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Supplementary methods

Plasma biochemistry. For plasmatic biochemistry, blood samples were collected by
intracardiac puncture under anesthesia, plasma was separated and stored at -80°C. Plasma
parameters were measured using Dimension®Xpand Plus (Siemens Healthcare
Diagnostics AG). Liver enzymes were assayed to assess a possible liver damage state.
LDL-cholesterol levels were measured. The biochemical tests were performed according to
the manufacturer kit for each parameter: ALT, AST, LDL (Siemens Healthcare). CRP
concentration was measured using Mouse CRP ELISA Kit (Crystal Chem). Plasma IL-6 and

TNFa were measured with ELISA Kits (Invitrogen).

Urine biochemistry. Urine was collected the day before euthanasia and stored at -80°C.
Creatinine and micro-albumin were measured using AU480 Clinical Chemistry System

(Beckman Coulter) following manufacturer’s protocols.

Liver characterization. Macroscopic pictures of livers were taken after PBS (Gibco)
perfusion. Liver TG levels were measured with TRIGL kit (c111, Cobas, Roche). CHOL
levels were measured with CHOL2 kit (c111, Cobas, Roche). To measure the activity of
mitochondrial complexes in mouse liver, mitochondria were isolated from fresh whole liver
tissue as previously described [1]. Pellets of mitochondrial were quantified for proteins,
equalized and resuspended in MiR05 (Oroboros Instruments). Oxygen consumption rate
(OCR) was assessed by high-resolution respirometry (Oxygraph 2k, Oroboros Instruments)
according to the manufacturer’s protocol. Compounds were added directly into the 2 ml
chamber: pyruvate (5 mM), malate (2 mM), glutamate (10 mM), ADP+Mg?* (1.25 mM) for
complex I; succinate (10 mM) for complex Il; inhibitors for complex | (rotenone 0.5 yuM) and
complex Il (antimycin A, 2.5 uM); all compounds are from Sigma. Mitochondrial content was

measured by the relative mtDNA/nDNA ratio as previously described [2].



Histology. For histological analysis, liver samples were taken from the same lobe of each
animal. 4 ym paraffin sections were processed with standard H&E staining to assess the
general morphology, and Sirius red F3B (SR) or Direct Red + Fast Green FCF as
counterstaining (Sigma) to highlight collagen fibers. Detection of CD45 positive immune cells
was performed with ChromoMap DAB kit (Roche Diagnostics). 8 um cryosections sections
were processed with standard ORO protocol to detect lipids. Images were taken with an
Olympus Slide Scanner VS120 L100 at 40x magnification. Digital slides were analyzed using
QuPath software [3]. Stained liver tissue was quantified taking 4 random 8x fields on each
slide, using 4 slides per experimental group; signal was quantified using ImageJ-Fiji software
[4]. The histopathological assessment was performed in a blinded fashion by a board-

certified veterinary pathologist (DECVP).

RNA-seq. The differentially expressed genes (DEGs) are defined by a Benjamini-Hochberg
adjusted P value lower than 0.05 and an absolute logz[fold change] value higher than 1.
GSEA was performed from fold-change sorted genes using clusterProfiler R package
(version 3.10.1) [5], using gene sets retrieved with the msigdbr R package (version 7.2.1)
[6]-[8]. 11 additional custom gene sets related to HSC were obtained from GO terms
(2000490, 2000491) and literature [9]-[13] (Table S2). The gene sets with absolute
normalized enrichment score (NES) higher than 1 and false discovery rate (qValue) lower

than 0.05 are identified as significantly enriched gene sets.

The gene markers for 29 cell types in liver were retrieved from the supplementary material
of two single cell RNA sequencing (scRNA-seq) studies and calculated using ClusterProfiler

[5], [14], [13].

Cell type deconvolution analysis was performed with the using MuSiC R package (version

0.2.0), with the liver scRNA-seq dataset [16] as a reference. Cell types were summarized



into three categories: endothelial cells (endothelial cell of hepatic sinusoid), hepatocytes and

immune cells (B cell, Kupffer cell, Natural Killer cell).

The effect of increasing severity of NAS and fibrosis stages was measured in two human
NAFLD datasets (GSE135251 [17] and GSE162694 [18]). We compared NAS 4-8 versus
NAS 0-3 and Fibrosis 3-4 versus Fibrosis 0-3 using the limma R package (version 3.38.3)

with sex as a covariate, then performed GSEA using the clusterProfiler package.

RNA extraction, cDNA synthesis, and Real-time PCR. Total RNA was extracted from the
liver using NucleoZOL reagent (Macherey-Nagel). 1ug of total RNA was used for cDNA
synthesis using iScript cDNA synthesis kit (Bio-rad). Real-time qPCR (RT-qPCR) was
performed using IQ SYBR® Green Supermix (Bio-Rad). The gene expression level was

normalized to Gapdh gene. Specific primer pairs are listed in table S3.

Cellular respiration. Cellular respiration was assessed in AML12 cells treated with 50 nM
CHP for 4 hours. Oxygen consumption rate was measured with the Seahorse XF96
instrument (Agilent), according to the manufacturer’s protocol. Compounds were injected in
the wells during measurement to assess basal and maximal respiration: oligomycin (0.1
MM), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, 1 uM), rotenone (1 uM),
antimycin A (1 yM). All compounds are from Sigma. To measure the specific activity of
mitochondrial complexes, cells were permeabilized with 7.5 ug/ml digitonin and standard

protocol from manufacturer (Agilent) was followed.

Western blot. Proteins were extracted in RIPA buffer, and Laemmi buffer was added for
loading. Samples were loaded on 8% acrylamide sodium dodecyl sulfate-polyacrylamide gel
(SDS-PAGE), then proteins were transferred onto polyvinylidene fluoride (PVDF)
membranes (Immobilon-P PVDF Membrane, Millipore). Membranes were blocked with 5%
skim milk-TBST, and incubated with primary antibodies overnight. Secondary antibody

detection reactions were developed by enhanced chemiluminescence (SuperSignal West
5



Pico PLUS Chemiluminescent Substrate, Thermo Scientific) and imaged using the Fusion

FX imaging system (Vilber). Quantification was performed using ImageJ software.

Antibodies. For histology, CD45 antibody (rat a-CD45, Thermo Fisher) was used. For
western blotting, the following primary antibodies were used: phospho-ERK1/2 (rabbit o-
phospho-p44/42 MAPK, Cell signaling), ERK1/2 (rabbit a-p44/42 MAPK, Cell signaling),
Vinculin (rabbit recombinant a-vinculin, Abcam), aSMA (rabbit a-aSMA, Cell signaling),

fibronectin (rabbit a-fibronectin, abcam).

Figures. BioRender was used to draw the animal studies outline (Fig. 1A, 4A, 6A, S5A) and
the graphical abstract. Time-course, boxplots and barplots were created with GraphPad
Prism 9.5.1. ImageJ software was used to prepare the western blotimages. Adobe lllustrator

26.0.1 was used to assemble figure panels.



Supplementary figures
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Fig. S3. Transcriptomic signatures of WD/TN and CHP. (A) Volcano plot showing the
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(cnet) plot showing the core enriched genes in inflammation and extracellular matrix gene
sets for the effect of CHP.
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detection range. n=5-7. One-way ANOVA, followed by Dunnett's multiple comparison test
versus WD group was used for statistical analysis. Error bars in barplots represent the
standard deviation; whiskers in boxplots represent min to max range. P values are indicated
as follows: ** P<0.01; **** P<0.0001. (C) Gene set enrichment analysis of disease (WD) and
treatment (CHP) effects on gene expression, analyzed across three tissues (liver, kidney,
gastrocnemius). Gene sets are grouped in five categories: Inflammation, Fibrosis, Oxidative
damage, Lipid metabolism, ERKs. Q values are indicated as follows: * Q<0.05; ** Q<0.01;

*** Q<0.001.
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Fig. S5. CHP attenuated fibrosis and inflammation in a CCls-induced liver injury
model. (A) Animal study outline. Mice received 9 injections of CCls over 20 days, and were
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treated with CHP daily. Liver and plasma were collected at day 21. (B-C) ALAT (B) and
ASAT (C) plasma levels. Whiskers in boxplots represent the min to max range. (D)
Representative images of liver sections stained with H&E or Sirius Red. n=4-7. One-way
ANOVA, followed by Dunnett’'s multiple comparison test versus CCls group was used for
statistical analysis (B, C). P values are indicated as follows: * P<0.05; ** P<0.01; ****
P<0.0001.
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Supplementary tables

Table S1. Incidence and severity of remarkable histopathological findings in liver of

mice subjected to CCls injections.

CTRL CCls CCls+CHP
Number of animals 2 7 7
HE stain
Hyperplasia, oval cells + 0 7 7
Hypertrophy,
hepatocellular, ++ 0 7 7
centrilobular
Necrosis, hepatocellular, * 0 0 4
centrilobular N 0 0 3
+++ 0 7 0
SR stain
Incregsed stain, + 0 7 0
centrilobular
Grade: + minimal, ++ mild, +++ moderate, ++++ marked
Table S2. 11 custom gene sets related to HSCs.
Gene set Gene Ref.
name
HSC _activation_marker Timp1 doi: 10.1038/s41598-019-39112-6
Spp1
Mmp3
Gasb6
Acta2
Col1a1
Col3a1
Col5a2
S100a6 doi: 10.3390/cells8050503
saa3
Lox doi: 10.1038/s41598-019-39112-6
Lrat
Mfap4 doi: 10.1002/hep.31215
Col1a2
Dpt
HSC_proliferation Egr1 doi: 10.1038/s41598-019-39112-6
Ccnd1
Top2a
Cenpe
Rrm2
Positive_regulation_of HSC_activatio Lep G0:2000491
n_1 Dgat1
Acta2

12



Fgfr1

Pdgfrb

Pdgfb

Rps6ka1

Myocd

Positive_regulation_of HSC_activatio
n_2

cdh11

doi: 10.1371/journal.pone.0233702

cthrc1

fmod

prrx1

mfap4

pcdh15

ptprt

hpca

Negative_regulation_of HSC_activati
on

Gclc

Rian

Cygb

Gsk3b

G0:2000490

Hhip

doi: 10.1371/journal.pone.0233702

Resting_ HSC_marker

Fcna

Angptl6

Colec11

Tmem56

Plvap

Pth1a

MFB1

Acta2

Tagln

Col1a1

Col6a3

Tpm1

MFB2

Slpi

Saa3

c3

dmkn

cd74

MFB3

Jund

Fosb

Egr1

Klf2

MFB4

Mgp

Fbin

Meg3

Gasb

Hp

MFB_1 _TO 4

Acta2

Tagln

Col1a1

Col6a3

doi: 10.3390/cells8050503
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Tpm1
Slpi
Saa3
c3
dmkn
cd74
Jund
Fosb
Egr1
KIf2
Mgp
Fbin
Meg3
Gasb
Hp

Table S3. Primer sets for Real-time PCR

Forward (5'-3) Reverse (5'-3')
Bcl-xL TCTGAATGACCACCTAGAGCC | GCTGCATTGTTCCCGTAGAG
Puma ACCTCAACGCGCAGTACG GTAGGCACCTAGTTGGGCTC
HO-1 TATGCCCCACTCTACTTCCC AGTGAGGCCCATACCAGAAG

Collagen | | GCCTCAGAAGAACTGGTACAT ATCCATCGGTCATGCTCTCT

Collagen Il | AGTCAAGGAGAAAGTGGTCG CCAGGGAAACCCATGACAC

Collagen IV| CGGTACACAGTCAGACCATT CATCACGAAGGAATAGCCGA
PAI-1 GTCTTTCCGACCAAGAGCAG GCCGAACCACAAAGAGAAAG
TGF-B TGATACGCCTGAGTGGCTGTCT [CACAAGAGCAGTGAGCGCTGAA
Gapdh CAGTATGACTCCACCCACGG ATGGGCTTCCCGTTGATGAC
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