2a A synthetic dataset of simulated bulk samples was generated from previously 

published single-cell ATAC-seq from 13 normal controls(Corces et al. 2020). Cell type-

specific pseudo bulk samples were generated by aggregating snATAC-seq data, revealing 

the ground-truth cell type-specific composition. The simulated cell-specific pseudo bulk 

samples were further aggregated to generate pseudo-bulk samples, which are Cellformer’s 

input. 

 
 
2. It would be helpful if the authors could provide more details about the batch effects 
that were adjusted for in their processing pipeline. This could include information about 
the experimental design, such as the sequencing batches, sample collection dates, and 
any other relevant factors that may introduce batch effects. The methods used to adjust 
for batch effects should also be described in more detail. For example, did the pre-
processing or model incorporate any batch normalization techniques, such as ComBat or 
SVA, to adjust for batch effects? If so, they should describe how these methods were 
applied and any parameters that were used in the process. In addition, the authors 
should include quantification of batch mixing (e.g. LISI scores or other measures on the 
plots shown in Fig. S5) to show that batch effects were essentially removed by the 
model. 
 
Response: We added information about data processing and batch mixing quantification 
to the Methods section: “Harmony batch normalization was applied on snATAC-seq to 



ensure robust peak calling as previously described (Corces et al, 2020, Granja et al. 
2021). No batch normalization was further applied on the input of the model, since 
additional analysis suggests that Cellformer removes batch effects while preserving 
biological variations, i.e.,  kBet = 0.79 +/- 0.14, NMI= 0, ARI = -0.02 +/- 0.001, cLISI = 1, 
iLISI = 0.58 +/- 0.02 across the brain regions (Luecken et al. 2021).” 
 
3. While the Cellformer approach appears to be effective at deconvoluting bulk ATAC-seq 
data to infer cell type-specific ATAC-seq expressions, it may not be able to fully capture 
the cell type subpopulations that are available through single-cell sequencing methods. 
Is Cellformer limited to the resolution of major cell classes in the brain, or can it also 
recapitulate OCRs in distinct subtypes within a class e.g. SST+ versus PVALB+ neurons in 
cortex and hippocampus? Although it is not necessary to test every subtype, it is possible 
that the Cellformer approach could be rerun with finer resolution clusters in the training 
set to identify composition/OCR profiles of subpopulations of cells within bulk 
sequencing data? 
 
Response: Based on this excellent comment, we reran Cellformer at a finer resolution 
(panel B in new Supplementary Fig. 4) and included the following text in the Results 
section:  “Finally, although we primarily focused on the major brain cell classes in this 
study, we also assessed the performance of Cellformer in accurately capturing OCRs in 
specific subclasses such as SST+ and PVAL+ inhibitory neurons  (Supplementary Fig. 
4B)”. 
 
The following limitation is added in the Discussion: “In this study, we focused on the 6 
major brain cell classes. Although we demonstrate Cellformer’s ability to deconvolute at a 
lower resolution (Supplementary Fig. 4B), we noticed that increasing the number of 
output cell types results in a significant rise in computational complexity. This limitation 
restricts the number of deconvoluted cell types that can be effectively handled. To 
overcome this challenge, we plan to implement and validate strategies such as 
hierarchical training or cell type prioritization functions, which will expand the capabilities 
of Cellformer.” 
 
 



 
 
Supplementary Figure 4B: Cellformer performances when trained to deconvolute bulk 
ATAC-seq data at a lower resolution. 
 
4. The authors used Chipseeker to annotate peaks to genes may not be the most precise 
method, as it relies on assigning regions to genes based on proximity. This can lead to 
false positives or false negatives in the annotation of peaks to genes, as well as potential 
ambiguities in the assignment of peaks to specific genes. How robust are the biological 
results regarding RAD robust to different peak-to-gene annotations? 
Response: Thank you for this important point. We expanded the Methods section as 
follows to justify our choice of Chipseeker and address these concerns: “[...  genomic 
OCR annotation] using default parameters following ATAC-seq data processing 
guidelines and Harvard bioinformatics recommendations (Yan et al. 2020; Gaspar 2019). 
One of the main issues in epigenetic analysis is the lack of consensus between 
annotating tools (Kondili et al. 2017). We therefore compared Chipseeker to the 
annotations given by ArchR, developed for ATAC-seq data analysis. Overall, Chipseeker 
and ArchR agreed on 60% of the peaks, including complete (100%) agreement between 
peak-to-gene annotations of RAD-specific promoters, from which our biological insights 
were drawn. In particular, similar gene ontology enrichment is observed using both tools. 
” 
 
5. It is important for the authors to explore the biological implications of the observed 
OCR differences between RAD and the other groups. While the authors have performed 
functional annotation and pathway analysis to identify enriched biological pathways or 
functions that are associated with the differentially expression open chromatin regions. 
The authors could perform further validation studies to confirm the significance of the 
observed OCR differences, for example through staining or ISH of a few predicted cell 
type-specific genes in the hippocampus tissue. Overall, validating the key biological 
implications of the observed OCR differences would provide a more complete picture of 
the mechanisms underlying resilience to Alzheimer's disease, and could have important 
implications for the development of novel therapeutic approaches. 



Response: : To address the biological implications and underlying mechanisms, we 
compared our findings to quantitative proteomics data generated from the same 
samples for another study (Merrihew et al. 2023). We believe this approach offers a 
more robust validation than more qualitative methods like immunohistochemistry. The 
following validation results (new panels D-F in Supplemental Figure 8) were added in the 
Results section: ”We conducted additional validation of RAD epigenetic signatures by 
using proteomics data previously collected on the same samples (Merrihew et al. 2023). 
A weak agreement is observed between proteomic expression and ATAC-seq 
accessibility with a Pearson correlation of -0.001 (Supplementary Fig. 8D). Only 8% of 
OCR-related genes show overlap with expressed proteins (Supplementary Fig. 8E). 
Similar results are observed with RAD-specific OCR related genes, with 4 out of 40 
(10%) genes overlapping with expressed proteins. However, in contrast to the overall 
sample, our analysis reveals that two (50%) protein coding genes (VDAC2 and PGBP5) 
exhibited significant upregulation in RAD at both epigenetic and proteomic levels 
(Supplementary Fig. 8F).” 
 
 

 
Supplementary Figure 8D-F:  
D. Correlation between the mean protein expression and ATAC-seq accessibility from NC 
in HIPP. We used promoters associated with protein coding genes. 
E. The overlap between OCR-related genes and expressed proteins in HIPP. 
F. Proteomic expression levels of PGBD5 and VDAC2 which are also upregulated in RAD 
at the epigenetic level. 

 
6. In Fig. 2G, the cross-comparison between model predicted OCRs and SEA-AD OCRs 
shows some off-diagonal correlations. These are likely biological, given cell type similarity, 
but it would be good to have “baseline” heatmaps of the same type showing cross-cell 
type correlations within the SEA-AD data alone and the Cellformer predictions alone. In 
the likely event that this looks very similar to the existing Fig. 2G, it would strength the 
argument that Cellformer can deconvolute cell types with a range of similar OCRs. 

Response: As suggested, we constructed baseline heatmaps (new panel B in 
Supplementary Figure 7) to complement our validation and added the following text in 
the Results section: ”These inter-cell type correlations were also observed within 
snATAC-seq and deconvoluted ATAC-seq mean profiles, suggesting that Cellformer can 
deconvolute cell types with a range of similar OCRs (Supplementary Fig. 7B).” The 
following figure was added in the Supplementary Materials: 



 
Supplementary Figure 7: 
B. snATAC-seq and deconvoluted ATAC-seq mean profile autocorrelation matrices. 
 
 
Minor comments 
1. Figure 2 would be improved by increasing the asterisk size in panels C, E and G. 
Response: Corrected 
 
2. It would be highly informative if the authors could provide the age, sex and ethnicity 
information of the RAD, NC and ADD donors the authors used in this study. Although 
Figure S5C shows there is no strong sex effect at the top cell type level, it would be good 
to know the balance between sexes, as well as the age distributions between the three 
groups. 
Response: We added this information as new Supplementary Figure S1 and cite it in the 
Introduction and Methods: “...sex and age range matched..(Supplementary Fig. 1)” 
 

 
Supplementary Figure 1: Dataset overview: sex, age and ethnicity and sex across 
groups.  ADD = Alzheimer’s disease dementia, RAD = resilient to Alzheimer’s disease, NC 
= normal control, ns = not significant. 

 
3. In Figure S5C, suggestion to replace “Expired Age” with “Age at death”  

Response: Corrected (now Figure S8C) 



4. In the methods (line 461): “For each pair in the synthetic dataset, a random number of 
same type single nucleus within was merged using single nucleus data from one snATAC-
seq, preserving regional and individual diversity in our synthetic dataset”, it seems there 
are some words missing. “single nucleus samples”? “one snATAC-seq donor”? 
Response: We rephrased this sentence to make it clearer: “Each pair in the synthetic 
dataset was created by first sampling and aggregating a random number of the same type 
of single nuclei from a sample’s snATAC-seq results in order to create synthetic cell type-
specific pseudo bulk samples that preserve regional and individual diversity in our synthetic 
dataset. Then, corresponding synthetic bulk ATAC-seq data were created by aggregating 
the generated cell type-specific pseudo bulk samples from the 6 cell types.” 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

Most of my previous comments have been resolved. I do not have further comments. 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have resolved my questions, I have no additional questions. 
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