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Supplemental Methods 

 

Smooth Muscle Cell Culture and Gene Expression 

Smooth muscle cell (SMC) gene expression dataset and donor characteristics have been 

described in detail elsewhere59. Briefly, we cultured aortic SMCs isolated from 6, 12, 64, and 

69individuals with East Asian, African, Admixed American, and European ancestries in 

complete media (containing 5% FBS) until 90% confluence. We then switched to either serum-

free media for 24 hours to mimic the quiescent state of SMCs or continued to culture in complete 

media to mimic the proliferative state of SMCs65. Total RNA was extracted using the RNeasy 

Micro Kit (Qiagen) and the RNase-free DNase Set. RNA integrity scores for all samples, as 

measured by the Agilent TapeStation, were greater than 9, indicating high-quality RNA 

preparations. Sequencing libraries were prepared with the Illumina TruSeq Stranded mRNA 

Library Prep Kit and were sequenced to ∼100 million read depth with 150 bp paired-end reads at 

the Psomogen sequencing facility.  We trimmed the reads with low average Phred scores (<20) 

using Trim Galore66 and mapped the reads to the hg38 version of the human reference genome 

using the STAR Aligner67. We quantified gene expression by calculating the transcripts per 

million (TPM) for each gene using RNA-SeQC based on GENCODE v32 transcript annotations. 

In addition to protein-coding RNAs, we also measured the non-coding RNA since they have 

been shown to play significant roles in SMC biology68. We considered a gene as expressed if it 

had more than 6 read counts and 0.1 TPM in at least 20% of the samples. RNAseq data is 

available from GEO with the accession number GSE193817. 

  

Gene set enrichment analysis 

We performed Gene Set Enrichment Analysis (GSEA) on all 11,330 expressed genes shared 

between the quiescent and proliferative conditions using GSEA software version 4.1 and 

predefined gene sets from the Molecular Signatures Database version 7.517,69, using only the 

11,330 input genes as the background. A gene set is a group of genes that shares pathways, 

functions, chromosomal location, or other features. For the present study, we used the C5 

ontology gene sets including Gene Ontology (GO) Biological Process and Molecular Function 

sets. GSEA ranks all of the genes in the dataset based on mean value differences and calculates 

gene set significance using an enrichment score defined as the maximum distance from the 

middle of the ranked list. The enrichment score indicates whether the genes contained in a gene 

set are clustered towards the beginning or the end of the ranked list. We used a False Discovery 

Rate (FDR) of 0.05 to signify enrichment, but included all pathways with an FDR ≤ 0.25 in 

Supplemental Table II comparing different pathway enrichment techniques. 

 

Differential gene expression and functional enrichment analysis 

We included genes with > 6 reads in at least 80% of the samples for both conditions for 

differential expression analysis using DESeq216. Genes were differentially expressed between 

proliferative and quiescent conditions when Padj < 1x10-3 and log2(fold-change)>0.5. To 



characterize the functional consequences of gene expression changes associated with 

proliferative and quiescent conditions, we performed gene set enrichment analysis on 

differentially expressed genes using Gene Ontology (GO) Biological Process and Molecular 

Function gene sets18,19 with the anRichment R package70. We used an FDR of 0.05 to signify 

enrichment, but included all pathways with an FDR ≤ 0.25 in Supplemental Table II comparing 

different pathway enrichment techniques. 

 

Weighted Gene Co-expression Network Analysis 

A gene module is a cluster of densely interconnected genes in terms of co-expression. We used 

Iterative Weighted Gene Co-expression Network Analysis (iterativeWGCNA)10, which uses 

hierarchical clustering and an adjacency matrix, to identify gene modules. The adjacency matrix 

is defined as the similarity between the i-th gene and j-th gene based on the absolute value of the 

Pearson correlation coefficient between the profiles of genes i and j. Soft-thresholding powers 

are applied to the adjacency matrix in order to reduce the noise of correlations and create a 

network that resembles a scale-free graph representative of biological systems12,13. Scale-free 

graphs are characterized by a power-law distribution where few hub nodes exist and new nodes 

prefer to connect with existing nodes. Too low of a soft-threshold power may lead to high 

correlation among large groups of genes in a dataset invalidating the assumption of the scale-free 

topology approximation14. Conversely, if too high of a soft-threshold power is used, hub nodes 

that are present under the assumption of scale-free topology may lose connectivity and diminish 

biologically relevant co-expression networks. Therefore, following WGCNA9 recommendations, 

we chose the lowest soft-thresholding power that generates a node connectivity distribution 

representative of scale-free topology14. IterativeWGCNA follows the same principles as 

WGCNA but re-runs WGCNA iteratively to prune poorly fitting genes resulting in more refined 

modules compared to WGCNA. Genes that are not assigned to any of the modules are designated 

to the grey module. Because these genes are not co-expressed, we did not consider them in our 

analyses.  

 

Network preservation analysis 

We performed preservation analysis on modules constructed using iterativeWGCNA to study 

their changes across the two cell culture conditions. To determine whether a pathway of genes is 

perturbed between the proliferative and quiescent conditions, we studied modules whose 

connectivity patterns are not preserved between conditions as demonstrated by their module 

preservation statistics. For this analysis we used the summary statistic, medianRank, 

implemented in the WGCNA R package as a composite module preservation statistic15. 

medianRank is a rank-based measure that relies on observed preservation statistics. medianRank 

is calculated as the mean of medianRank.density and medianRank.connectivity. Density is the 

mean adjacency (connection strength) across all nodes in the network. Connectivity is the sum of 

connection strengths with the other network nodes. To calculate medianRank.density and 

medianRank.connectivity,  for each statistic in the reference network, we ranked modules in 



the test network based on the observed values 𝑜𝑏𝑠𝑎
𝑞
. Thus, each module is assigned a rank 𝑟𝑎𝑛𝑘𝑎

𝑞
 

or each observed statistic. The median density and connectivity ranks are then calculated for 

each module, q, in the test network. The test and reference networks were then flipped to 

calculate preservation for each condition in the other. A module with a lower medianRank 

exhibits stronger observed preservation statistics than a module with a higher median rank. We 

identified the least preserved modules by defining the modules scoring in the bottom 20th 

percentile of preservation (modules with the highest medianRank score). 

 

Coronary Artery Disease-associated gene sets 

Genome-wide association studies (GWAS) alone are unable to identify the causal gene at a 

locus71; consequently, there are oftentimes several genes that are potentially causal at a given 

loci. Many fine-mapping and gene prioritization strategies have been created to try and 

determine causal genes, but the majority of these loci only have predicted causal genes. In order 

to capture all genes potentially involved in CAD, we used two different curated gene sets based 

on the 175 genomic loci associated with coronary artery disease (CAD) risk through GWAS72. 

The CAD Candidate gene set includes 2051 genes representing all genes in and near the 175 

CAD GWAS loci. The CAD Prioritized gene set contains 175 genes predicted to be causal at 

each genome-wide significant loci based on functional annotation, such as genomic location, 

biological pathway interpretation, literature reviews, and DEPICT gene prioritization73. Our 

dataset included 956 genes from the CAD Candidate gene set and 104 genes from the CAD 

Prioritized gene set. 

 

Pathway enrichment of co-expression modules 

To interpret the biological significance of the co-expression modules in the top 20% percentile 

and the bottom 20% percentile of preservation, we performed enrichment analysis using GO 

Biological Process and Molecular Function gene sets with the anRichment R package. We used 

an FDR cutoff of 0.05 to signify enrichment, but included all pathways with an FDR ≤ 0.25 in 

Supplemental Table II comparing different pathway enrichment techniques. 

 

Bayesian Network Construction 

Bayesian networks are directed acyclic graphs in which the edges of the graph are defined by 

conditional probabilities that characterize the distribution of states of each node given the state of 

its parents74. The joint probability distribution 𝑝(𝑋) on a set of nodes 𝑋 is represented by 𝑝(𝑋) =

 ∏ 𝑝(𝑋𝑖|𝑃𝑎(𝑋𝑖))𝑖 , where 𝑃𝑎(𝑋𝑖) represents the parent set of 𝑋𝑖. In reconstructing Bayesian 

networks of gene expression data, each node represents a quantitative trait which is the 

expression level of a gene. We used expression levels of genes identified in co-expression 

modules as input into the Reconstructing Integrative Molecular Bayesian Networks (RIMBANet) 

algorithm33,75,76. The RIMBANet shell script77 was adapted for implementation on University of 

Virginia’s computing cluster triggering the parameters below: 

 



-d discretized gene expression data 

-b RIMBANet Bayesian network program path 

-o output directory for Bayesian network 

-e cis eQTL data file; EMPTY 

-C use continuous data to update prior; TRUE 

-w continuous gene expression data 

 

Continuous expression data was used for calculating partial priors, which are then used as priors 

in the network construction78. Since we cannot give prior probability to every acyclic digraph, 

the continuous data generates a connectivity matrix that assesses some degree of believe over the 

dependency between two variables79. Discretized gene expression data was used for Bayesian 

network reconstruction. The data was discretized into three states for each gene: high expression 

levels, medium expression levels, and low expression levels (including unexpressed). 

Discretization allows for both linear and non-linear interactions to be captured and is 

computationally more efficient than using continuous data33. 

 

For each Bayesian network we reconstructed 1,000 Bayesian networks starting with 1,000 

different randomly generated seeds. Markov chain Monte Carlo simulations are employed to 

identify thousands of different plausible networks. Small random changes are made to each 

network by flipping, adding, or deleting individual edges, ultimately accepting those changes 

that lead to an overall improvement in the fit of the network to the data, represented by the 

Bayesian Information Criterion80. Edges that appeared in greater than 30% of the networks were 

used to define a consensus network. Edges that were involved in loops were then removed from 

the consensus network. 

 

RIMBANet performs well within large datasets (Node > 50) resulting in high true positive rates 

and precision, but other BN reconstruction methods have been shown to perform better for 

networks with smaller sets of nodes81. For networks less than 50 nodes, we implemented the 

bnlearn52 R package to validate network predictions from RIMBANet. We utilized a constraint-

based algorithm, incremental association (IAMB), that learns the network structure by analyzing 

the probabilistic relations entailed by the Markov property of Bayesian networks using the same 

gene expression data from genes identified in co-expression modules used as input into 

RIMBANet. The IAMB algorithm was performed using an optimized implementation (default 

settings) that uses backtracking to roughly halve the number of independence tests.  

 

 

Key Driver Analysis 

To identify key regulators for a given regulatory network, we performed key driver analysis 

(KDA)34, which takes as input a set of genes (G) and a directed gene network (N). KDA first 

generates a sub-network N_G, defined as the set of nodes in N that are no more than h-layers 



away from the nodes in G. We first computed the size of the h-layer neighborhood (HLN) for 

each node in the reconstructed BN. For the given network N, μ was defined as the average size of 

the HLN. A score was added for a specific node if the HLN was greater than μ + 𝜎(μ). Total key 

driver scores for each node were then defined as the summation of all scores at each h-layer 

scaled according to h.  

 

Pathway visualization of differentially expressed genes 

We used the Pathview R package82 to visualize genes differentially expressed between quiescent 

and proliferative VSMCs for the KEGG pathways of Nitrogen Metabolism and 

Glycolysis/Gluconeogenesis43,44. Genes present in both our RNAseq dataset and KEGG 

pathways are visualized as colored rectangular nodes. Green nodes represent downregulated 

genes and red nodes represent upregulated genes in the proliferative condition based off of 

log2foldchange between the two conditions. Grey nodes represent genes that were not 

differentially expressed.  

 

Hypergraph Models 

We used the HyperG R package to create hypergraphs that visually represent the biological 

pathway differences between two BNs. First, we identified enriched GO terms (FDR ≤ 0.05) 

within each BN using PANTHER version 1483. In the hypergraphs, each of the associated GO 

terms are represented by a numbered node. The size of the node directly relates to the number of 

genes in the BN that are also a member of a specific GO term. Edges that encompass nodes 

represent the genes present in enriched GO terms. If multiple edges surround a node, all genes 

assigned to those edges are a part of the GO term. A floating node means there was no 

enrichment for the associated GO term in that BN. Edges and gene labels are color coordinated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Supplemental Figures and Figure Legends 

 

 
 

 

 

Supplemental Figure I: Determination of soft-thresholding power in Weighted Gene Co-

expression Network Analysis. The scale-free fit index (y-axis) as a function of the soft 

thresholding power (x-axis) for gene expression of (A) quiescent and (B) proliferative smooth 

muscle cells. An R2 value of 0.8 was used as the cutoff corresponding to scale-free topology.  

 

 

 

 

 

 



 

Supplemental Figure II: Overlap table of genes shared in modules across quiescent and 

proliferative conditions. Cross tabulation of quiescent modules (rows) and proliferative modules 

(columns). Each row and column is labeled by the corresponding module color and the total 

number of genes in the intersection of the corresponding row and column module. The table is 

color-coded by the Fisher exact test p-value of the overlap of gene module membership (-log(p)), 

according to the color legend on the right. 

 

 



 

Supplemental Figure III: Representation of genes in the least preserved modules. A Venn 

diagram of the genes contained in the 18 least preserved modules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Supplemental Figure IV: Pathway visualization of differentially expressed genes between 

quiescent and proliferative VSMCs in the Nitrogen Metabolism KEGG pathway. Rectangular 

nodes represent protein coding genes. Red nodes signify genes upregulated in proliferative 

VSMCs, and green nodes signify genes downregulated in proliferative VSMCs. Grey nodes 

represent genes not differentially expressed. 

 

 

 

 



 

 

 

 

 

 

 

 

Supplemental Figure V: Correlations between nitrogen-related genes and CAD-associated 

genes in quiescent VSMC gene expression. Heatmap of Pearson correlations (r) between 69 

CAD candidate genes in the Q1, Q4, Q6, Q13, and Q38 modules and 8 genes in the KEGG 

Nitrogen Metabolism pathway. Asterisk marks denote genes in the KEGG Nitrogen Metabolism 

pathway with at least one correlation (r) ≥ |0.3| at a Bonferroni corrected p-value ≤ 5 x10-5. 



 

Supplemental Figure VI: Pathway visualization of differentially expressed genes between 

quiescent and proliferative VSMCs in the Glycolysis/Gluconeogenesis KEGG pathway. 

Rectangular nodes represent protein coding genes. Red nodes signify genes upregulated in 

proliferative VSMCs, and green nodes signify genes downregulated in proliferative VSMCs. 

Grey nodes represent genes not differentially expressed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure VII: Bayesian networks of genes in the (A) Q23 module and (B) P17 

module generated using the bnlearn R package. 
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