Cell Genomics

Accurate microRNA annotation of animal genomes
using trained covariance models of curated
microRNA complements in MirMachine

Graphical abstract Authors

Sinan Ugur Umu, Vanessa M. Paynter,

° ° Havard Trondsen, Tilo Buschmann,
M I rM d C h I n e Trine B. Rounge, Kevin J. Peterson,
Bastian Fromm

alignments for each family | covariance models (CM) for each family

sequence conservation

Correspondence
bastian.fromm@uit.no

MOZiESRIm | I orief
, JC By building and training covariance
models from ~16,000 manually curated

L

structure conservation

train models with bitscore cutoff %Ba

bf

16667 microRNA genes i ' microRNA genes, Umu et al. developed
1549 microRNA families 1 Wm . .
75 metazoan species | 8 W H'EL" the microRNA annotation tool
) 'i i ! ; MirMachine. MirMachine can accurately
125 phylogenetic nodes | 0 £ 1 ] R L K
N i . annotate conserved microRNA
i F e .
’ ) . complements directly from hundreds of
annotation of conserved microRNA complements from genomes ’ genomes. This tlmely development opens
-search for CMs of each microRNA family in user defined genomes E the field of Comparative regulatory
-taxonomy-informed restriction on range of microRNA CM search il . . . h losi f
Q -optional bitscore-based filtering of results R ,' Y genomlcs tapplng into the exp osion O
-gff, fasta outputs of search results / microRNA complements b NS X genome seq Uencing efforts.

Highlights
e An annotation pipeline using trained covariance models of
microRNA families

e Enables massive parallel annotation of microRNA
complements of genomes

e MirMachine creates meaningful annotations for very large
and extinct genomes

e microRNA score to assess genome assembly completeness

Umu et al., 2023, Cell Genomics 3, 100348
August 9, 2023 © 2023 The Author(s).
https://doi.org/10.1016/j.xgen.2023.100348 Co CellP’ress



mailto:bastian.fromm@uit.no
https://doi.org/10.1016/j.xgen.2023.100348
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xgen.2023.100348&domain=pdf

Cell Genomics

¢? CellPress

OPEN ACCESS

Accurate microRNA annotation of animal genomes
using trained covariance models
of curated microRNA complements in MirMachine

Sinan Ugur Umu,’ Vanessa M. Paynter,? Havard Trondsen,’ Tilo Buschmann,® Trine B. Rounge,*° Kevin J. Peterson,®

and Bastian Fromm?27-*

'Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
2The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsa, Norway

3Independent researcher, Leipzig, Germany

4Department of Research, Cancer Registry of Norway, Oslo, Norway

5Centre for Bioinformatics, Department of Pharmacy, University of Oslo, Oslo, Norway
SDepartment of Biological Sciences, Dartmouth College, Hanover, NH, USA

“Lead contact
*Correspondence: bastian.fromm®@uit.no
https://doi.org/10.1016/j.xgen.2023.100348

SUMMARY

The annotation of microRNAs depends on the availability of transcriptomics data and expert knowledge. This
has led to a gap between the availability of novel genomes and high-quality microRNA complements. Using
>16,000 microRNAs from the manually curated microRNA gene database MirGeneDB, we generated trained
covariance models for all conserved microRNA families. These models are available in our tool MirMachine,
which annotates conserved microRNAs within genomes. We successfully applied MirMachine to a range of
animal species, including those with large genomes and genome duplications and extinct species, where
small RNA sequencing is hard to achieve. We further describe a microRNA score of expected microRNAs
that can be used to assess the completeness of genome assemblies. MirMachine closes a long-persisting
gap in the microRNA field by facilitating automated genome annotation pipelines and deeper studies into
the evolution of genome regulation, even in extinct organisms.

INTRODUCTION

MicroRNAs are among the most conserved regulatory elements in
animal genomes and have crucial roles in development and dis-
ease."” They have been proposed as disease biomarkers,®®
phylogenetic markers for studying animal systematics,®” and for
understanding the evolution of complexity in metazoans.®®
Currently, however, the annotation and naming of bona fide micro-
RNA complements requires assembled genome references, small
RNA sequencing (small RNA-seq) data from different tissues and
developmental stages and substantial hands-on curation of the
outputs from microRNA prediction tools.'®"'? These tools were
not designed to handle the amount of sequencing data or genome
assembly sizes available today and often have high false-positive
rates. Thus, annotating microRNAs is a tedious process that re-
quires years of training as well as extensive computational re-
sources and experience and substantial amounts of time.'® In
the case of larger projects that are not focused on microRNAs,
those without the appropriate background might annotate them
along with other coding and non-coding genes without the
required level of attention to detail. Such efforts suffer from biolog-
ically meaningless microRNA results, '~ for instance when using
a non-bona fide microRNA from mouse as a template for the
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search for partially homologous sequences with supposed
biomarker potential in human,’®'® when conducting sequence
motif predictions on a subset of supposed microRNAs that include
other RNA fragments,'® or when interpreting the functions of a
small nucleolar RNA (snoRNA) in the light of microRNA biology,?°
as well as thousands of spurious microRNA annotations.”’*
These shortcomings coupled with the availability of high-quality
and publicly available microRNA annotations suited for compara-
tive genomics studies have led to the construction of the curated
microRNA gene database MirGeneDB.'+2%2¢

MirGeneDB v.2.1 (2022) now contains microRNA comple-
ments for 75 metazoan species spanning all major metazoan
phyla representing over ~850 million years of animal evolution.?®
Since each gene and family was manually curated in all species
in MirGeneDB, highly accurate alignments that capture a high
proportion of the sequence variability for each family are avail-
able across animal evolution. Importantly, each microRNA
gene and family is associated with a detailed phylogenetic
reconstruction of the evolutionary node of origin and estimated
age. This dataset, hence, represents a starting point to better un-
derstand features of microRNAs®’ and to generate better tools
for the prediction of microRNAs. Despite MirGeneDB curating
a relatively large number of phyla, the number of species
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Available metazoan genome assemblies over time
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Figure 1. The number of available animal
genome assemblies grows exponentially
and, with more than 5,250 currently (as of

December 31, 2022) available datasets, has
dramatically grown

Taking advantage of the manually
curated and evolutionarily informed micro-
RNA complements of 75 metazoan organ-
isms in MirGeneDB 2.1,°° we built and
trained high-quality CMs for 508
conserved microRNA families and inte-
grated them into a fully automated pipeline
for microRNA annotation: MirMachine.
MirMachine produces highly accurate mi-
croRNA annotations in a time-efficient
manner from animal genomes of all clas-
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currently covered (75 species) is a far cry from the thousands of
high-quality animal genomes currently available®® (Figure 1).

Very few of these species have been annotated for microRNAs
or have had small RNA-seq data published; thus, comparatively
little progress has been made on the suggested microRNA appli-
cations (but see Wheeler et al.,'” Fromm et al.,?® Peterson et al.,*°
and Zolotarov et al.*" for examples generated with manual cura-
tion). This discrepancy persists because no reliable in silico
method currently exists to annotate conserved or species-spe-
cific microRNA complements solely from genomic references.
Previously, “lift-over” approaches based on whole-genome
alignments in model organisms have been used to identify micro-
RNA loci across species,®**° but it is unclear how accurate these
predictions are on the level of the full microRNA complement or
how they computationally scale with size or number of aligned
genomes in, for instance, mammals. Despite the availability of
computational methods for the search of short RNAs such as mi-
croRNAs®* and sophisticated machine-learning-based tools for
non-coding RNA applications,®® there is currently no approach
satisfying the demands of high precision, low false discovery
rates, and minimized computational demand in a fully automated
and user-friendly pipeline.*® It is a widely acknowledged problem
for machine-learning applications in genomics, and in general,
that existing tools are based on incomplete models.*”-*® This is
the case for microRNA families from miRBase.*® Such models,
including covariance models (CMs) of individual RNA classes,
families, or genes, as used to group all RNA families in the
Rfam database,* are technically quite accurate in detection of
many non-coding RNA families.”® However, these probabilistic
models that flexibly describe the secondary structure and pri-
mary sequence consensus of an RNA sequence family require
high-quality alignments from curated RNAs, ideally coupled
with detailed evolutionary information to distinguish families
and genes over evolutionary time. This information, until recently,
did not exist for microRNAs.
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ses, including those with very large and
recently duplicated genomes, as well as
from genomes of extinct species. Using
88 eutherian genomes as an example, we
show that MirMachine predictions can be summarized in a micro-
RNA score that can be used to assess low contiguity or complete-
ness of genome assemblies. MirMachine is freely available
(10.5281/zen0do.7897616, https://github.com/sinanugur/
MirMachine) and has also been implemented as a user-friendly
web application (www.mirmachine.org).

RESULTS

Accurate CMs of 508 conserved microRNA families
16,670 microRNA precursor sequences from 75 species were
downloaded from MirGeneDB, and all variants from the same
genes, antisense loci, and species-specific microRNAs (i.e.,
not conserved in any other species) were removed, resulting in
a total of 14,953 genes representing 508 families (Figure 2A).

All microRNA genes for each family were aligned, and CMs
were built using all species, which are referred to as combined
models. However, given the evolutionary microRNA family defi-
nition used by MirGeneDB, microRNA families can include
nucleotide differences in mature and seed that are captured
and summarized in the models. Thus, to get a finer resolution
of our models, we then split deuterostome (N = 42) and proto-
stome (N = 29) representatives and repeated the process to
arrive at 388 microRNA family models for deuterostomes and
143 microRNA family models for protostomes. Depending on
the age of a given microRNA family, the number of species
that shared the family, the number of existing paralogs, and
the degree of conservation between orthologs and paralogs,
these models contain between very few and many hundreds of
individual sequences (see Figure S1 for representative
examples).

Using our workflow (see STAR Methods), CMs were subse-
quently trained on the full MirGeneDB dataset to derive optimal
cutoffs for their prediction. We used the models on all
MirGeneDB species comparing the predictions with the actual
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Figure 2. Developing MirMachine covariance models (CMs)
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(A) The MirMachine workflow uses microRNA family-based precursor sequence alignments and structural information to build CMs that (B) show very good
overall prediction performances when models are run on (C) 75 MirGeneDB species using distinct models for protostomes (yellow) and deuterostomes (green) or
combined models (not shown). Silhouette in (B) depicts the turtle Chrysemys picta bellii, in (C) human (top) representing deuterostomes and Drosophila rep-

resenting protostomes.

complements. We obtained an overall very high mean prediction
accuracy of 0.975 (Matthews correlation coefficient [MCC]) for
combined models, 0.975 for deuterostomes, and 0.966 for pro-
tostome models (Figures 2B, left, and 2C). Two microRNA fam-
ilies, MIR-430 and MIR-1677 from the deuterostome models,
showed substantially lower MCC scores due to a well-known
variability within the MIR-430 family*'=*® and a combination of
a low level of complexity and high variation between orthologs
in the Diapsida-specific MIR-1677 (Figure S2).

Conversely, we observe high mean species accuracies of 0.91
for combined models, 0.92 for deuterostomes and 0.92 for the
protostome models (Figure 2B, right). We found that the turtle
(Chrysemys picta bellii) has a low MCC due to the identification
of nearly 2,000 likely artifactual hits for MIR-1677.

MirMachine CMs are largely independent of any single
species

To identify potential effects from circular logic of predicting mi-
croRNAs of a species that were included to build the query
models, we retrained all models for deuterostomes without
including human and all protostome models without including
the polychaete Capitella teleta. Those were chosen because of
their relatively complete microRNA complements relative to their
respective phylogenetic nodes and given the fact that neither
has a sister species in our database (unlike, e.g., Drosophila or
Caenorhabditis), which would have heavily biased microRNA re-
covery. We then used the new deuterostome and protostome
CMs to predict microRNA complements in human and
C. teleta, respectively. We found that the MCC for Homo sapiens
only very slightly decreased in accuracy from 0.97 to 0.96, high-
lighting the robustness of MirMachine CMs in deuterostomes. In
protostomes, the effect on MCC was stronger, as leaving out

C. teleta resulted in a decrease from 0.92 to 0.76. Specifically,
some families were not found, including the bilaterian families
MIR-193, MIR-210, MIR-242, MIR-278, MIR-281, and MIR-
375, the protostome families MIR-12 and MIR-1993, and the lo-
photrochozoan family MIR-1994, which were still predicted but
fell below a newly defined threshold. This highlights the higher
sequence divergence within protostomes, which is likely due
to the age of the group, a lower number of representative clades,
alower number of paralogs and orthologs per family, and a lower
number of sequenced species in general. The annelid families
MIR-1987, MIR-1995, MIR-2000, MIR-2685, MIR-2687, MIR-
2689, and MIR-2705 were not searched because no models
were built given the absence of a second annelid species, high-
lighting the importance of including at least two representative
species for each clade in MirGeneDB.?®

Performance of MirMachine prediction versus
MirGeneDB complement

To get a comprehensive understanding of the performance of
MirMachine on the microRNA complements of MirGeneDB spe-
cies, we looked in more detail at the performance of CMs and
their respective cutoffs. This resulted in us examining a selection
of major microRNA families (N = 305), including all gene copies
(N = 12,430) (Figure 3). When comparing the MirGeneDB com-
plements (Figure 3A) with the predictions from MirMachine (Fig-
ure 3B), we observed striking similarities, with overall differences
limited to few families (Figure 3C). This result indicates a return of
either false positives (231) or false negatives (421), respectively
(Table S1). These are of further interest as they either represent
missed microRNAs in MirGeneDB or significant deviations
from the general CMs and, hence, possibly incorrectly assigned
microRNA paralogs in MirGeneDB.
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Figure 3. Detailed comparison of MirMachine predictions on 75 MirGeneDB species and 305 representative microRNA families in the form of

banner-plots

Columns are microRNA families sorted by phylogenetic origin and rows are species. Heatmap indicates number of paralogs/orthologs per family.

(A) The currently annotated microRNA complements in MirGeneDB 2.1.°

(B) MirMachine predictions for the same species and families show very high similarity to (A).
(C) Differences between (A) and (B) highlighted as potential false positives (pink) or false negatives (gray).
(D) MirMachine predictions below cutoff based on training of CMs on MirGeneDB show a range of potential random predictions and pseudogenes, highlighting

the effect of curation and machine learning on models.

Finally, we found a substantial number of low-scoring
MirMachine predictions of microRNA families that did not reach
the cutoff based on trained CMs (Figure 3D) and therefore are not
considered bona fide microRNAs. However, we found that these
also contain pseudogenized microRNA orthologs (or paralogs)
exemplified by a hitherto unknown human LET-7 sequence
with similarity to functional microRNAs that is not expressed in
any MirGeneDB sample (Figure 4). To our knowledge, this is
the first report of, and MirMachine the respective tool for, a pseu-
dogene-like process predicted for microRNAs. Studying se-
quences such as those observed here across organisms should
inform upon the evolution of microRNAs, their tolerance for mu-
tations, and the cause and consequences of duplications on
microRNAs.*°

The microRNA complements of eutherians reveal the
microRNA score as a simple feature for genome
contiguity

Applying MirMachine to a test case, we downloaded 89 euthe-
rian genomes currently available in Ensembl that are not curated
in MirGeneDB and annotated their conserved microRNA com-
plements. Altogether, 38,550 genes in 260 families, in about
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4,400 CPU hours, were found that overall show very high concor-
dance between species (Figure 5A). As expected, Catharrini-
(pink) and Muridae-specific (light green) microRNAs were only
found in the respective representatives, but surprisingly, six spe-
cies (Figure 5, yellow arrows) showed substantial absences of
microRNA families. We therefore wondered whether these ab-
sences indicate microRNA losses due to biological simplifica-
tions (see Fromm et al.?®) or proposed random events*>*® or
whether they might be due to technical reasons.” Given that
the outlier species (alpaca, shrew, hedgehog, tree shrew, pika,
and sloth) have no particularly reduced morphology, we
reasoned that the source might be technical and recovered
N50 contiguity values for all genomes. We found that these six
genomes had substantially lower N50 values than all other ge-
nomes, indicating that microRNAs might be able to predict
completeness of genome assemblies (Figure 5B). Therefore,
we developed a simple microRNA scoring system defined as
the percentage of expected conserved microRNA families found
in a genome (in this case including 175 microRNA families found
in most eutherians according to MirGeneDB)*° and showed that
microRNA scores below 80% correlate with very poor N50
values <10 kb and that N50 values of 100 kb indicate microRNA
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Figure 4. The human Chr.17 LET-7 pseudogene-like sequence
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(A) Sequence alignment of the currently annotated 12 bona fide LET-7 family members in human and the pseudogene candidate discovered by MirMachine. Non-
random sequence similarities, including LIN28 binding sites (pink), are apparent with few noteworthy differences (asterisks) such as in position 2 on the 5’ end (red
box indicates mature annotation, position 2 equals seed sequence) or a triplet insertion at the 3’ end (blue box indicates star sequence annotation) are indications

for non-functionality.

(B) Structural comparison of a representative bona fide LET-7-member (Hsa-Let-7-P2c1, green triangle) with the pseudogene (yellow triangle) highlights simi-
larities of pseudogene candidate to bona fide microRNA but points out the disruptive nature of nucleotide changes for the structure (asterisks), very likely affecting

a potential Drosha processing pathway.**

(C) Sequence conservation of bona fide Hsa-Let-7-P2c1 (top) and the pseudogene (bottom) in 24 primate genome (ENSEMBL v.100) highlights the sequence
conservation of bona fide microRNAs from the loop showing some changes, the star (blue) showing few changes, and the mature (red) showing none, while the
pseudogene shows many more changes and seems to be enriched in disruptive changes in the mature/seed region.

scores of 90% and higher (Figure 5C, red and blue lines). A note-
worthy exception is the microbat Myotis lucifugus with an N50 of
64 kb and a microRNA score of 74%, which might be explainable
by previously suggested genome evolution mode through
loss.*"48

MirMachine predicts microRNAs from extinct organisms
and very large genomes

High-quality in silico annotation of genomes is particularly impor-
tant for organisms where no high-quality RNA is likely to ever
become available. This is the case for species such as mam-
moths, which went extinct within the past 40,000 years ago (but
see Fromm et al.“°). Using available data from extinct and extant
elephantids,®®" we ran MirMachine on 16 afrotherian genomes,
including a close extant relative, the hyrax (Procavia capensis),
from Ensembl and the more distantly related tenrec (Echinops tel-
fairi) from MirGeneDB, and 14 elephantids including extant
savanna elephants (Loxodonta africana), forest elephants (Loxo-

donta cyclotis), and Asian elephants (Elephas maximus), respec-
tively (Figure 6A, green elephantid silhouettes), but also the
extinct American mastodon (Mammuthus americanum),
straight-tusked elephants (Palaeoloxodon antiquus), the Colum-
bian mammoth (Mammuthus columbi), and the woolly mam-
moths (Mammuthus primigenius) (Figure 6A, red elephantid sil-
houettes). We find a very high degree of similarities between
afrotherians and striking congruence between extinct and extant
species, which indicates the high accuracy of the MirMachine
workflow. More so, we find patterns of microRNA losses that
could be phylogenetically informative (Figure 6A, arrows). For
instance, we do not find MIR-210 in any of the elephant species,
which might be an elephantid-specific loss (Figure 6A, pink ar-
row); we further find that P. antiquus and L. cyclotis have
both lost MIR-1251 (Figure 6A, light blue arrow) and have a
shared loss of MIR-675 and MIR-1343 (Figure 6A, purple arrows),
both results supporting previously identified sister group
relationships.*’
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Figure 5. MirMachine predicts conserved microRNA complements of 89 eutherian mammals available on Ensembl and not currently rep-
resented in MirGeneDB

(A) Banner plot of results for MirMachine predictions on 88 eutherian mammalian species for selected range of major microRNA families and genes showed very
strong homogeneity of microRNA complements in general and identified several clear outliers (yellow arrows, including alpaca, shrew, hedgehog, tree shrew,
pika, and sloth).

(B) Stacked histogram sorted by N50 values. Outlier species (yellow arrows: same as in A) all have very low N50 values, indicating an artificial absence of these
phylogenetically expected microRNA families.

(C) The microRNA score predicts the assembly contingency and is the proportion of phylogenetically expected microRNA families that are found in respective
genomes (here, eutherians). MicroRNA scores below 80% (red horizontal line) tend to have low N50 values (red vertical line indicates N50 below 10,000 nu-
cleotides), while scores above 90% indicate an N50 value higher than 10,000 nucleotides. A noteworthy exception is the bat Myotis lucifugus (represented by an
outline), which might be explained by a mode of genomic evolution involving gene loss.*"+*®

A challenge for microRNA prediction and annotation of cies with very large genomes and of known multiple rounds of
extant species is the occurrence of additional whole-genome genome duplications.
duplication events and, although not necessarily connected We included the axolotl (Ambystoma mexicanum) with a
events, extreme genome expansions. This often leads to genome of 28 Gbp and the African lungfish (Protopterus an-
computational challenges because identical copies are hard nectens) with a genome larger than 40 Gbp into our analysis.
to distinguish from read mappings or because genomes are For the second group, we included the African clawed frosh
so large that existing pipelines need extensive computational  (Xenopus laevis) with an allotetraploid genome®? and the zebra-
resources and may face programmatic limits. Therefore, we fish (Danio rerio) from MirGeneDB, the sterlet (Acipenser
investigated the performance of MirMachine in vertebrate spe- ruthenus) with a sturgeon specific genome duplication and

6 Cell Genomics 3, 100348, August 9, 2023
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A extinct and extant genomes of elephantids are similar and show phylogentically informative microRNA patterns

B very large vertebrate genomes do not show microRNA expansions
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Figure 6. MirMachine enables microRNA complement annotations from extinct and very large genomes
(A) MirMachine predictions from afrotherians show no clear differences between extinct and extant genomes but likely phylogenetically informative losses of

microRNA families (colored arrows).

(B) MirMachine predictions in organisms with extensive genome expansions (pink arrows) show no expansion of microRNAs but organisms with known genome
duplications (green arrows) do. Several shared microRNA copies in sterlet (A. ruthenus) and paddlefish (P. spatula) (outlined on the figure) support a common
genome duplication event in the last common ancestor of Acipenseriformes (yellow arrows).

segmental rediploidization,*® as well as the American paddle-
fish (Polyodon spathula) with a recently shown genome duplica-
tion independent of the sturgeon.” We combined these spe-
cies with the gray bichir (Polypterus senegalus), which has a
moderately sized (e.g., human-sized) genome and no unique
known genome duplication events, along with 13 other
MirGeneDB species representing a range of Olfactores, verte-
brates, gnathostomes, Osteichthyes, Sarcopterygii, and Tetra-
poda representatives (Figure 6B).

We found that MirMachine ran well on all genomes using 32
cores and completed most runs in under 2 h per species, with
the lungdfish run taking the longest but finishing in 3 h 45 min.
As expected, we find that the size of the genomes does not affect
the microRNA complements (Figure 6B, pink arrows) but that or-
ganisms with additional whole-genome duplications (Figure 6B,
green arrows) show clear traces of duplications in that they show
multiple additional paralogs in the heatmap (also see Peterson
et al.*%). A curious observation was that sterlet and paddlefish
showed very consistent microRNA copy-number patterns, in
particular in the retention of additional MIR-138, MIR-146,
MIR-148, MIR-192, and MIR-208 copies (Figure 6B, orange ar-
rows), indicating a likely common origin of genome duplication
at the last common ancestor (Acipenseriformes) or else similar
retention pressure in the more unlikely case of independent
duplication events. Altogether, these results indicate that
MirMachine is a suitable tool for the annotation of microRNA
complements from both extinct and very large genomes.

MirMachine models outperform existing Rfam models

In the most recent Rfam update (v.14), an expanded assembly of
microRNA models based on miRBase was released.”® As
mentioned here before and stated elsewhere, a major concern in
microRNA research has been the quality of this online repository
of published microRNA candidates,’*>°° with estimates that
two out of three entries are false positives. These contain
numerous tRNA, rRNA, or other fragments but also incorrectly an-
notated bona fide microRNAs that can influence interpretations of
data. In addition to the false positives, numerous miRBase annota-
tions are imprecise and have varying precursor annotation forms
(with or without flanking regions of varying lengths). We observe
cases where only one arm is annotated, incorrect 3’ ends, and,
in a few cases, even 5' regions are not correctly annotated. These
errors can substantially affect target predictions (for details, see
Fromm et al."). Further, miRBase uses an outdated nomenclature
that is inconsistent in naming members of the same microRNA
family, making the identification of family members cumbersome.
This problem has, to a large extent, been transferred to Rfam
and their microRNA family models in particular (e.g., MIR-95 family
member Hsa-Mir-95-P4 [https://mirgenedb.org/show/hsa/Mir-
95-P4] with our own model [https://rnacentral.org/rna/URS00
02313758/9606] or MIR-15 member Hsa-Mir-15-P1d [https://mir
genedb.org/show/hsa/Mir-15-P1d] with our own model [https://
rnacentral.org/rna/URS000062BB4A/9606]). This has been ad-
dressed in the manually curated microRNA gene database
MirGeneDB.org"**® and MirMachine, respectively.
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We tested the performance of curated animal origin 523 Rfam
microRNA models on the 75 MirGeneDB species and found that
36,931 microRNAs were predicted (compared with 16,913
MirMachine and the 15,846 microRNA annotations in MGDB
2.1). Given that the number of conserved microRNA families is
a focus of MirGeneDB and very unlikely to be expanded in the
future,'® this much higher number of predictions suggests that
Rfam predictions contain thousands of false positives (FPs).
We further looked for performance of highly conserved families
(see STAR Methods). Rfam models had MCCs of 0.96, 0.94,
0.96, and 0.89 for microRNA families LET-7, MIR-1, MIR-196,
and MIR-71, respectively. The same family performances for
MirMachine were 0.97, 0.98, 0.97, and 0.97. Thus, as expected,
the Rfam model had comparable performance for these
correctly assigned and deeply conserved families but performed
poorly for incorrectly assigned microRNAs.

MirMachine outperforms whole-genome alignment
approaches

We compared the performance of MirMachine with a whole-
genome alignment approach as used previously in “lift-over” ap-
proaches in, e.g., Drosophila genus.®>*® Using the 470-way
mammalian species MULTIZ genome alignment based on the
human genome, we tested how accurate these predictions are
on the level of the full microRNA complement and how they
computationally scale with size or number of aligned genomes.
Testing mammals, we found that most human microRNA loci
produced alignments in most species but with (1) a substantial
number of missing families and genes and (2) a high number of
FP calls in these microRNA alignments (Figure S3 and see
Umu and Fromm®’).

Specifically, on average, for the 90 eutherian genomes we pre-
viously analyzed with MirMachine, more than 90 FPs per species
were reported from whole-genome analysis (WGA) on average
(Figure S4).

To investigate the nature of these likely false calls, we selected
10 microRNA families (see Figure S3, small pink arrows at the
bottom) with origins in eutherians and Catharrini that were re-
ported in non-eutherians and outside Catharrini, respectively,
and carefully checked all alignments to investigate sequence
conservation (Figure S5). We found that alignments reported
from outside the expected groups are too distinct from the refer-
ence and are likely not microRNAs. In an attempt to verify the ef-
fect of nucleotide difference between bona fide genes and the
aligned regions bearing substantial changes, we took the
example of Catharrini-specific MIR-4677 (Figures S5B and
S5C) and, for a subset of representative mammals, made struc-
ture predictions. From these predictions, we were able to show
that slightly different loci in other primate species created struc-
tures less likely to be processed as microRNAs (middle struc-
ture), with the non-primate mammals showing almost random
structures (yellow bar). These results indicate that WGA-based
approaches have pitfalls that the MirMachine pipeline avoids.

MirMachine functions and options

All models (combined, protostome, and deuterostome) were im-
plemented into the standalone MirMachine workflow, which is
available under https://github.com/sinanugur/MirMachine, and
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the web app www.mirmachine.org. MirMachine also contains
the curated “node of origin” information from MirGeneDB that
can be used to limit the microRNA gene search to phylogeneti-
cally expected microRNA families, substantially reducing the
search space and shortening the necessary run time. Several
other options, such as the search for single families (e.g.,
LET-7) or families of a particular node (e.g., Bilateria) are also
available. In the web app, genome accession numbers can be
provided.

DISCUSSION

The existence of thousands of animal genome assemblies is
massively mismatched by the availability of annotations of impor-
tant gene-regulatory elements such as microRNAs. Here, we
have presented MirMachine as an important first step to over-
come this discrepancy and highlight the need for small RNA-
seq data or extensive expert manual curation. This is particularly
valuable for organisms, tissues, or developmental time points,
where expression datasets will be difficult to acquire and, hence,
difficult to obtain microRNA detection based on small RNA-seq.

MirMachine’s ability to accurately predict full conserved mi-
croRNA complements from genome assemblies, as exemplified
by our analysis of nearly 90 eutherian genomes from Ensembl,
not only enables large comparative microRNA studies and auto-
mated genome annotation for microRNAs but also shows the
potential of microRNAs for the assessment of genome assembly
completeness (Figure 5).

Because of their near-hierarchical evolution and rare loss
events, microRNAs are already used as taxonomic markers,
e.g. miRTrace®® or sRNAbench,®® and we have shown that the
microRNA score has a strong potential to outperform existing
approaches to assess genome completeness based on pro-
tein-coding genes such as BUSCO’® or OMArk.”" This might
have wide-reaching consequences for future applications, as a
microRNA score could become a standard measure for genome
annotation pipelines.

MirMachine currently provides predictions as the community
standard file formats GFF or FASTA that are named by family and
coordinates. MirMachine predictions are a solid foundation for
future small RNA-seqg-driven annotation efforts of novel microRNAs
and synteny-supported annotation of paralogs and orthologs.

MirMachine is freely available as a standalone tool or web
application. It enables even non-microRNA experts to annotate
conserved microRNA complements regardless of the availability
of small RNA-seq data. Thus, it has a strong potential to close the
ever-increasing gap between existing high-quality genomes’?"®
and their microRNA annotations. A possible addition of
MirMachine into the standard genome annotation pipelines of
Refseq and Ensembl is currently being discussed. The availabil-
ity of thousands of metazoan genomes and their microRNA an-
notations will pave the way toward the promise of microRNAs
and a true postgenomic era.

Limitations of the study

Despite the major leap toward fully automatized microRNA com-
plement annotation, several major challenges remain for the
future. (1) Per design, MirMachine can only predict conserved
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microRNAs based on MirGeneDB-derived CMs. While there are
a number of tools for the prediction of novel microRNA candi-
dates from genomes available today, these are not based on a
curated reference and, hence, are of limited value (see Steg-
mayer et al.”* and Sacar Demirci et al.”®). (2) Conserved micro-
RNA annotations accurately identify and name all family mem-
bers of a genome but do not differentiate according to their
possible paralog or ortholog identity. Recent approaches that
can automatically analyze syntenic information for ortholog and
paralog assignment, such as TOGA,’® could be implemented
in the future. (3) Limited sampling of several animal phyla and
within large groups of invertebrates in MirGeneDB might affect
MirMachine performance for these groups as branch- or clade-
specific microRNA families, or deviation of a consensus
sequence and structure cannot be captured by CMs. (4) We
stress that for pre-bilaterian groups of Cnidaria and Porifera,
MirMachine currently only provides a small set of microRNA
models, as these groups show comparably little conservation
of their microRNA complements and aberrant microRNA struc-
tures.”” 8% (5) Another important area of possible expansion
clearly are plant microRNAs, which currently suffer from multiple
non-overlapping available databases and potentially stronger
curation problems than observed in animals (see Fromm
et al.°® and Taylor et al.®").

We strive to address those issues in the future but would like to
stress, in the meantime and in general, that manual curation is a
crucial step that should never be disregarded, even though
MirMachine heavily reduces the need for extensive and time-
consuming efforts.
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METHOD DETAILS

Creation of high-quality CMs

MicroRNA precursor sequences were downloaded from MirGeneDB as FASTA files. We separated them into separate files based on
microRNA family and we then aligned each microRNA family using the mafft v7.475 aligner (mafft-xinsi)®* and created multiple
sequence alignments (MSAa) of microRNA families. We chose mafft since it considers secondary structure. We filtered out identical
or highly similar sequences using the es/-weight v0.48 tool (-f —idf 0.90 —rna) from HMMER package®* to reduce bias due to overrep-
resentation of highly similar sequences. RNAalifold also expects non-identical sequences. The secondary structures of the MSAs
were predicted by RNAalifold v2.4.17 (-r —-noPS).%° Lastly, CMs for each microRNA family were generated (cmbuild) and calibrated
(cmcalibrate) using Infernal®® and the default setting. Cmcalibrate is a necessary step to calibrate E-value parameters of CMs. We
used the same workflow to create deuterostome and protostome specific CMs. In short, the MirGeneDB FASTA sequences were
subsetted for deuterostome and protostome species.

Determining accuracy of MirMachine predictions

First, we used the cmsearch function of Infernal to predict microRNA regions. In this study, true positives (TPs) are correctly predicted
microRNA families and false positives (FPs) are false predictions. False negatives (FNs) refer to microRNA annotations available in
MirGeneDB but not predicted by MirMachine. Using MirGeneDB and MirMachine, we extracted all true positives, false positives,
and false negative predictions. We can calculate an approximation to the Matthews correlation coefficient (MCC) by using the geo-
metric mean of sensitivity and precision. This metric is sensitive to both false negatives and false positives.

A standard cmsearch run reports bit score value of each prediction, which is a statistical indicator measuring the quality of an align-
ment score. We determined an optimal bit score value for each microRNA family to maximize MCC scores. We then filtered any
MirMachine hits lower than the optimal cut-off points. We reported MCC values (and other metrics) before and after filtering. See
Figure S6 for an overview of MirMachine training workflow.

Benchmarking MirMachine models

We retrained MirMachine CM models by excluding two species: H. sapiens and C. teleta and compared MirMachine performance on
these species. Another benchmarking was done using Rfam models. We downloaded all microRNA models (523 in total) from the
Rfam database (v 14).> We predicted microRNA families using Rfam models and compared their model performance with
MirMachine on selected families (e.g. LET-7, MIR-1, MIR-71, MIR-196). These families were selected because they are highly
conserved and contain low false-positives or false negatives in Rfam. We also reported the total number of microRNA predictions
done by both methods.

MirMachine command line tool

The main MirMachine engine was written in Snakemake®’ and the command line tool (CLI) wrapper in Python and R. The documen-
tation of the MirMachine CLI tool is available at our GitHub repository. It is also available as a BioConda package®' for easy
installation.

MirMachine WebApplication implementation

We implemented the web application using a software stack primarily composed of Django, React and Nginx. The application wraps
the MirMachine CLI tool to provide a simpler, interactive interface for users. It is hosted at the Norwegian Research and Education
Cloud (NREC), utilizing their sHPC (shared High Performance Computing) resources.®® It is available at https://mirmachine.org.

Available genome assemblies
Lists of reference genomes of invertebrates, vertebrate mammalians and other vertebrates were downloaded from NCBI GenBank on
1/24/2022.9° Analysis of yearly submitted reference genomes was conducted using Python and customized scripts.

Covariance-model-based structure plots

The covariance-model-based plots were generated using the R4RNA-package in R-chie® run on R Studio version 4.2.0. The arc di-
agrams along with the grid-based alignment, were created with a multiple sequence alignment of all respective microRNA family
members and its corresponding secondary structure as input. Within the R4RNA package, covariation was plotted, and the arc
was colored based on the conservation status relative to the multiple sequence alignment provided.

Whole-genome alignment comparisons

Multiple genome alignment of 470 mammals generated with multiz as described in Hecker et a which was kindly provided by
Michael Hiller (available at http://hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz470way/), was intersected with human micro-
RNA annotations from MirGeneDB.
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Figure S1

Figure S1: Graphical representation of CMs of four representative microRNA familie, related to figure 2a A)
A protostome MIR-2 B protostome MIR-71 MIR-2, B) MIR-71, C) MIR-150, D) LET-7. Conserved base pairs are colored in green. Blue indicates a
compensatory mutation relative to the green pairs (dark blue for a double-sided mutation, light blue for a
one-sided mutation). Non-canonical paired bases are red, non-base-pairing bases are black. Graphical
representations of all CMs used by MirMachine can be found on github (10.5281/zen0do.7897616 &
https://github.com/sinanugur/MirMachine-supplementary/tree/main/CM_figures).

D combined LET-7

B conservation M Covariation B One-sided B nvaid I Unpaired Gap




Figure S2
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Figure S2: MIR-1677 is a highly deviating microRNA family, related to figure 2b. A) Alignment of MIR-1677 genes from MirGeneDB shows low conservation that explains poor performance of B) MIR-1677 CMs in
MirMachine.




Figure S3
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Whole genome alignments miss many real microRNAs and include many false-positives

A WGA can be used to report alignments of microRNAs B MirMachine predictions of 90 eutherians (Ensembl)
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Figure S3: Whole genome alignments miss many real microRNAs and include many false-positives, related to figure 5a. When comparing overall performance of (A) alignments reported for each of the 470
mammalian species, the overall impression is that many microRNA loci in human are aligned in a majority of mammalian genomes. However, when comparing to the MirMachine output (B), a number of bona fide
microRNA families are not reported (red arrows) due to their absence in the human reference (red box: murid microRNA families). Additionally, a high number families and genes that are not expected (pink
boxes) given the phylogenetic level of the species (i.e. not Eutherian, not Catharrini) is reported, which seems unlikely to be correct. This also goes for very high number of copies in a number of species (pink

arrows left site of A) that would indicate genome duplication, which have not been reported, and likely are false calls.



Figure S4
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A large number of likely false-positives in WGA-based microRNA calling
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Figure S4: A large number of likely false-positives in WGA-based microRNA
calling, related to figure 5a. Comparison of the subset of species from the
470 MULTIZ WGA (A — pink) and our Ensembl based 90 eutherians analysis
(A —green). On average, more than 90 false positives are found per genome
using WGA (B).



Figure S5

(" . . . . L . ) Figure S5: While genome alignments can identify candidates of orthologues
Whole genome alignments can identify orthologous loci, but cannot distinguish between real microRNAs and non-genes . .. . . .
loci, they cannot distinguish between real microRNAs and non-microRNA
loci, related to figure 5a. Alignments of identified microRNA loci show
MIR-935 ____ MIR:2355 MIR-6715 strong variation especially in loci of species unknown to have the
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: ‘ species shows that, while having alignment reported, there are substantial
P differences indicating that these are either 1) incorrect alignments or 2) that
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; E differences in nucleotide composition shows the effect of these sequences
i | | on the actual structure of the putative microRNAs clearly ruling out a
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Figure S6
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Figure S6. A summary of MirMachine workflow: high-quality
CMs were generated using Infernal based on MirGeneDB v2.1
microRNA families, related to figure 2. Bitscore cut-offs were
determined using MirGeneDB to maximize MCC scores. We use
the cutoffs to filter out low quality predictions.



	XGEN100348_proof_v3i8.pdf
	Accurate microRNA annotation of animal genomes using trained covariance models of curated microRNA complements in MirMachine
	Introduction
	Results
	Accurate CMs of 508 conserved microRNA families
	MirMachine CMs are largely independent of any single species
	Performance of MirMachine prediction versus MirGeneDB complement
	The microRNA complements of eutherians reveal the microRNA score as a simple feature for genome contiguity
	MirMachine predicts microRNAs from extinct organisms and very large genomes
	MirMachine models outperform existing Rfam models
	MirMachine outperforms whole-genome alignment approaches
	MirMachine functions and options

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	Creation of high-quality CMs
	Determining accuracy of MirMachine predictions
	Benchmarking MirMachine models
	MirMachine command line tool
	MirMachine WebApplication implementation
	Available genome assemblies
	Covariance-model-based structure plots
	Whole-genome alignment comparisons





