Thermocatalytic Decomposition of Methane: A Review on Carbon-Based Catalysts

Iqra R. Hamdani^a, Adeel Ahmad^a, Haleema M. Chulliyil^a, Chandrasekar Srinivasakannan^{a,*}, Ahmed A. Shoaibi^a, Mohammad M. Hossain^b

*Corresponding author. Tel: +971-23123310, Email- srinivasa.chandrasekar@ku.ac.ae

^aDepartment of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates- 127788

^bDepartment of Chemical Engineering, King Fahad University of Petroleum and Minerals,

Dhahran-31261, Kingdom of Saudi Arabia

Table S1. Summary of recent ordered-mesoporous carbons used for methane decomposition studies in the literature.

Catalyst	BET Surface	Temperature, °C	Methane	Hydrogen produced,	Reference
	area, m ² g ⁻¹		conversion	mol. g cat ⁻¹	
CMK-5	1940	1000	NA	0.95	[1]
СМК-3	1323	1000	NA	0.45	[1]
OMC	2154	850	28% to 5%	0.275	[2]
СМК-3	1400	950	NA	1.52	[3]
DUT-19	2420	950	NA	1.27	[3]
Ni/3DOMC	884	850	58% to 50%	NA	[4]

CMK: carbon mesostructured by KAIST

OMC: ordered mesoporous carbon

 $DUT:\mbox{ carbide-derived carbon developed at Dresden University of Technology}$

3DOMC: three dimensionally ordered mesoporous carbon

S.No.	Carbon type	Source	Initial CDM rate per unit mass, K_m (T= 850°C)
			(mmol/min.g)
1.	Activated carbon	Coconut shell, KE	1.76
2.	Activated carbon	Hardwood	2.04
3.	Activated carbon	Lignite	1.77
4.	Activated carbon	Peat	1.63
5.	Activated carbon	Phenol, resin	1.66
6.	Activated carbon	Petroleum coke	1.43
7.	Glassy carbon	-	0.95
8.	Carbon black	Black Pearls 120	0.22
9.	Graphite	Natural	0.02
10.	Fullerene soot	-	1.9

Table S2. Initial CDM conversion rates of carbon obtained from various carbon sources, at 850°C [5].

Table S3. Overview of filamentous carbons produced during the CDM reactions under different reaction conditions.

Table S4. Summary of few studies concerning the catalyst-regeneration techniques and the conclusions.

Catalyst regeneration technique	Catalyst used	Conclusion	Reference

Pulsed or continuous introduction Carbon black, activ		A portion of the original catalyst was also	[11,12]
of oxidizing agents, such as air,	carbon, carbon	gasified besides deposited carbon, rendering	
CO ₂ , and CO ₂ under cyclic	nanofibers	the process insufficient to retain the original	
decomposition of methane		activity of catalyst.	
Deep regeneration by chemical	Activated carbon	More than 30% of spent catalyst could be	[13]
looping combustion (CLC) using		recovered with heat generation that in turn	
H ₂ O and O ₂ as gasifying agents		would assist in methane decomposition.	
Simultaneous dosing of CO2 and	Activated carbon (pine	Efficient regeneration with increased H ₂ yield	[14]
CH ₄ as feedstock	wood biomass derived)	due to the simultaneous processes of carbon	
		deposition, oxidation of deposit,	
		decomposition of its structure by CO ₂ , and	
		partial oxidation of the original catalyst.	
Gasification of spent catalyst with	Activated carbon	Increase in catalyst porosity and methane	[15]
steam and CO ₂ mixture		decomposition rate.	

References:

- D.P. Serrano, J.Á. Botas, P. Pizarro, R. Guil-López, G. Gómez, Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH₄ decomposition, Chemical Communications. (2008) 6585–6587. https://doi.org/10.1039/b811800k.
- [2] H.Y. Wang, A.C. Lua, Hydrogen production by thermocatalytic methane decomposition, Heat Transfer Engineering, 34 (2013) 896–903. https://doi.org/10.1080/01457632.2012.752682.
- [3] V. Shilapuram, N. Ozalp, M. Oschatz, L. Borchardt, S. Kaskel, R. Lachance, Thermogravimetric analysis of activated carbons, ordered mesoporous carbide-derived carbons, and their deactivation kinetics of catalytic methane decomposition, Ind Eng Chem Res. 53 (2014) 1741–1753. https://doi.org/10.1021/ie402195q.
- [4] X. Yang, E. Yang, B. Hu, J. Yan, F. Shangguan, Q. Hao, H. Chen, J. Zhang, X. Ma, Nanofabrication of Ni-incorporated three-dimensional ordered mesoporous carbon for catalytic methane decomposition, J Environ Chem Eng. 10 (2022) 107451. https://doi.org/10.1016/j.jece.2022.107451.
- [5] N. Muradov, F. Smith, A. T-Raissi, Catalytic activity of carbons for methane decomposition reaction, in: Catal Today, 102-103 (2005) 225–233. https://doi.org/10.1016/j.cattod.2005.02.018.
- [6] K.Y. Lin, J.K. Chang, C.Y. Chen, W.T. Tsai, Effects of heat treatment on materials characteristics and hydrogen storage capability of multi-wall carbon nanotubes, Diam Relat Mater. 18 (2009) 553–556. https://doi.org/10.1016/j.diamond.2008.07.018.
- [7] A. Gamal, K. Eid, M.H. El-Naas, D. Kumar, A. Kumar, Catalytic methane decomposition to carbon nanostructures and CO_x-free hydrogen: A mini-review, Nanomaterials. 11 (2021) 1226. https://doi.org/10.3390/nano11051226.
- [8] J. Chen, Y. Li, Y. Ma, Y. Qin, L. Chang, Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions, Carbon. 39 (2001) 1467-1475. https://doi.org/10.1016/S0008-6223(00)00274-8.

- [9] C. Pham-Huu, R. Vieira, B. Louis, A. Carvalho, J. Amadou, T. Dintzer, M.J. Ledoux, About the octopus-like growth mechanism of carbon nanofibers over graphite supported nickel catalyst, J Catal. 240 (2006) 194–202. https://doi.org/10.1016/j.jcat.2006.03.017.
- [10] W. Zhang, L. Gao, M. Zhang, J. Cui, Y. Li, L. Gao, S. Zhang, Methane catalytic cracking to make hydrogen and graphitic nano carbons (nanotubes, microfibers, microballs, onions) with zero emission, Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry. 44 (2014) 1166–1174. https://doi.org/10.1080/15533174.2013.797452.
- [11] J. Zhang, X. Li, H. Chen, M. Qi, G. Zhang, H. Hu, X. Ma, Hydrogen production by catalytic methane decomposition: Carbon materials as catalysts or catalyst supports, Int J Hydrogen Energy. 42 (2017) 19755–19775. https://doi.org/10.1016/j.ijhydene.2017.06.197.
- [12] U.P.M. Ashik, W.M.A. Wan Daud, H.F. Abbas, Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - A review, Renewable and Sustainable Energy Reviews. 44 (2015) 221–256. https://doi.org/10.1016/j.rser.2014.12.025.
- [13] L. Yang, F. Liu, Y. Liu, W. Quan, J. He, Deep regeneration of activated carbon catalyst and autothermal analysis for chemical looping methane thermo-catalytic decomposition process, Int J Hydrogen Energy. 43 (2018) 17633–17642. https://doi.org/10.1016/j.ijhydene.2018.07.202.
- [14] Anna Adamska, Anna malaika, Mieczysław Kozłowski, Carbon-catalyzed decomposition of methane in the presence of carbon dioxide, Energy & Fuels. 24 (2010) 3307–3312.
- [15] N. Muradov, Hydrogen via methane decomposition: an application for decarbonization of fossil fuels, 26 (2001) 1165-1175. https://doi.org/10.1016/S0360-3199(01)00073-8.