1 Supplemental material

2

3 Microbiome data analysis characteristics

4 After quality filtering, 39.6 million sequences were obtained for subsequent analysis 5 from 56 million paired-end raw reads with an average of 0.19-3.5 million reads per sample. The rarefaction plots for the number of observed species, phylogenetic 6 7 diversity. Shannon and Chao Indices reached a plateau for all the samples rarified for 0.12 million sequences per sample (Supplementary Figure 1a). This plot indicates 8 9 sufficient sequencing depth to cover the maximum microbiome diversity, richness, and 10 observed species in each sample for further analysis (1, 2). A total of 21852 OTUs at 11 the 97% sequence similarity were obtained, with 13,650 OTUs in pre-cancer 19502 in cancer and 7207 in the adjacent tumor group. The oral microbiome of the study was 12 13 assigned to a total of 51 phyla and 1055 genera, of which the core microbiome that 14 signifies taxa with the average relative abundance of equal to or more than 1% in any 15 group was identified at each of the hierarchical levels as follows (a) Phyla: 10 out of 51 16 (b) Genera: 50 out of 1055 (c) Species: 19 out of 67 identified from 10 genera having a relative abundance of more than 5%. The predominant phyla (top 5) belonged to 17 18 Firmicutes (30.5%), Proteobacteria (27.3%), Bacteroidetes (12.8%) Fusobacteria 19 (6.2%) and Actinobacteria (5.2%) while predominant genera (top 5) were (6.4%), unidentified 20 Streptococcus (10.3%)Capnocytophaga genera of 21 Enterobacteriaceae (5.4%), Neisseria (3.3%) and Leptotrichia (3.2%) in all samples 22 combined (Supplementary table 1).

Mukherjee S, Mitra R, Maitra A, Gupta S, Kumaran S, Chakrabortty A, Majumder PP.
2016. Sebum and Hydration Levels in Specific Regions of Human Face Significantly
Predict the Nature and Diversity of Facial Skin Microbiome. Sci Rep 6:36062.
Willis AD. 2019. Rarefaction, Alpha Diversity, and Statistics. Front Microbiol 10:2407.
28

31 Supplemental figures:

36 set by four measures: Chao1, observed species, PD whole tree and Shannon indices. Bacterial alpha 37 diversity indices among tumor tissue and adjacent tumor tissue samples measured by (B) Chao1 and 38 (C) Shannon diversity indices. Statistical analysis was done by t-test, Mann-Whitney test. Bacterial beta 39 diversity indices between tumor tissue and adjacent tumor tissue samples measured by (D) unweighted 40 UniFrac distance (E) weighted UniFrac distance.

- 41
- 42
- 43 44
- •
- 45
- 46
- 47
- 48
- 49

52	Supplemental figure 2: (A) Relative and differential abundances of core bacterial phyla among early
53	(T1 and T2) and late stages (T3 and T4) of cancer groups. (B) Relative and differential abundances of
54	core bacterial phyla among adjacent tumor tissue and tumor tissues. (C) Relative and differential
55	abundances of core bacterial phyla among adjacent tumor tissue and pre-cancer stage. (D) Relative
56	and differential abundances of bacteria at family level among pre-cancer and cancer groups. Differential
57	abundance analysis was done by LEfSe and represented through LDA plot.
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	

Supplemental figure 3: Differential abundances of core bacterial genera among (A) adjacent tumor tissue (AT) and tumor tissues (TT). (B) pre-cancer and adjacent tumor tissue. Differential abundances of bacteria at species level among adjacent tumor tissue (AT) and (C) tumor tissue (TT) (D) and precancer groups. (E) Differential abundances of bacteria at species level between early (T1and T2) and late cancer stage (T3 and T4) groups. Differential abundance analysis was done by LEfSe and represented through LDA plot.

- _

96	Supplemental figure 4: Co-occurrence analysis. Co-occurrence analysis of top 30 bacterial genera
97	in (A) pre-cancer and (B) cancer groups with Pearson's correlation analysis presented through network
98	analysis. Black line: positive interaction; red dotted line: negative interaction.

- -

Supplemental figure 5: Relative expression of cytokine genes and T cell associated genes in pre-119 cancer and cancer group (A) *IL10* (B) *IL1* β (C) *IFN* γ (D) *T-bet* (T_H1) (E) *FoxP3* (Treg) (F) *ROR* γ *T* (T_H17) 120 (G) *GATA3* (T_H2). n=10 (Pre-cancer group); n=40 (Cancer group). Statistical analysis was done t-test 121 followed by Mann-Whitney test. PC: pre-cancer, TT-tumor tissue

Supplemental table 2: Dominant species having more than 2% of relative abundance.

Species	Relative abundances
Rothiamucilaginosa	6.169
Capnocytophaga_granulosa	3.464
Capnocytophaga_leadbetteri	7.468
Capnocytophagaochracea	2.476
Capnocytophagasputigena	5.868
Exiguobacterium_aurantiacum	2.568
Streptococcus_dysgalactiae	2.992
Streptococcusperiodonticum	21.652
Fusobacterium_nucleatum	7.040
Brevundimonasdiminuta	5.058
Neisseriamucosa	4.865
Neisseriasubflava	3.158
Haemophilusparainfluenzae	5.236
Treponemamedium	3.525
Akkermansiamuciniphila	3.672

- **Supplemental table 3:** Summary of the area under ROC curve (AUC) indices using
- 155 differential genus in precancer and cancer samples.

	Predictive Genus	AUC	95% CI	P value
	Streptococcus	0.7874	0.6501 - 0.9246	0.0006
	Rothia	0.7529	0.6267 - 0.8791	0.0027
	Capnocytophaga	0.8103	0.6964 - 0.9243	0.0002
	Treponema	0.7092	0.5758 - 0.8425	0.0130
	Leptotrichia	0.6782	0.5260 - 0.8303	0.0343
157	95% CI;95% confidence i	nterval		
158				
159				
160				
161				
162				
163				
164				
165				
166				
167				
168				
169				

172 Supplemental table 4 -Significantly correlated TILs with most abundant genera

173 of tumour microenvironment.

174

Tumour infiltrating	Genus	Pearson	P value
lymphocytes		correlation	
		coefficient (r)	
CD19	Porphyromonas	0.5847	0.0043
	Streptococcus	0.4902	0.0205
	Oscillospira	0.4607	0.031
	Aggregatibacter	0.4717	0.0267
CD 4	Brevundimonas	0.4939	0.0372
CD 4 Naive	Rothia	0.6261	0.0294
	Porphyromonas	0.8424	0.0006
	Prevotella	0.5869	0.0449
	Gemellaceae;g	0.833	0.0008
	Streptococcus	0.6721	0.0167
	Oscillospira	0.6423	0.0243
	Aggregatibacter	0.6193	0.0318
CD 4 CM	Porphyromonas	0.7811	0.0027
	Prevotella	0.7172	0.0087
	Gemellaceae;g	0.62	0.0315
	Oscillospira	0.5767	0.0496
CD 4 TEMRA	Fusobacterium	0.8277	0.0009
	Leptotrichia	0.7631	0.0039
	Capnocytophaga	0.7192	0.0084
	cBD1-5;o	0.9427	<0.0001
CD 4 EM	Porphyromonas	-0.6775	0.0155
	Prevotella	-0.647	0.023

	Exiguobacterium	0.6118	0.0345
	Gemellaceae;g	-0.6679	0.0176
	Fusobacterium	-0.6682	0.0175
	Campylobacter	-0.8084	0.0015
CD 8 Naïve	Porphyromonas	0.7569	0.0044
	F_Gemellaceae;g	0.8362	0.0007
	Gemella	0.6605	0.0194
	Streptococcus	0.8303	0.0008
CD 8CM	Campylobacter	0.5851	0.0457
CD 8 TEMRA	Pedobacter	0.6351	0.0265
	Leptotrichia	-0.58	0.0481
	Capnocytophaga	-0.5694	0.0533
CD 8 EM	Porphyromonas	-0.6252	0.0297
	F_Gemellaceae;g	-0.6108	0.0349
	Gemella	-0.6287	0.0285
	Streptococcus	-0.7388	0.0061
1		1	1

175 CM; Central memory: EM; Effector memory: TEMRA: Effector memory cell re-expressing CD45RA

177 Tumour-infiltrating lymphocytes percentage value of flow cytometry data were correlated with relative

abundances of intra-tumoral bacteria at genus level with Pearson's correlation parameter. Values with

179 Pearson's co-relation coefficient (r) >0.5 and p value <0.05 are shown in the table.

- -

191 Supplemental Table 5- List of antibodies used in flowcytometry and IHC.

Antibody	Clone	Sources
CD 19-FITC	HIB19	BD Biosciences
CD 3-PERCP	SK7	BD Biosciences
CD 4-FITC	RPA-T4	BD Biosciences
CD 8-PE	RPA-T8	BD Biosciences
CD 45RA-APC	HI100	BD Biosciences
CD 45RO-APC H7	UCHL1	eBioscience
CCR7- PE-Cyanine7	3D12	eBioscience
CD24-PE	ML5	BD Biosciences
CD27-PECY7	M-T271	BD Biosciences
CD38-APC	HIT2	BD Biosciences
CD20cy	L26	Dako
CD3	-	Dako
IgA	-	Dako

203

209

211 212

217

220 221

223 224

229 Supplemental Table 6 - Primers used for RT- qPCR.

Gene name	Primer sequence
IL-1β	CGCCAATGACTCAGAGGAAG
	AGGGCGTCATTCAGGATCAA
IL 6	GTAGCCGCCCCACACAGACAGCC
	GCCATCTTTGGAAGGTTC
ΙΕΝγ	TCAGCTCTGCATCGTTTTGG
	GTTCCATTATCCGCTACATCTGAA
ΤΝϜα	TCTTCTCGAACCCCGAGTGA
	CCTCTGATGGCACCACCAG
IL 10	GTGATGCCCCAAGCTGAGA
	CACGGCCTTGCTCTTGTTTT
TGF-β	CAGCAACAATTCCTGGCGATA
	AAGGCGAAAGCCCTCAATTT
T-bet	CCCCTTGGTGTGGACTGAGA
	ACGCGCCTCCTCTTAGAGTC
GATA-3	GTCCTCCCTGAGCCACATCT
	GTGGTCCAAAGGACAGGCTG
RORγ t	CGCTCCAACATCTTCTCC
	CTAACCAGCACCACTTCC
Foxp3	CAGCCATGATCAGCCTCACA
	GCACTGGGATTTGGGAAGGT
GAPDH	CCTGCACCACCACTGCTTA
	GGUCATCCACAGICITCIGAG