#### **Supporting information**

# High-affinity CD8 variants enhance the sensitivity of pMHCI antigen recognition via low-affinity TCRs

Lea Knezevic<sup>1,2\*</sup>, Tassilo L. A. Wachsmann<sup>2\*</sup>, Ore Francis<sup>1</sup>, Tamsin Dockree<sup>3</sup>, John S. Bridgeman<sup>4</sup>, Anne Wouters<sup>2</sup>, Ben de Wet<sup>5</sup>, David K. Cole<sup>3,5</sup>, Mathew Clement<sup>3,6</sup>, James E. McLaren<sup>3</sup>, Emma Gostick<sup>3</sup>, Kristin Ladell<sup>3</sup>, Sian Llewellyn-Lacey<sup>3</sup>, David A. Price<sup>3,6</sup>, Hugo van den Berg<sup>7</sup>, Zsuzsanna Tabi<sup>3</sup>, Richard B. Sessions<sup>8\*</sup>, Mirjam H. M. Heemskerk<sup>2\*</sup>, Linda Wooldridge<sup>1\*</sup>

<sup>1</sup>Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol, UK

<sup>2</sup>Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands

<sup>3</sup>Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK

<sup>4</sup>Instil Bio, Inc., Dallas, TX

<sup>5</sup>Immunocore, Abingdon, UK

<sup>6</sup>Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK

<sup>7</sup>Warwick Mathematics Institute, University of Warwick, Coventry, UK

<sup>8</sup>Faculty of Life Sciences, University of Bristol, Biomedical Sciences Building, Bristol, UK

\*These authors contributed equally to this work.

Correspondence: Professor Linda Wooldridge, Faculty of Health Sciences, University of Bristol, Biomedical Sciences Building, Bristol BS8 1TD, UK. Email: <u>linda.wooldridge@bristol.ac.uk</u>. The supporting information contains the following figures:

Figure S1 Biophysical and cellular characterization of CD8 variants.

Figure S2. Sequencing and biophysical characterization of the RLA TCR

**Figure S3** Functional analysis of primary CD4<sup>+</sup> and CD8<sup>+</sup> T cells transduced with tumor-targeting TCRs.

S1 Phenotyping of transgenic Jurkat cells and affinity measurements of CD8 variants



## Supporting Figure S1 Biophysical and cellular characterization of CD8 variants.

**A-B** Expression of CD8α (A) and CD8αβ (B) on Jurkat cells transduced with the RLA TCR and CD8αβ containing either wild-type (WT) CD8α or mutated forms (S53G, S53T, S53N, or S53Q) of CD8α. **C-D** Representative surface plasmon resonance affinity measurements of wild-type (WT) CD8αα and the most functionally potent variants of CD8αα, namely S53G and S53N, versus VLD/HLA-A\*0201 or RMF/HLA-A\*0201. **E-H** Expression of CD8α (E), CD8β (F), CD8αβ (G), and TCRβ (H) on MEL5 TCR<sup>+</sup> CD8αβ<sup>+</sup> JRT3-T3.5 cells transduced with CD8αβ containing either wild-type (WT) CD8α (red) or mutated forms of CD8α, namely S53G (teal) or S53N (purple).

### S2 RLA TCR sequencing and affinity measurement

Α

#### **RLA TCR Sequence**

| TRAV | CDR3            | TRAJ |
|------|-----------------|------|
| 19   | CALSEAVTDSSYKLI | 12   |
|      |                 |      |
| TRBV | CDR3            | TRBJ |



## Supporting Figure S2. Sequencing and biophysical characterization of the RLA TCR

A TCRα and TCRβ sequences of the RLA TCR. Gene use was assigned according to the ImMunoGeneTics (IMGT) information system (<u>http://www.imgt.org</u>). B Surface plasmon resonance measurements of the RLA TCR versus RLA/HLA-A\*0201.

В

S4 Sorting strategy for primary T-cells and further functional data in primary CD8 and CD4 T-cells



### Supporting Figure S3 Functional analysis of primary CD4<sup>+</sup> and CD8<sup>+</sup> T cells transduced with tumor-targeting TCRs.

A Gating strategy for the purification of primary CD8<sup>+</sup> T cells expressing CD8αβ containing either wild-type (WT) CD8a or mutated forms of CD8a, namely S53G or S53N, alongside the 1E9 TCR via FACS. **B** Primary CD8<sup>+</sup> T cells expressing CD8 $\alpha\beta$  containing either wild-type (WT) CD8 $\alpha$  (red) or mutated forms of CD8 $\alpha$ , namely S53G (teal) or S53N (purple), alongside the 1E9 TCR were cocultured with a panel of cell lines lacking or expressing CD20. The panel shows mean IFNy production from each of two donors. **C** Gating strategy for the purification of primary CD4<sup>+</sup> T cells expressing CD8αβ containing either wild-type (WT) CD8α or mutated forms of CD8α, namely S53G or S53N, alongside the 1E9 TCR via FACS. **D** Primary CD8<sup>+</sup> T cells expressing CD8 $\alpha\beta$  containing either wild-type (WT) CD8a (red) or mutated forms of CD8a, namely S53G (teal) or S53N (purple), alongside the KL14 TCR were cocultured with a panel of cell lines lacking or expressing CTAG1. The panel shows mean IFN-y production from each of two donors. **E** Primary CD4<sup>+</sup> T cells expressing CD8αβ containing either wild-type (WT) CD8 $\alpha$  (red) or mutated forms of CD8 $\alpha$ , namely S53G (teal) or S53N (purple), alongside the 1E9 TCR were cocultured with a panel of cell lines lacking or expressing CD20. Cells were quantified after 5 days via flow cytometry (n = 3donors). TCM, T cell medium. Data are shown as mean  $\pm$  SD from duplicate or triplicate measurements per donor.