

(a-b) Dose response curves of the BAM8-22 induced Gai-G γ dissociation (a) and Gaq-G γ dissociation (b) in MRGPRX1-WT or Bril-MRGPRX1 overexpressing cells. Data from three independent experiments are presented as the mean ± SEM (n=3). (c) Dose response curves of the CNF-Tx2 induced Gai-G γ dissociation in MRGPRX1-WT or Bril-MRGPRX1 overexpressing cells. Data from three independent experiments are presented as the mean ± SEM (n=3). (d) Left panel: representative elution profile of BAM8-22-MRGPRX1-Gi1-scFv16 complex. BAM8-22-MRGPRX1-Gi1-scFv16 complex on Superose 6 Increase 10/300 column

and SDS-PAGE of the size-exclusion chromatography peak. Right panel, coomassie-stained PAGE of the isolated perk fraction from the Superose 6. (e) Left panel: representative elution profile of BAM8-22-MRGPRX1-Gq-scFv16 complex. BAM8-22-MRGPRX1-Gq-scFv16 complex on Superose 6 Increase 10/300 column and SDS-PAGE of the size-exclusion chromatography peak. Right panel, coomassie blue-stained PAGE of the isolated perk fraction from the Superose 6. (f) Left panel: representative elution profile of CNF-Tx2-MRGPRX1-Gi1-scFv16 complex on Superose 6 Increase 10/300 column and SDS-PAGE of the isolated perk fraction from the Superose 6. (f) Left panel: representative elution profile of CNF-Tx2-MRGPRX1-Gi1-scFv16 complex on Superose 6 Increase 10/300 column and SDS-PAGE of the size-exclusion chromatography peak. Right panel, coomassie-blue stained PAGE of the size-exclusion chromatography peak. Right panel, coomassie-blue stained PAGE of the size-exclusion chromatography peak. Right panel, coomassie-blue stained PAGE of the size-exclusion chromatography peak. Right panel, coomassie-blue stained PAGE of the size-exclusion chromatography peak. Right panel, coomassie-blue stained PAGE of the isolated perk fraction from the Superose 6.

Supplementary Fig. 2 Cryo-EM images and single particle reconstruction of the BAM8-22-MRGPRX1-Gq complex.

(a) Flow chart for cryo-EM data processing of BAM8-22-MRGPRX1-Gq complex. (b) Representative Cryo-EM micrograph of BAM8-22-MRGPRX1-Gq complex (left) and 2D class averages (right). (c) Fourier shell correlation curves for the final 3D density maps of BAM8-22-bound MRGPRX1-Gq complex. At the fourier shell correlation (FSC) 0.143 cut-off, the overall resolution was 2.7Å. (d) 3D density map colored according to local resolution (Å) of the BAM8-22-MRGPRX1-Gq trimer complex.

Supplementary Fig. 3 Cryo-EM images and single particle reconstruction of the CNF-Tx2-MRGPRX1-Gi1 complex.

(a) Flow chart for cryo-EM data processing of CNF-Tx2-MRGPRX1-Gi1 complex. (b) Representative Cryo-EM micrograph of CNF-Tx2-MRGPRX1-Gi1 complex (left) and 2D class averages (right). (c) Fourier shell correlation curves for the final 3D density maps of CNF-Tx2-MRGPRX1-Gi1 complex. At the fourier shell correlation (FSC) 0.143 cut-off, the overall resolution was 2.8 Å. (d) 3D density map colored according to local resolution (Å) of the CNF-Tx2-MRGPRX1-Gi1 trimer complex.

Supplementary Fig. 4 Cryo-EM images and single particle reconstruction of the BAM8-22-MRGPRX1-Gi1 complex.

(a) Flow chart for cryo-EM data processing of BAM8-22-MRGPRX1-Gi1 complex. (b) Representative Cryo-EM micrograph of BAM8-22-MRGPRX1-Gi1 (left) and 2D class averages (right). (c) Fourier shell correlation curves for the final 3D density maps of BAM8-22-bound MRGPRX1-Gi1 complex. At the fourier shell correlation (FSC) 0.143 cut-off, the overall resolution was 3.0 Å. (d) 3D density map colored according to local resolution (Å) of the BAM8-22-MRGPRX1-Gi1 trimer complex.

Supplementary Fig. 5 Electron microscopy density map of BAM8-22-MRGPRX1-Gi1, BAM8-22-MRGPRX1-Gq and CNF-Tx2-MRGPRX1-Gi1 complex.

Cryo-EM density of the transmembrane helices of MRGPRX1, including BAM8-22-MRGPRX1-Gi1 (**a**), BAM8-22-MRGPRX1-Gq (**b**) and CNF-Tx2-MRGPRX1-Gi1(**c**) cryo-EM structure respectively. All seven-TM bundles were unambiguously traceable in the cryo-EM density map, and the densities of large hydrophobic residues were utilized to assign the primary sequence of MRGPRX1.

Supplementary Fig. 6 The root-mean-square-deviation (RMSD) of MRGPRX1 bound with different ligands or compared with MRGPRX2 structure.

(a) The root-mean-square-deviation (RMSD) of the overall structures of MRGPRX1 bound with different ligands assumed similar structures, including BAM8-22-MRGPRX1-Gi and BAM8-22-MRGPRX1-Gq (upper panel), BAM8-22-MRGPRX1-Gi and CNF-Tx2-MRGPRX1-Gi (middle panel), BAM8-22-MRGPRX1-Gq and CNF-Tx2-MRGPRX1-Gi (lower panel). (b) The root-mean-square-deviation (RMSD) of the overall structures of MRGPRX1, compared with our recently solved MRGPRX2 structure, including PAMP-12-MRGPRX2-Gi and BAM8-22-MRGPRX1-Gq (upper panel), PAMP-12-MRGPRX2-Gi and CNF-Tx2-MRGPRX1-Gi (middle panel), PAMP-12-MRGPRX2-Gi and BAM8-22-MRGPRX1-Gq (upper panel), PAMP-12-MRGPRX2-Gi and BAM8-22-MRGPRX1-Gi (indel panel), PAMP-12-MRGPRX2-Gi and BAM8-22-MRGPRX1-Gi (lower panel).

Supplementary Fig. 7 Binding of BAM8-22 to MRGPRX1.

(a) The root-mean-square-deviation (RMSD) of BAM8-22 between BAM8-22-MRGPRX1-Gi and BAM8-22-MRGPRX1-Gq complex structures. (b-e) Structural representations of the interactions surrounding the Y21(b), R20(c), M15 and Y17(d), W13 and W14(e) of MRGPRX1-Gq complex structures. Hydrogen bonds were shown in the red dash. (f) In the BAM8-22-MRGPRX1-Gi1 complex structure, the conformational changes of M15 and Y17 eliminated their interactions with R246^{ECL3} and L249^{7.30}.

Supplementary Fig. 8 Effects of different mutations in BAM8-22 or different mutations within the ligand-binding pocket of MRGPRX1 induced Gai-G γ and Gaq-G γ dissociation. (a) Effects of different BAM8-22 mutations on BAM8-22 induced Gai-G γ dissociation in MRGPRX1 overexpressing HEK293 cells. The curve data from three independent measurements are measured as mean ± SEM (n=3). (b) Effects of different BAM8-22 mutations on BAM8-22 induced Gaq-G γ dissociation in MRGPRX1 overexpressing HEK293 cells. The curve data from three independent measurements are measured as mean ± SEM (n=3). (b) Effects of different BAM8-22 mutations on BAM8-22 induced Gaq-G γ dissociation in MRGPRX1 overexpressing HEK293 cells. The curve data from three independent measurements are measured as mean ± SEM (n=3). (c) Effects of different mutations within the ligand-binding pocket of MRGPRX1 on BAM8-22 induced Gai-G γ dissociation in MRGPRX1 overexpressing cells. The curve data from at least three independent measurements are measured as mean ± SEM (n=3). (d) Effects of different mutations within the ligand-binding pocket of MRGPRX1 on BAM8-22 induced Gai-G γ dissociation in MRGPRX1 overexpressing cells. The curve data from at least three independent measurements are measured as mean ± SEM (n=3). (d) Effects of different mutations within the ligand-binding pocket of MRGPRX1 on BAM8-22 induced Gai-G γ dissociation in MRGPRX1 on BAM8-22 induced Gai-G γ dissociation in MRGPRX1 overexpressing cells. The curve data from at least three independent measurements are measured as mean ± SEM (n=3). (d) Effects of different mutations within the ligand-binding pocket of MRGPRX1 on BAM8-22 induced Gai-G γ

dissociation and Gaq-G γ dissociation in MRGPRX1 overexpressing cells. The curve data from three independent measurements are measured as mean ± SEM (n=3).

Supplementary Fig. 9 Binding of CNF-Tx2 to MRGPRX1.

(a) Emax effects of different mutations on CNF-Tx2 of MRGPRX1 induced Gai-G γ dissociation. The maximal response (Emax) is presented as the mean ± SEM of three independent experiments. Statistical differences between MRGPRX1 WT and mutations were determined by two-sided one-way ANOVA with Tukey test. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significant difference; ND, not detected. (P= P<0.001, ND, 0.6262, 0.109, P<0.001 from left to right). (b) Effects of different CNF-Tx2 mutations on CNF-Tx2 induced Gai-G γ dissociation in MRGPRX1 overexpressing HEK293 cells. The curve data from three independent measurements are measured as mean ± SEM (n=3). (c) Three-dimensional (3D) representation of the detailed interactions between CNF-Tx2 and MRGPRX1 in CNF-Tx2-MRGPRX1-Gi1-model2 complex. (d-e) The average RMSD value of CNF-Tx2 model1 (red) and CNF-Tx2 model2 (blue) during triplicate 200 ns MD simulations. (f-g) RMSD of key residues in MRGPRX1 which directly interact with CNF-Tx2 model1 (red) and CNF-Tx2 model2 (blue) during triplicate 200 ns MD simulations.

Supplementary Fig. 10 Binding of CNF-Tx2 and BAM8-22 to MRGPRX1.

(a) Comparison of CNF-Tx2 binding modes simulated by Colabfold and in CNF-Tx2-MRGPRX1-Gi1 complex structure that our resolved. The CNF-Tx2 model 1-5 predicted by Colabfold are shown in tangold, skybluemedium slate blue, plummedium turquoise, cornflower bluelightgreen and dark salmonwheat, CNF-Tx2 in our resolved CNF-Tx2-MRGPRX1-Gi1 complex is shown in red. (b) Comparison of BAM8-22 binding modes simulated by Colabfold and in BAM8-22-MRGPRX1-Gi1 complex structure that our resolved. The BAM8-22 model 1-5 predicted by Colabfold are shown in plum, dark green, light sky blue, medium purple and dark orange, BAM8-22 in our resolved BAM8-22-MRGPRX1-Gi1 complex is shown in red. (c) Comparison of BAM8-22 binding modes simulated by Colabfold and in BAM8-22 binding modes simulated by Colabfold and in BAM8-22 binding modes simulated by Colabfold and in BAM8-22 in our resolved BAM8-22-MRGPRX1-Gi1 complex is shown in red. (c) Comparison of BAM8-22 binding modes simulated by Colabfold and in BAM8-22 in our resolved. The BAM8-22 model 1-5 predicted by Colabfold are shown in plum, light cyan, light sky blue, tan and light coral, BAM8-22 in our

resolved BAM8-22-MRGPRX1-Gq complex is shown in red. (d) Emax effects of different mutations within the ligand-binding pocket of MRGPRX1 on CNF-Tx2 induced G α i-G γ dissociation. Statistical differences between MRGPRX1 WT and mutations were presented as the mean \pm SEM of three independent experiments and determined by two-sided one-way ANOVA with Tukey test. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significant difference; ND, not detected. (P=ns, ns, ND, ND, <0.001, ns, ND, ns, ns, <0.001 from left to right). (e-f) Effects of different mutations within the ligand-binding pocket of MRGPRX1 on CNF-Tx2 induced G α i-G γ dissociation in MRGPRX1 overexpressing cells. The curve data from three independent measurements are measured as mean \pm SEM (n=3).

Supplementary Fig. 11 Sequence alignment of peptide common motif recognized by MRGPRX1 and MRGPRX2.

(a) Peptide ligand sequences of MRGPRX2. Sequence comparisons of several peptide-based allergens with similarities to the $\varphi^{p9}(X_{0-1}) R/K^{p10}(X_2) \varphi^{p13}(X_{2-3}) \varphi^{p16}(X_3) R/K^{p20}$ motif. (b) Peptide ligand sequences of MRGPRX1. Sequence comparisons of several peptide-based allergens with similarities to the $\varphi^{B17}(X_{1-2}) R^{B20} \varphi^{B21}$ motif. (c) Effects of BAM8-22, CNF-Tx2, γ 1-MSH, hemoglogbin β -chain, P60 (part of C5orf29) induced MRGPRX1 activation evaluated via Gai-G γ dissociation assay. Data from three independent experiments are presented as the mean \pm SEM (n=3). All data were analyzed by two-sided one-way ANOVA with Turkey test. (d) Effects of different BAM8-22 mutations on BAM8-22 induced Gai-G γ dissociation. Data from three independent experiment control of the mean \pm SEM (n=3). All data were analyzed by two-sided one-way ANOVA with Turkey test. (d) Effects of different BAM8-22 mutations on BAM8-22 induced Gai-G γ dissociation. Data from three independent experiment control of the mean \pm SEM (n=3). All data were analyzed by two-sided one-way ANOVA with Turkey test. (d) Effects of different CNF-Tx2 mutations on CNF-Tx2 induced Gai-G γ dissociation. Data from three independent experiments are presented as the mean \pm SEM (n=3). All data were analyzed by two-sided one-way ANOVA with Turkey test. (e) Effects of different CNF-Tx2 mutations on CNF-Tx2 induced Gai-G γ dissociation. Data from three independent experiments are presented as the mean \pm SEM (n=3).

are presented as the mean \pm SEM (n=3). All data were analyzed by two-sided one-way ANOVA with Turkey test. (f) Concentration-dependent response curves of MRGPRX1 in response to ligands by Gai-G γ dissociation assay. Values are mean \pm SEM from three independent experiments (n=3) performed in triplicates. (g) Concentration-dependent response curves of MRGPRX1 in response to ligands by Gaq-G γ dissociation assay. Values are mean \pm SEM from three independent experiments (n=3) performed in triplicates. (h) Comparison of the biased properties of CNF-Tx2 and Chloroquine. Both CNF-Tx2 and Chloroquine were assessed for Gi signaling (f) and Gq signaling (g). The bias factor (β value) of CNF-Tx2 and Chloroquine was calculated using BAM8-22 as the reference.

Supplementary Fig. 12 Coupling of MRPGRX1 with Gi and Gq.

(a) Detailed interactions between the TM bundles of MRGPRX1 and the α 5-helix end of G α i. (b) Detailed interactions between the ICL2 of MRGPRX1 and the Gai. (c) Emax effects of different mutations of G protein interface mutations of MRGPRX1 on Gai. Statistical differences between MRGPRX1 WT and mutations were presented as the mean \pm SEM of three independent experiments and determined by two-sided one-way ANOVA with Tukey test. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significant difference; ND, not detected. (P=<0.001, <0.001, ND, ND, ND, <0.001, <0.001, ND from top to bottom). (d) The effects of G protein interface mutations of MRGPRX1 on Gai. The curve data from three independent measurements are measured as mean \pm SEM (n=3). (e) Detailed interactions between the bulky end of a5 helix of Gag and the V124^{3.54}, L198^{5.57}, R213^{6.32}, L214^{6.33} and T217^{6.36} of MRGPRX1. (f) Detailed interactions between the E357^{G.H5.22}, Y358^{G.H5.23} of Gag and Y64^{2.42}, F61^{2.39} and Y130^{ICL2}, R131^{ICL2} of MRGPRX1. (g) Emax effects of different mutations of G protein interface mutations of MRGPRX1 on $G\alpha q$. Statistical differences between MRGPRX1 WT and mutations were presented as the mean \pm SEM of three independent experiments and determined by two-sided one-way ANOVA with Tukey test. *, P<0.05; **, P<0.01; ***, P<0.001; ns, no significant difference; ND, not detected. (P=0.0007, <0.001, 0.0222, <0.001, <0.001, <0.001, 0.0005, <0.001, ND, ND, <0.001 from top to bottom). (h) The effects of G protein interface mutations of MRGPRX1 on Gaq. The curve data from three independent measurements are measured as mean \pm SEM (n=3).

Supplementary Fig. 13 Expression level of relative MRGPRX1 wild type or mutants determined by ELISA.

Values are mean \pm SEM from three independent experiments (n=3) performed in triplicates. ns, no significance. All data were analyzed by two-sided one-way ANOVA with Turkey test.

Supplementary Fig. 14 Comparison of the structure of BAM8-22-MRGPRX1-Gq complex (we solved vs. PDB ID: 8DWC).

(a) The root-mean-square-deviation (RMSD) of BAM8-22 between BAM8-22-MRGPRX1-Gq and 8DWC complex structures. (b) Comparison of the difference in MRGPRX1 TMs and G protein between the newly solved BAM8-22-MRGPRX1-Gq structure (green) and the structure solved by Yongfeng Liu et al. (PDB: 8DWC) through a cytoplasmic view. (c) Comparison of ligand densities in the BAM8-22-MRGPRX1-Gq and 8DWC structures.

Supplementary Fig. 15 Structural comparison of MRGPRX1 with MRGPRX4.

(a) A cytoplasmic view of the BAM8-22-MRGPRX1 7TM bundle compared with MS47134-MRGPRX4 (PDB ID: 7S8P). MRGPRX1 is shown in salmon, MRGPRX4 in light sky blue. (b) Three-dimensional (3D) representation of BAM8-22 in the MRGPRX1 and MS47134-MRGPRX4 (PDB ID: 7S8P). BAM8-22 is shown in cyan, MS47134 in hot pink. (c) The structural representation and comparison of the interfaces between the MRGPRX1-Gq and MRGPRX4-Gq complexes. Ribbon representation: Gq bound to MRGPRX1 is shown in yellow, Gq bound to MRGPRX4 is shown in gray. (d) Comparison of the Gq coupling interfaces in cryo-EM structures of BAM8-22-MRGPRX1-Gq and MS47134-MRGPRX4 (PDB ID: 7S8P) complexes. Residues of MRGPRX1 in contact with Gq were illustrated as green dots.

Supplementary Fig. 16 (a-c) SDS-PAGE of the size-exclusion chromatography peak of MRGPRX1-Gi1-scFv16 and MRGPRX1-Gq-scFv16 complex. (Raw data of Sup plementary Fig. 1) Supplementary Table 1: Cryo-EM Data Collection, Model Refinement, and Validation Statistics.

	BAM8-22- MRGPRX1-Gq (EMDB-36232)	CNF-Tx2- MRGPRX1-Gi (EMDB-36229)	BAM8-22- MRGPRX1-Gi (EMDB-36233)
	(PDB 8JGF)	(PDB 8JGB)	(PDB 8JGG)
Data collection and processing	04.000	1.0.0.00	
Magnification	81,000	130,000	130,000
Voltage (kV)	300	300	300
Electron exposure $(e - /A^2)$	50	50	60
Defocus range (µm)	-1.2 to -2.2	-0.8 to -1.2	-0.8 to -1.2
Pixel size (Å)	1.04	1.08	0.89
Symmetry imposed	C1	C1	C1
Initial particle images (no.)	11,127,531	146,824,9	3,628,139
Final particle images (no.)	1,316,443	315,448	925,644
Map resolution (Å)	2.7	2.8	3.0
FSC threshold	0.143	0.143	0.143
Map resolution range (Å)	2.0-3.5	2.0-3.5	2.0-3.5
Refinement			
Initial model used (PDB code)	7UVY	7UVY	7UVY
Model resolution (Å)	3.1	3.0	3.2
FSC threshold	0.5	0.5	0.5
Model resolution range (Å)	2.0-3.5	2.0-3.5	2.0-3.5
Map sharpening <i>B</i> factor $(Å^2)$	-129.7	-101.8	-137.2
Model composition			
Non-hydrogen atoms	8338	7807	7889
Protein residues	1101	1062	1076
Ligands	1	1	1
B factors (Å ²)	-	-	-
Protein	27.93	50.79	92.83
R m s deviations	2100	00000	/=
Bond lengths (Å)	0.008	0.010	0.007
Bond angles (°)	1 105	1 384	1 145
Validation	1.105	1.501	1.1.15
MolProbity score	1 78	2 16	1 92
Clashscore	8	7	9
Poor rotamers (%)	01	, 0	07
Ramachandran plot	V.1	v	···
Favored (%)	95 74	93.82	94 30
Allowed (%)	4 26	6.18	5 70
Disallowed (9/)	т. <u>2</u> 0 0	0.10	0

Supplementary Table 2: The summary of models and maps. Related to Figure 1 to Figure 5.

Model	Мар	Contour	Residue	Description
		Level		*
			Receptor: L28-G276	(1) In the section of "Overall structures
			Gαi: S6-I55, T182-	of MRGPRX1 complexes", used for
			F354	structural descriptions for BAM8-
BAM8-	BAM8-		Gβ: D5-N340	22_MRGPRX1_Gi complex (Fig. 1
22_MR	22_MR		Gγ: S8-K64	and Supplementary Fig.5)
GPRX1	GPRX1	3.60 rmsd	scFv: V2-L235	(2) In the section of "Binding of
_Gi_m	_Gi_m		ECL1, ECL2 and	BAM8-22 to MRGPRX1" (Fig. 2 and
odel	ap		ICL3 are in general	Supplementary Fig.7)
			disordered in GPCR	(3) In the section of "Coupling of
			structures and are not	MRPGRX1 with Gi and Gq" (Fig. 5
			modeled.	and Supplementary Fig. 10)
			Receptor: Y24-R279	(1) In the section of "Overall structures
			Gaq: A7-R54, T182-	of MRGPRX1 complexes", used for
			V361	structural descriptions for BAM8-
BAM8-	BAM8-		Gβ: D10-N345	22_MRGPRX1_Gq(Fig. 1 and
22_MR	22_MR		Gγ: A9-R61	Supplementary Fig.5)
GPRX1	GPRX1	4.10 rmsd	scFv: V1-L247	(2) In the section of "Binding of
_Gq_m	_Gq		ECL1, ECL2 and	BAM8-22 to MRGPRX1" (Fig. 2 and
odel	_map		ICL3 are in general	Supplementary Fig.7)
			disordered in GPCR	(3) In the section of "Coupling of
			structures and are not	MRPGRX1 with Gi and Gq" (Fig. 5
			modeled.	and Supplementary Fig. 10)
			Recentor: I 28-F278	(1) In the section of "Overall structures
			Gai: I 5-155 T182-	of MRGPRX1 complexes", used for
CNF	CNE		I 353	structural descriptions for CNF-
$T_{\rm v}2$ M	$T_{v2} M$		CB: D5 N240	Tx2_MRGPRX1_Gi (Fig. 1 and
		0.05 rmsd	Gp: 58 K64	Supplementary Fig. 5)
		0.95 111180	scEv. V2 I 225	(2) In the section of "Binding of CNF-
model			$\begin{array}{c} \text{SOLV. } V 2^{-} L 2 3 3 \\ \text{ECL1 ECL2 and} \end{array}$	Tx2 to MRGPRX1", used for
	_map		ICL 2 are in conoral	structural descriptions for CNF-
			disordered in GPCR	Tx2_MRGPRX1_Gi complex (Fig. 3)
	1	1	1	

	structures and are not	
	modeled.	

Supplementary Table 3. The residues with ambiguous side chain densities that only main chain atoms kept in the model of BAM8-22-MRGPRX1-Gi complex, BAM-MRGPRX1-Gi complex and CNF-Tx2-MRGPRX1-Gi complex.

Ligand TM1	BAM8-22-MRGPRX1-Gi complex E12, D16, K19 L28, L30, V32, L33, L39, W50,	BAM8-22-MRGPRX1- Gq complex R10, E12, K19 Q26, L28, S29, V32, L33, T34, C35, S38,	CNF-Tx2- MRGPRX1- Gi complex R14, R17 L30, L33, T31, T34, L39,
	L52, C54, R55	L49	W50, L51
ICL1	R57	R55, M56, R57, R58, N59	-/-
TM2	L80, S86, F87	D72, I81	L66, D72, F73, R79, L80, Y82
TM3	197	S114	-/-
TM4	-/-	S139, H137, M159	H137, C161
TM5	T172, Q174	Q174, F178, R177, V190, C204	S176, F178, T180, C204
ICL3	_/_	S206, R207, K208, I209	_/_
TM6	T212, Y215, C228, F239, H243	L211, L219	T212, R213, Y215, L219, L220, L227
ECL3	E247, V248	E247	-/-
TM7	C251, H252, F259, S265, S266	-/-	V256, N264, F274

Supplementary Table 4. The residues with ambiguous main chain densities that not modelled in the BAM8-22-MRGPRX1-Gi complex, BAM8-22-MRGPRX1-Gq complex and CNF-Tx2-MRGPRX1-Gi complex.

	BAM8-22- MRGPRX1-Gi complex	BAM8-22-MRGPRX1-Gq complex	CNF-Tx2- MRGPRX1-Gi complex
N- terminal	Y24, K25	L22	_/_
TM1	Q26, T27	-/-	136, L52, G53, C54, R55, M56
ICL1	_/_	-/-	R57, R58
TM2	188	-/-	-/-
ECL1	S89	Т93	_/_
TM3	194, S95, K96	I94	_/_
TM4	L160	-/-	L151
ECL2	C162	F163, L164, F165, S166, G167, A168	-/-
TM5	_/_	D169, S170, A171	-/-
ICL3	K208, I209, L211	G205, 1209	G205, S206, R207, K208, I209
TM6	P210	P210	P210
ECL3	D245, R246, E247, V248	-/-	-/-
TM7	8277, F278	-/-	L249, G276, S277, F278

Interaction	MRGPRX1	BAM8-22	Distance (Å)
Hydrogon bond (< 25 Å)	E157	Y21	2.6
ffydrogen bond (≤ 5.5 A)	W241	W14	2.8
	P100	Y21	4.5
	F157	Y21	4.1
	E137	R20	2.9
	W158	Y21	3.5
	F236	Y17	3.9
	1250	R20	3.8
	F237	R20	3.2
		W14	3.8
Hydronhobia and yan dar Waals	L240	W13	2.8
force (< 4.5 Å)		Q18	4.0
	W241	W13	3.7
		P11	3.5
	I242	W13	3.8
	H243	W13	4.0
	R246	M15	4.0
		M15	4.2
	L249	Y17	3.4
		Q18	3.2
	F250	Y17	4.3
	H254	Y17	3.0
	¥99	R20	3.6
Polar (< 4 5 Å)	S154	Y21	3.5
$\mathbf{r} \text{ otar } (\geq 4.5 \text{ A})$	E157	R20	2.7
	D177	R20	3.4
	¥99	Y21	3.7
π-π stacking	W158	Y21	3.5
(Edge-π, ≤ 8.0 Å)	F239	W13	7.4
	F250	Y17	3.3

Supplementary Table 5: Interaction of BAM8-22 and MRGPRX1 in BAM8-22-MRGPRX1-Gi complex.

Interaction	MRGPRX1	BAM8-22	Distance (Å)
	V00	Y21	3.5
	177	R20	3.2
	P100	Y21	3.8
	S154	Y21	4.4
	E157	Y21	3.8
Hydronhobic and van der	W158	Y21	3.7
Waals force (< 4 5 Å)	I242	W13	4.0
Waais loree (2 4.5 A)	H243	W13	3.4
	R246	M15	3.1
	L249	Y17	3.1
		Q18	3.5
	F250	Y17	3.4
	H254	Y17	3.3
	E157	R20	2.7
Hydrogen bonds (≤ 3.5 Å)	D177	R20	2.7
	L240	W14	2.8
Polar (≤ 4.5 Å)	F239	Q18	3.9
	Y82	Y17	6.9
	W158	Y21	4.6
π-π stacking (Edge-π, ≤ 8.0 Å)	F236	Y17	4.3
	F237	Y21	8.0
	W241	R20	3.3
	vv 241	W14	4.0

Supplementary Table 6: Interaction of BAM8-22 and MRGPRX1 in BAM8-22-MRGPRX1-Gq complex.

Interaction	MRGPRX1	CNF-Tx2	Distance (Å)
Hydrophobic and van der	895	I18	4.2
Waals force (≤ 4.5 Å)	¥99	I18	3.3
	L240	R17	3.6
π-π stacking (Edge-π, ≤ 8.0 Å)	Y82	F15	7.4
	¥99	F15	7.0
	F236	F15	4.0

Supplementary Table 7: Interaction of CNF-Tx2 and MRGPRX1 in CNF-Tx2-MRGPRX1-Gi complex.

Interaction	MRGPRX1	CNF-Tx2	Distance (Å)
	S95	I18	4.0
	V99	I18	4.0
Hydronhobic and van der	177	R17	3.7
Waals force (≤ 4.5 Å)	I 160	R14	4.4
	1100	R17	3.6
	S176	R17	4.2
	F237	R17	4.0
	L240	R17	3.9
$\pi_{-\pi}$ stacking (Edge- $\pi < 8.0$ Å)	Y82	F15	7.0
n - n statking (Euge- n , \leq 0.0 A)	F236	F15	4.0
Hydrogen bond (≤ 3.5 Å)	E157	R17	2.8
	D177	R17	2.8

Supplementary Table 8: Interaction of CNF-Tx2 and MRGPRX1 in CNF-Tx2-MRGPRX1-Gi-MD complex.

Interactions	MRGPRX1	Gai	Distance (Å)
	E61	D350	4.1
	FOI	C351	3.4
	R120	C351	3.8
	\$123	N347	3.9
	5125	C351	3.9
	V124	L348	4.4
	P127	I344	3.7
	1127	N347	4.1
		K192	4.4
	1128	D193	4.0
	1128	L194	3.6
		I343	4.3
		R32	4.3
	P131	E33	3.6
Hydrophobic and van der	KI31	V34	3.1
Waals force (≤ 4.5 Å)		I343	3.1
	C132	R32	4.0
		L194	3.9
	H133	L193	3.5
	R134	R32	3.6
	P135	R32	4.4
	T136	E28	3.6
	L198	L360	3.9
	1202	L348	4.3
	R213	L353	3.4
	R213	F354	3.8
	L214	L360	3.7
	T217	T340	4.0
	T217	I343	4.2
	I218	T340	4.2
	N59	D350	4.3
Polar (< 1 5 Å)	R120	C351	3.6
Polar (≤ 4.5 A)	S123	C351	3.9

R131

R32

3.8

Supplementary Table 9: Interactions between MRGPRX1 and Gαi in BAM8-22-MRGPRX1-Gi complex.

	R131	A31	4.2
		T219	4.0
	H133	R32	3.9
Hydrogen bond (≤ 3.5 Å)	S123	N347	3.1
	R131	E33	2.7
	C132	D193	3.2
	R134	R32	2.8
	T136	R32	2.8

Supplementary Table 10: Interactions between MRGPRX1 and Gαq in BAM8-22-

MRGPRX1-Gq complex.

Interactions	MRGPRX1	Gaq	Distance (Å)
	N59	E357	4.4
	A60	E357	4.0
		E357	3.6
	F61	Y358	3.3
		N359	3.4
	V116	Y358	4.2
	E119	Y358	3.2
	D120	Y358	3.2
	K120	L360	3.9
	I128	K347	3.9
		1350	3.8
.	L198	L360	3.9
Hydrophobic and van der waals	1202	L355	4.5
force ($\leq 4.5 \text{ A}$)	S123	N354	3.7
		Y358	3.3
	V124	L351	4.0
		L355	3.4
		L360	4.4
	D127	1350	3.1
	F 12 /	L351	3.7
		N354	3.5
	Y130	E357	3.3
		Y358	3.0
	D121	1350	3.3
	K131	M353	4.0

	R131	N354	3.6
	C132	R31	3.6
		R32	3.9
	H133	R32	3.5
	T136	K27	4.5
	P210	V361	4.1
	R213	L360	4.0
		N359	4.0
		V361	4.1
	L214	L355	4.3
		L360	3.4
	T217	N359	4.3
	I218	L360	4.1
	G276	N359	3.9
Hydrogen bond (≤ 3.5 Å)	P127	N354	3.3
	Y130	E357	2.4
	Y130	Y358	2.4
	R131	N354	2.6
	C132	R31	3.3
	R134	R31	2.9
	L214	L360	3.3
	Y272	N359	3.2
Polar (≤ 4.5 Å)	A60	E357	3.7
	H133	R32	3.7
	R213	N359	4.0
	T217	N359	3.7
π-π stacking (Edge-π, ≤ 8.0 Å)	Y64	Y358	5.9