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Reviewer #1 (Remarks to the Author): 

In the manuscript, the authors proposed and implemented a novel method, Twins, to generate 

distance via the Siamese network. Overall, the idea is reasonable and the results are great. 

1, The author introduces the Siamese network into the Hi-C analysis area. The detailed 

implementation requires a significant amount of work to solve the difference between the Hi-C and 

the original Siamese application field (e.g. image processing). The authors have done solid work to 

overcome the challenge from data representation to the sample definition. 

2, The results strongly support the hypothesis. The authors utilized a NIPBL to validate results 

while NIPBL is not used in the training at all. The results show the obtained embeddings are with 

high quality. 

Revision suggestions: 

1. There are some prior work on the related problem, which the authors should cite and do some 

comparison analysis if possinle. 

2. I would like the authors to further discuss the loss function in the Siamese network. Based on 

the manuscript, the author uses the distance-based loss function. This type of loss functions are 

widely used in the information retrieval field to overcome some specific engineering difficulties on 

a large scale (see this https://arxiv.org/pdf/2006.11632.pdf as a good reading material). Under 

Hi-C scenarios, the best use case for this loss function should be “given a genomic region, find the 

nearest N most similar region from the entire genome. However, the distance-based loss has 

significant drawbacks. The distance has no physical meanings and it wholly optimizes comparison 

contrast. I suggest the authors investigate using the probability based loss with some modification 

of the network work. The two embeddings can be concatenated, then add some fully connected 

layer, then use the loss function like log-loss. By using this type of the loss, the output of the 

network is meaningful, which is the probability that two Hi-C blocks are the same. These are 

suggestions and authors may deep dive and implement it for discussion. 

3. This work is the fundations for many downstream research work. I suggest the author should 

clearly suggest the potential outputs. Based on my suggestions, there are three outcomes: 1) 

Using the model to generate embedding for a block of genome, which is technically a dimension 

reduction; 2) Finding the most similar pattern with a given genome block. 3) Compute distance 

between two blocks of genome (either same position from different tissues or same tissue from 

different position); 4) As a method to train a new model when more data (including Hi-C and the 

label) is available in future. The authors should give full code with documentation on all of the use 

cases to help non-computer science major researchers to use this work. Also, the author should 

also consider publishing the computed embeddings for other researchers to use without installing 

any deep learning tools. 

Reviewer #2 (Remarks to the Author): 

This manuscript proposed a deep learning method, Twins, to distinguish biological variation from 

technical noise and extract biological meaning features. The results look promising and well done. 

They proposed Twins as a powerful tool for the exploration of chromosome conformation capture 

data, such as Hi-C, capture Hi-C and Micro-C. As a tool development manuscript, the potential 

impact is its application in other studies. It said in the method that “All original code has been 

deposited on Git Hub and is publicly available as of the date of publication.” Since I couldn’t see 

the code and related instructions, I couldn’t evaluate how easy for other researchers in the 

community to apply their method to their research. 

Major criticism: 

1. In Figure 1C and 1D, shows that embedding distances can separate biological differences from 



technical noise, which is very promising. However, Figure 6C shows that a 2-fold sequencing depth 

difference can also make such separation. Though Figure 6G justifies that if differences in 

sequencing depth are mirrored between replicates and conditions, the sequencing depth-related 

artifacts are avoidable, it’s hard to have exact mirrored sequencing depth in the real world. It will 

be helpful if the author can provide some practical strategies to deal with the data without the 

same/mirrored sequencing depth. 

2. It was claimed that the method applied for the normalization of Hi-C data does not impact 

Twins' performance based on the visualization of distance distribution across chromosome 2 and 

the correlation coefficient of all normalization methods. However, Figure 5A shows that distance 

based on VC normalization is very different from the other three methods, even though the 

correlation coefficient is not bad (=0.79). It will be helpful to directly show the performance of 

Twins based on four different normalization methods. 

3. Although Twins can distinguish biological variation from technical noise, it’s unclear how to 

utilize Twins to get differential 3D genomic architecture between two conditions. For example, it 

would be interesting to know which enhancer-promoter looping is changed during certain 

conditions. 

Minor criticism: 

1. Why Twins perform much better for Micro-C than Hi-C, especially in 2-5kb resolution as shown 

in Figure 5C and 5D. It should be discussed. 

2. Figure 2E, it’s hard to tell the difference between control NPC and CTCF degron. 

3. A typo in Figures 2C and 2D. It should be ‘As in (B)…’ 

4. Is there a particular reason to choose chromosome 2 as a test chromosome? 

5. On page 13, a typo in the sentence “we trained a control network on one high-res and low-res 

replicate and asked to compare these replicates to a second pair of high-res and low-res replicates 

6E). In this case, the training loss was unstable and did not meaningfully decrease 6F)…”. On page 

21, Figure S3A, there are two ‘high’. The author should carefully check through the manuscript to 

minimize typos. 

Reviewer #3 (Remarks to the Author): 

In this manuscript, Al-jiburry et al developed a method named Twins to explore chromosome 

conformation capture data. The major advance of the method is to utilize biological or technical 

replications to distinguish technical noise from biological variations using contrastive learning. In 

the manuscript, the authors showed that Twins outperformed multiple naïve image similarity 

methods like 1-ssim. Using Twins, the authors also detected chromosome conformation features 

that had differential characters Overall, this work is of interest to the field of Hi-C analysis but with 

certain limitations. There are multiple concerns that need to be addressed before the manuscript is 

considered for publication. 

Major comments: 

1. In this work, by selecting overlapping matrixes with variable sizes from kilobases to a few 

million bases along the diagonal, long-range interactions and interchromosomal interactions 

beyond the matrix sizes were excluded, which is questionable. Recent works have shown that 

long-range interactions over several Mb were important for cellular functon(Beagrie et al, Nature, 

2017). Interchromosomal interactions were also shown to be critical for cell functon(Xiong et al, 

Nature Communications, 2019). Technically, the ratio between inter- and intra-chromosome 

interactions is also important to evaluate Hi-C experiment quality. With these considerations, I 

would suggest the authors refine the overlapping images to include these additional interactions in 

their strategy. For instance, the images are not necessarily to be square. 

2. The authors have analyzed multiple published datasets to demonstrate the power of Twins. 

However, since the chromosome conformation changes upon CTCF degradation or NIPBL deletion 

were genome-wide and dramatic, it was not a surprise to find large-scale differences. On the other 

hand, the authors observed very dramatic chromosome-wide distances between the two states of 

T-cell differentiation, which was quite surprising as differentiation usually need part of the genome 

but not the whole genome to be regulated. These observations raise some questions: 1) what’s 



the biological function of the distances between DP and SP? Were they all functional for T-cell 

differentiation? 2) If apply Twins to a condition that only a limited part of the chromosome has 

conformation changes, whether Twins can identify these small-scale differences? This question 

needs to be very well demonstrated since these small-scale differences are the most common 

situations in analyzing the Hi-C dataset. 

3. The biological meanings of the features extracted by Twins were not very well illustrated. 

Although the authors showed some enrichment of CTCF, cohesion, and chromatin modifications in 

the different regions identified with Twins, how these differences correlate to cellular function and 

previously identified conformation features like TADs and loops had not been carefully examined. 

For instance, whether the degree of embedding distances has specific indications for chromosome 

conformation? Could the author add some analysis to check how the embedding distances related 

to TAD insulation, compartment, and CTCF/cohesin binding in Figure 2B-2D? What are the genes 

being affected in these regions and whether they are critical for T-cell differentiation? Most 

important, in Figures 7 and 8, what are the biological meanings of the differential features? Did the 

authors find some differential features in T-cell differentiation system? 

4. Another concern about Twins is the use of parameters for the image. Authors should provide 

certain rationales for the use of the parameters such as why the stride was used as 160 kb in a 

window size of 256xR? Whether the parameters will affect the performance? How robust the 

performance is? If possible, the authors should provide a guideline for choosing optimal 

parameters. 

5. In Figure 6A-D, the authors claimed that Twins could learn sequencing depth-related 

characteristics of Hi-C data if differences in sequencing depth occur across conditions, which was 

quite confusing since we would expect no conformation differences if two datasets were only 

different in sequencing depth. Could the authors illustrate what are the sequencing depth-related 

characteristics? How do these characteristics differentiate from sequencing depth-independent 

characteristics? Overall, Figure 6 was not clear. Further explanations are needed. 

6. All the validations were performed on chromosome 2 across the manuscript. The authors should 

provide at least one additional validation to show another chromosome. This is important if the 

conformation changes are chromosome-specific. 

Minor comments: 

1. In Figure 2B-2D, the distances around telomeric regions are very striking. Is it a common 

feature or a specific feature either related to specific conditions or specific chromosomes? 

2. Figure 2A: the embedding distance plots didn’t have a scale. 

3. Figure 4B: how the contact domains were defined? If the differential CDs were identified by 

another method, how did the distances identified by Twins coordinate with the differential CDs? 

It’s would be better to include embedding distance plots for the selected regions. 

4. Figures S3 and 6: please consider using “high-depth” and “low-depth” other than “high-res” and 

“low-res”, which were not appropriate since the resolution was the same. 

5. Figures 7 and 8: What’s the meaning of the red and blue regions in “isolated features” in Figure 

7? What are the algorithms to obtain gained and lost features? How the “threshold” was defined? 

6. For Hi-C contact images in the manuscript (Figure S2C, S2D, S3B, S3C, S4B), please plot a 

density bar to show the contact numbers in the images. 
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Response to referees' comments NCOMMS-22-51138 
'Twins: A deep learning method for replicate-based conformation contact map analysis', 

We thank the referees for their thoughtful and constructive comments. We have performed 
additional work to strengthen the manuscript and to demonstrate the practical utility of the 
Twins approach to the broader genomics community. 

In particular we have  
i) demonstrated that Twins is able to detect small-scale chromatin changes in response to 
local genome perturbations  
ii) documented how Twins scores relate to Hi-C changes during T cell development in 
relation to Hi-C features quantified by independent approaches 
iii) added use cases with documentation for the non-specialist reader in addition to 
information to aid with the selection of parameters 
iv) added a test dataset and tutorial for the non-specialist reader. These data and the fully 
trained models are available from GEO under accession number GSE GSE233377 (reviewer 
token glipmwykzlmfdqp). 
v) extended our comparison of Twins with naïve image similarity metrics 
vi) addressed concerns about the availability of chromosome conformation capture data with 
matched sequencing depth 

We thank the referees for encouraging us to implement these changes, which we think have 
significantly strengthened the manuscript and demonstrated the practical utility of Twins to 
the broader genomics community. 

A detailed point-by-point response to the referees' comments follows below: 

Reviewer #1:

In the manuscript, the authors proposed and implemented a novel method, Twins, to 
generate distance via the Siamese network. Overall, the idea is reasonable and the results 
are great. 

1, The author introduces the Siamese network into the Hi-C analysis area. The detailed 
implementation requires a significant amount of work to solve the difference between the Hi-
C and the original Siamese application field (e.g. image processing). The authors have done 
solid work to overcome the challenge from data representation to the sample definition. 

2, The results strongly support the hypothesis. The authors utilized a NIPBL to validate 
results while NIPBL is not used in the training at all. The results show the obtained 
embeddings are with high quality. 

We thank the referee for these positive comments, and in particular their appreciation of the 
work we have undertaken to adapt the Siamese network approach to Hi-C applications. 

Revision suggestions: 

1. There are some prior work on the related problem, which the authors should cite and do 
some comparison analysis if possible. 

We agree with the referee that it is important to place our study in the context of prior work   
on the differential analysis of chromatin conformation maps. Whereas Twins is designed to 
be feature-agnostic, most prior metrics were engineered to search for and quantify pre-
defined features within chromatin conformation maps (reviewed by Gunsalus et al 2023, DOI 
10.1101/2023.04.04.535480).  A feature-agnostic method was proposed by Galan et al., 
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2020 (DOI 10.1038/s41588-020-00712-y). Their approach was to combine two naïve image 
similarity metrics, SSIM and PSNR. In contrast to Twins, this method does not utilise 
replicates in order to distinguish technical from biological variation, and there has been 
debate over whether or not SSIM is able to resolve technical noise from true differences in 
chromatin conformation (Ing-Simmons et al 2021 DOI, 10.1101/2021.10.18.464422; Lee et 
al., 2021 DOI, 10.1101/2021.09.23.459925). Consequently, we have compared Twins with 
both SSIM and PSNR individually on per-window scaled Hi-C images in Fig. 4. The results 
demonstrate that Twins is able to better resolve genuine differences in chromatin 
conformation. In further support of this conclusion, we have also computed two additional 
comparison metrics, F1 score and area under the receiver operator curve (AUROC) 
summarised in Referee 1 Table 1. We have added the following sentence to the discussion 
of our revised manuscript: 'Although feature-agnostic analysis methods for chromatin 
conformation maps exist, these rely on naive image similarity metrics, and may be less able 
to effectively differentiate biological differences from technical noise than a replicate-based 
approach.’ 

F1 score Tcell CTCF 
degron

NIPBL

1-SSIM 0.6669 0.6668 0.6666
PSNR 0.6666 0.6671 0.6666
MSE 0.667 0.6666 0.6668
Hausdorff 0.6663 0.6632 0.6666
NMI 0.6669 0.6667 0.6666
Twins 0.8515 0.9586 0.9609

Referee 1 Table 1. Comparison of F1 scores and area under the receiver operator curve 
(AUROC) between Twins and the naive image similarity metrics 1-SSIM, PSNR, MSE, 
Hausdorff, and NMI.  

2. I would like the authors to further discuss the loss function in the Siamese network. Based 
on the manuscript, the author uses the distance-based loss function. This type of loss 
functions are widely used in the information retrieval field to overcome some specific 
engineering difficulties on a large scale (see this https://arxiv.org/pdf/2006.11632.pdf as a 
good reading material). Under Hi-C scenarios, the best use case for this loss function should 
be “given a genomic region, find the nearest N most similar region from the entire genome. 
However, the distance-based loss has significant drawbacks. The distance has no physical 
meanings and it wholly optimizes comparison contrast. I suggest the authors investigate 
using the probability based loss with some modification of the network work. The two 
embeddings can be concatenated, then add some fully connected layer, then use the loss 
function like log-loss. By using this type of the loss, the output of the network is meaningful, 
which is the probability that two Hi-C blocks are the same. These are suggestions and 
authors may deep dive and implement it for discussion. 

We thank the referee for this suggestion. The original Twins training process included a 
cross entropy regularisation term at the end of a fully connected layer so that the total loss is 
a scaled sum of (i) the cross entropy loss at the end of the fully connected layer and (ii) the 
contrastive loss at the embedding layer.  

In response to the referee's comment we have performed additional analyses, in which we 
.(9+ 6:67+1(7/)(00: 9(5/+* 7.+ 6)(0/2- ,()735 ; 3, 7.+ )5366 +27534: 0366 (2* 7.+ )3275(67/9+
loss. Referee 1 Fig. 1 shows the results across chromosome 2. The results indicate that 
when increasing weight is placed on the cross entropy loss, the embedding distances 
become less meaningful, and the certainty of replicate classification becomes discrete.

AUROC Tcell CTCF 
degron

NIPBL

1-SSIM 0.5133 0.5410 0.5498
PSNR 0.4890 0.5218 0.4292
MSE 0.5108 0.4780 0.5701
Hausdorff 0.5070 0.4934 0.4829
NMI 0.4792 0.4300 0.4849
Twins 0.9128 0.9917 0.9927
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Since we prefer a quantification of biological differences over certainty estimates, we feel 
that the contrastive loss with the embedding distance is a good solution for the problem we 
are trying to address in our manuscript. However, increased emphasis on cross entropy loss 
may be the best approach for other use cases, and as a result we have included 
documentation for this scenario in our code-base at github.com/ea409/twins_hic.  

&+,+5++ $ %/-85+ $# '.+ +,,+)7 3, 9(5:/2- 7.+ 6)(0/2- ,()735" ; 32 7.+ 5+40/)(7+ )0(66/,/)(7/32
certainty and the embedding distance. As more emphasis is placed on the cross-entropy 
loss, the embedding distance becomes less well separated. 

3. This work is the foundations for many downstream research work. I suggest the author 
should clearly suggest the potential outputs. Based on my suggestions, there are three 
outcomes: 1) Using the model to generate embedding for a block of genome, which is 
technically a dimension reduction; 2) Finding the most similar pattern with a given genome 
block. 3) Compute distance between two blocks of genome (either same position from 
different tissues or same tissue from different position); 4) As a method to train a new model 
when more data (including Hi-C and the label) is available in future. The authors should give 
full code with documentation on all of the use cases to help non-computer science major 
researchers to use this work. Also, the author should also consider publishing the computed 
embeddings for other researchers to use without installing any deep learning tools.

We thank the referee for suggesting these use cases and agree that documentation for 
these use cases will make our work more accessible to non-specialists. We have now 
included and documented all 4 use cases in our published code base. We note that use 
case 2 produced interesting results (Referee 1 Fig. 2). We have also included the computed 
embeddings alongside our processed data to increase the utility for researchers who are 
less familiar with deep learning libraries. 
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Referee 1 Figure 2: Illustration of use case 2 suggested by the referee - finding the most 
similar pattern within a given genome block. The query Hi-C image was taken from 
chromosome 9 35.84Mb-38.4Mb of double positive thymocytes (left) and used to search for 
the closest embedding vectors across all double positive thymocyte Hi-C regions. These are 
given by the regions at chr3: 77.92-80.48Mb and chr4: 52.16-54.72Mb.  

Reviewer #2:

This manuscript proposed a deep learning method, Twins, to distinguish biological variation 
from technical noise and extract biological meaning features. The results look promising and 
well done. They proposed Twins as a powerful tool for the exploration of chromosome 
conformation capture data, such as Hi-C, capture Hi-C and Micro-C. As a tool development 
manuscript, the potential impact is its application in other studies.  

We thank the referee for these positive comments.  

It said in the method that “All original code has been deposited on Git Hub and is publicly 
available as of the date of publication.” Since I couldn’t see the code and related 
instructions, I couldn’t evaluate how easy for other researchers in the community to apply 
their method to their research. 

We apologise that the referee was unable to access our code. The revised manuscript now 
clearly states that the GitHub code can be found here github.com/ea409/twins_hic. The 
supplementary data including fully trained models are available to download from GEO 
under accession number GSE GSE233377. The reviewer token is glipmwykzlmfdqp. In 
addition, during revision we have added a test dataset and tutorial on our GitHub in order to 
enhance the practical utility of our approach to the broader genomics community. This code 
will be saved and version-controlled on Zenodo once the review process is complete and the 
code base is stable. 

Major criticism: 

1. In Figure 1C and 1D, shows that embedding distances can separate biological differences 
from technical noise, which is very promising. However, Figure 6C shows that a 2-fold 
sequencing depth difference can also make such separation. Though Figure 6G justifies that 
if differences in sequencing depth are mirrored between replicates and conditions, the 
sequencing depth-related artifacts are avoidable, it’s hard to have exact mirrored 

chr9:35.84Mb-38.4Mb chr3:77.92Mb-80.48Mb chr4:52.16Mb-54.72Mb

0.10.01 1

per window renormalised contacts 

Query region 1st closest region 2nd closest region
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sequencing depth in the real world. It will be helpful if the author can provide some practical 
strategies to deal with the data without the same/mirrored sequencing depth. 
We appreciate the referee's concern that real-world chromosome conformation capture data 
will rarely be perfectly matched for sequencing depth. Our experience with the data sets 
used in our study (Referee 2 Table 1 and Table 5 in the revised manuscript) indicates that 
differences in sequencing depth can be well tolerated so long as there as the span of the 
sequencing depths overlap for example given two replicates of sequencing depths x_1 and 
x_2 a network may be trained with a conditions containing two replicates of sequencing 
depth y_1 and y_2 and the intervals [x_1,x_2], [y_1,y_2] overlap. To clarify this point we 
have included the follow statement in the materials and methods “To fulfil the criteria of 
mirrored sequencing depths, our datasets are selected such that the span of the sequencing 
depths overlap for example given two replicates of sequencing depths x1 and x2 a network 
may be trained with a conditions containing two replicates of sequencing depth y1 and y2 
and the intervals [x1, x2], [y1, y2] overlap”. 

T-cell differentiation  

R1 R2 

DP 244438962 223193977 

SP 222906061 209206741 

DP high depth  417830413 427257794 

downsampled 208915207 213628897 

Nipbl deletion 

R1 R2 

TAM 51998355 75626897 

WT 76277577 65903921 

NCAP2 67503333 63246470 

NIPBL  65081892 72757890 

CTCF degron  

R1 R2 

Control 845858980 838742819 

Auxin  737448939 843972188 

Micro-C 

R1 R2 

H1 1470519840 1749983591 

HFF 3049701785 1508233177 

Referee 2 Table 1. Sequencing depth of the data sets used in our study. 

Where matched chromosome conformation capture data are not available, subsampling at 
the level of Hi-C contact maps or at the read level can be used, but may not give perfect 
results (Referee 2 Fig. 1). One way in which a user could circumvent this issue is by 
subsampling the data in different ways and including all of these in training. We have now 
detailed this in our code documentation and by including the table of sequencing depths and 
the following sentence in the results “Where mirrored data is unavailable it may be possible 
to minimise the effects of disparities in sequencing depth by sub-sampling the contacts from 
the chromatin conformation maps.” 
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Referee 2 Figure 1. Twins embedding distances on subsampled data for a network trained 
to look at sequencing depth differences and a network robust to sequencing depth 
differences. Subsampling Hi-C data is not always sufficient to reduce biases related to 
sequencing depth.

2. It was claimed that the method applied for the normalization of Hi-C data does not impact 
Twins' performance based on the visualization of distance distribution across chromosome 2 
and the correlation coefficient of all normalization methods. However, Figure 5A shows that 
distance based on VC normalization is very different from the other three methods, even 
though the correlation coefficient is not bad (=0.79). It will be helpful to directly show the 
performance of Twins based on four different normalization methods. 

We thank the referee for this observation. In order to more directly show the performance of 
twins based on the normalisation methods we have included a version of Fig. 5A with the 
axis scaled by quantile.  Here a score of 1 demonstrates that a value is in the 0.95 quantile 
(Referee 2 Fig. 2, new Fig. 5A of the revised manuscript). As is now evident, even in the VC 
normalised Hi-C maps, the embedding distances do still follow the same distribution across 
chromosome 2.To illustrate this point further, we have superimposed each replicate and 
condition distribution scaled by quantile (Referee 2 Fig. 3).  

Referee 2 Figure 2 (new Fig. 5A of the revised manuscript) Twins embedding distances for 
T-cell differentiation networks across chromosome 2 for different Hi-C normalisations scaled 
by 0.95 quantile.
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Referee 2 Figure 3. Embedding distance for Twins networks with different normalisations 
scaled to fit the same axis and overlayed.   

3. Although Twins can distinguish biological variation from technical noise, it’s unclear how 
to utilize Twins to get differential 3D genomic architecture between two conditions. For 
example, it would be interesting to know which enhancer-promoter looping is changed 
during certain conditions. 

Twins produces two outputs that will be useful for delineating differences in genome 
architecture between conditions, the embedding distance and Twins features. The utility of 
each output is discussed below.  

The Twins embedding distance indicates differences between conditions for chromosomal 
positions across the genome. In Figures 2E-F of the revised manuscript we illustrate how the 
Twins embedding distance can be useful in identifying relationships between chromatin 
features and changes in chromosome conformation contact maps. 

We find that the density of cohesin peaks strongly correlates with the Twins embedding 
distance for Nipbl ko, and the density of CTCF peaks strongly correlates with the Twins 
embedding distance for CTCF degron. To illustrate specificity, we have added an analysis of 
ChIP-seq signal for the histone modification H3K27me3 in the CTCF degron system to 
Figure 2H of the revised manuscript (shown below as Referee 2 Figure 4). The results show 
that H3K27me3 is not predictive of Twins embedding distances. To make these analyses 
more visually intuitive we have added genome browser shots of Twins embedding distances 
versus the density of  CTCF ChIP-seq peaks, contact domains and deregulated genes 
(Supplementary Figure 2 of the revised manuscript, shown below as Referee 2 Figure 5). 
Taken together, these data illustrate how Twins embedding distances can be used to identify 
chromatin features that correlate with - and may be causative for - changes in chromosome 
conformation contact maps identified by Twins embedding distances.  

Referee 2 Figure 4 (New Fig. 2F of the revised manuscript). In contrast to the density of 
CTCF peaks, H3K27me3 is not predictive of Twins embedding distances in CTCF-depleted 
neuronal progenitor cell (p>0.05). 
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Referee 2 Figure 5 (New Supplementary Fig. 2 of the revised manuscript). Regions with high 
Twins scores after CTCF depletion in neuronal progenitor cells are characterised not only by 
a high density of CTCF binding, but also by a high density of CTCF motifs and changes in 
contact domains, as well as the presence of deregulated genes. 

In addition, as demonstrated by new data shown in Fig. 2G of the revised manuscript, the 
embedding distance is sensitive to small scale changes in chromatin conformation, and 
therefore able to detect local genomic perturbations. 

New Fig. 2G of the revised manuscript. Twins scores reflect focal perturbations in 
chromosome architecture. 
Isoda et al., 2017 deleted a distal enhancer of the developmentally regulated Bcl11b gene 
on chromosome 12. The location of the enhancer at 108.4Mb and of the Bcl11b gene are 
shown. Enhancer deletion results in localised changes in the Hi-C map. Twins scores across 
chromosome 12 show a prominent peak at the location of the Bcl11b enhancer. 
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2) Twins features indicate the direction of change and the shape as well as the size of 
features identified (Fig. 7 of the revised manuscript). 

The direction of change, the shape, and the size of features identified by Twins will serve as 
a useful guide for choosing suitable tools for downstream quantification of chromosome 
conformation contact maps. For example, feature size will indicate whether changes 
preferentially occur on the scale of TADs or contact domains (Referee 2 Fig. 5). Feature 
shape will indicate whether changes ate symmetrical, asymmetric, or even stripe-like (Fig. 8 
of the revised manuscript). This will facilitate the use of suitable downstream analysis tools. 

To increase the practical utility of Twins to the broader genomics community we have added 
the following text to the discussion “In conclusion, our Twins algorithm is able to produce two 
key meaningful outputs. The Embedding distance which indicates differences between 
conditions for chromosomal positions genome-wide which may be correlated and compared 
with chromatin features of interest such as protein binding. The extracted differential 
features which indicate the direction of change and the shape as well as the size of features 
which will serve a useful guide for choosing suitable tools for downstream quantification of 
chromosome conformation contact maps”.

Minor criticism:

1. Why Twins perform much better for Micro-C than Hi-C, especially in 2-5kb resolution as 
shown in Figure 5C and 5D. It should be discussed. 

We agree with the referee that Twins performs much better for Micro-C than Hi-C. We think 
that there are technical as well as biological reasons for this, as explained in the following 
paragraph that we have added to the discussion of the revised manuscript: “Twins 
performed noticeably better on Micro-C than Hi-C data. There are several possible reasons 
for this. Micro-C has higher resolution, and therefore contains many more fine-scaled 
contacts. The increased resolution of Micro-C also enables near-optimal performance of the 
Twins network across a range of window sizes and resolutions (Fig. 5D). In addition, human 
embryonic stem cells (H1) and fibroblasts (HFF) are distantly related cell types, and 
therefore show many biological differences".  

2. Figure 2E, it’s hard to tell the difference between control NPC and CTCF degron. 
We appreciate the feedback and have adjusted the layout of the figure accordingly.

3. A typo in Figures 2C and 2D. It should be ‘As in (B)…’ 
We apologise for this mistake and thank the referee for pointing it out. 

4. Is there a particular reason to choose chromosome 2 as a test chromosome? 
In our paper we have kept chromosome 2 as the test chromosome to maintain consistency 
in the test dataset size. However, there is no particular reason and in response to this and a 
similar comment by referee 3 we have generated supplementary figures which demonstrate 
that the use of other chromosomes as a test leads to very highly correlated results.  

5. On page 13, a typo in the sentence “we trained a control network on one high-res and 
low-res replicate and asked to compare these replicates to a second pair of high-res and 
low-res replicates 6E). In this case, the training loss was unstable and did not meaningfully 
decrease 6F)…”. On page 21, Figure S3A, there are two ‘high’. The author should carefully 
check through the manuscript to minimize typos. 
We apologise to the reviewer for the typos and have amended the manuscript accordingly. 
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Reviewer #3:

In this manuscript, Al-Jibury et al developed a method named Twins to explore chromosome 
conformation capture data. The major advance of the method is to utilize biological or 
technical replications to distinguish technical noise from biological variations using 
contrastive learning. In the manuscript, the authors showed that Twins outperformed multiple 
naïve image similarity methods like 1-ssim. Using Twins, the authors also detected 
chromosome conformation features that had differential characters. 

We thank the referee for these positive comments. 

Overall, this work is of interest to the field of Hi-C analysis but with certain limitations. There 
are multiple concerns that need to be addressed before the manuscript is considered for 
publication. 

Major comments: 

1. In this work, by selecting overlapping matrixes with variable sizes from kilobases to a few 
million bases along the diagonal, long-range interactions and interchromosomal interactions 
beyond the matrix sizes were excluded, which is questionable. Recent works have shown 
that long-range interactions over several Mb were important for cellular function (Beagrie et 
al, Nature, 2017). Interchromosomal interactions were also shown to be critical for cell 
function (Xiong et al, Nature Communications, 2019). Technically, the ratio between inter- 
and intra-chromosome interactions is also important to evaluate Hi-C experiment quality. 
With these considerations, I would suggest the authors refine the overlapping images to 
include these additional interactions in their strategy. For instance, the images are not 
necessarily to be square.

We thank the referee for this suggestion. We agree with the referee that interchromosomal 
interactions can be extremely important. However, these types of features are not readily 
accessible to the Twins algorithm, as they may not form features in the computer vision 
sense. We now acknowledge this limitation in the discussion of the revised manuscript “One 
limitation of our approach is that it is not possible to assess changes beyond the diagonal of 
chromatin conformation maps where there may be other features of interest.” We opted to 
use squares of the dimension 256x256 because it has many curated network architectures; 
finding good network architectures is non-trivial task, and an active area of research in deep 
learning.

2. The authors have analyzed multiple published datasets to demonstrate the power of 
Twins. However, since the chromosome conformation changes upon CTCF degradation or 
NIPBL deletion were genome-wide and dramatic, it was not a surprise to find large-scale 
differences. On the other hand, the authors observed very dramatic chromosome-wide 
distances between the two states of T-cell differentiation, which was quite surprising as 
differentiation usually need part of the genome but not the whole genome to be regulated. 
These observations raise some questions: 1) what’s the biological function of the distances 
between DP and SP? Were they all functional for T-cell differentiation? 2) If apply Twins to a 
condition that only a limited part of the chromosome has conformation changes, whether 
Twins can identify these small-scale differences? This question needs to be very well 
demonstrated since these small-scale differences are the most common situations in 
analyzing the Hi-C dataset.

We thank the reviewer for posing these important questions.  

In 1), the referee questions the biological significance of Twins distances between DP and 
SP thymocytes. We have performed extensive analyses in response to this question, 
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because similar concerns are raised by this referee in their point 3 below. The data 
presented here also serve to address point 3 below. 

New Supplementary Figure 3 of the revised manuscript (shown below) provides a visual 
demonstration how Twins scores correspond to Hi-C maps of 4 representative genomic 
regions with high Twins scores and 2 representative genomic regions with low Twins scores 
(Supplementary Figure 3A). We then present a formal analysis of the relationship between 
Twins scores and Hi-C features in T cell development. Importantly, Supplementary Figure 
3B of the revised manuscript provides a link between Twins outputs and Hi-C features in T 
cell development. Here, we analysed changes in directionality index, insulation score, gain 
or loss of contact domains, and A/B compartment identity. We then classified genomic 
regions by the extent of change in these Hi-C features. Regions with low, medium, or high 
changes in Hi-C features showed significant differences in their Twins scores. For each Hi-C 
feature examined, Twins scores reflect the degree of change during T cell development. 

New Supplementary Figure 3 of the revised manuscript. Features of genomic regions with 
high versus low Twins scores in T cell development. 
A. Hi-C maps of 4 representative genomic regions with high Twins scores and 2 
representative genomic regions with low Twins scores. 
B. Twins scores reflect changes in Hi-C features during T cell development. Comparison of 
Twins embedding distance to changes in directionality, insulation, differential contact 
domains and changes in compartment identity. Mean changes in directionality at domain 
boundaries, total insulation and changes in compartment are quantified for each window and 
placed into three equal sized bins (low, medium and high) by percentile. Number of 
differential contact domains are counted for each window and placed into bins ([1-10], [11-
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18], [19-27], [28-35] and 36+) each bin has a variable number of regions (5786, 2475, 672, 
113, 19). All p-values are assigned using a two-sided t-test.  

To further illustrate how Twins output relates to T cell development, Referee 3 Fig. 1 depicts 
Twins scores, differential ATAC-seq peaks (ATAC-seq data from Miyazaki et al., 2020 DOI: 
10.1126/sciimmunol.abb1455), and contact domains in DP and CD4 SP thymocytes for the 
region harbouring the developmentally regulated Rag1 and Rag2 genes on chromosome 2. 
High Twins scores correspond to regions with a high density of differential ATAC-seq peaks, 
and gain or loss of contact domains during T cell differentiation. 

Referee 3 Figure 1. Twins scores reflect developmental processes during T cell 
differentiation. Twins scores, differential ATAC-seq peaks (blue: downregulated between DP 
and CD4 SP thymocytes, red: upregulated between DP and CD4 SP thymocytes), and 
contact domains in DP and CD4 SP thymocytes are shown for the region harbouring the 
developmentally regulated Rag1 and -2 genes on chromosome 2. 

Figure 4Bii of the revised manuscript shows an additional example of a region with a high 
Twins score. This region experiences the loss of a contact domain that harbours the 
developmentally regulated Mmadhc gene.  

Of note, changes in embedding distances may give an impression that differences are 
spread out over large genomic areas. Due to the use of overlapping windows, a change 
observed in one location has consequences on the score upstream and downstream of that 
location (Referee 3 Fig. 2). 

Referee 3 Figure 2. Illustration of how features location can impact twins score due to 
overlapping windows. Briefly a feature e.g. contact domain impacts windows either side of 
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the central window containing the feature since they too may fully or partially contain the 
feature. This can make the embedding distance across the test chromosome look higher 
than may be expected.  

Finally, we performed stringent validation to ensure that Twins does not learn false 
differences. Firstly, we analysed NCAPH2 ko, which had been found not to result in Hi-C 
changes in quiescent liver cells (Figure 3B, C). Secondly, we used random shuffling of reads 
(Supplementary Figure 4). In each case, we found that the Twins algorithm was robust to 
learning false differences in Hi-C maps.

In question 2), the referee challenges us to demonstrate whether Twins is able to identify 
small-scale differences that result from local experimental perturbations. To address this 
question we examined Hi-C data published by Isoda et al., 2017 DOI: 
10.1016/j.cell.2017.09.001. These authors deleted a distal enhancer of the developmentally 
regulated Bcl11b gene on mouse chromosome 12. This enhancer deletion results in 
localised changes in chromosome conformation (Referee 3 Fig. 3). We applied the Twins 
network trained on our own thymocyte Hi-C data to the Hi-C data of Isoda et al., 2017. Twins 
scores across chromosome 12 show a prominent peak around the location of the Bcl11b
enhancer (108.4Mb), and provide a good reflection of visual changes to the Hi-C map 
(Referee 3 Fig. 3). This result shows that Twins can indeed identify small-scale differences 
that result from focal perturbation of the genome in developing T cells. This analysis is now 
included as Figure 2G in the revised manuscript.  

Referee 3 Figure 3 (New Fig. 2G of the revised manuscript). Twins scores reflect focal 
perturbations in chromosome architecture. 
Isoda et al., 2017 deleted a distal enhancer of the developmentally regulated Bcl11b gene 
on chromosome 12. The location of the enhancer at 108.4Mb and of the Bcl11b gene are 
shown. Enhancer deletion results in localised changes in the Hi-C map. Twins scores across 
chromosome 12 show a prominent peak at the location of the Bcl11b enhancer 

3. The biological meanings of the features extracted by Twins were not very well illustrated. 
Although the authors showed some enrichment of CTCF, cohesin, and chromatin 
modifications in the different regions identified with Twins, how these differences correlate to 
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cellular function and previously identified conformation features like TADs and loops had not 
been carefully examined. For instance, whether the degree of embedding distances has 
specific indications for chromosome conformation? Could the author add some analysis to 
check how the embedding distances related to TAD insulation, compartment, and 
CTCF/cohesin binding in Figure 2B-2D? What are the genes being affected in these regions 
and whether they are critical for T-cell differentiation? Most important, in Figures 7 and 8, 
what are the biological meanings of the differential features? Did the authors find some 
differential features in T-cell differentiation system? 

We thank the referee for this important point. In addition to the extensive analysis on the 
relationship between Twins scores and chromatin changes in T cell development discussed 
in response to this referee's point 2 above, Supplementary Figure 2 of the revised 
manuscript presents an illustration of chromatin changes in control and CTCF-depleted 
neuronal progenitor cells. Increased Twins distances correspond to visibly different Hi-C 
maps, the occurrence of deregulated genes, the density of CTCF motifs, and the density of 
CTCF ChIP-seq peaks (Referee 3 Fig. 4).   

Referee 3 Figure 4 (New Supplementary Fig. 2 of the revised manuscript). Illustration that 
regions with high Twins scores after CTCF depletion in neuronal progenitor cells are 
characterised by changes in contact domains, deregulated genes, and a high density of 
CTCF motifs in addition to a high density of CTCF binding detected by ChIP-seq. 

We did find differential features in the T-cell differentiation system. One example is provided 
by chromatin jets, which we recently described as a new feature in chromatin contact maps 
(Guo et al., 2022, DOI: 10.1016/j.molcel.2022.09.003). Twins found two instances of jets that 
were lost or gained during DP to SP differentiation (Reviewer 3 Fig. 5).  
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Reviewer 3 Figure 5: Twins finds chromatin jets regulated during T-cell differentiation.  
A. Twins embedding distances of the regions chr19: 29.6-32.16Mb and chr9: 116-118.56Mb 
are shown against the distribution for all regions along the Y axis, demonstrating that the 
condition embedding distances for these two regions are high.  
B. Feature extraction performed on the two regions depicted in A. demonstrating the 
presence of differential jets.  

4. Another concern about Twins is the use of parameters for the image. Authors should 
provide certain rationales for the use of the parameters such as why the stride was used as 
160 kb in a window size of 256xR? Whether the parameters will affect the performance? 
How robust the performance is? If possible, the authors should provide a guideline for 
choosing optimal parameters. 

The window size is fixed as 256xR because 256x256 images are used routinely in computer 
vision, and proven network architectures are available. A good network architecture is 
important for the ability of the network to train and to find differential features.  

The stride is the distance between each image observation along the diagonal of the 
interaction map. It Is important for the stride to be less than the image size to ensure 
coverage of the full genome and a variety of features present in the train set at different 
positions relative to the centre of the image. However, increasing the stride density impacts 
the number of datapoints used at training which has three key consequences. The first 
consequence is that there is a higher potential for the network to overfit on the train data. 
The second is that train time will be longer, see table of train times and stride choices. 
Finally, as the stride becomes smaller the file size becomes larger. With multiple networks to 
train in a size limited environment this constraint can be a significant for most users, see 
table of file size and stride choices.  

We have included this information now summarised in a paragraph in our materials and 
methods and as documentation to supplement our code base.  

5. In Figure 6A-D, the authors claimed that Twins could learn sequencing depth-related 
characteristics of Hi-C data if differences in sequencing depth occur across conditions, 
which was quite confusing since we would expect no conformation differences if two 
datasets were only different in sequencing depth. Could the authors illustrate what are the 
sequencing depth-related characteristics? How do these characteristics differentiate from 
sequencing depth-independent characteristics? Overall, Figure 6 was not clear. Further 
explanations are needed. 

Stride 
density per 
window

stride size 
(kb) Train time for each of 5 random seeds

File size  
(per file)

2 1280  2m12.378s 2m24.900s 1m32.333s 1m35.878s 1m35.831s 397MB 

4 640 3m53.511s 3m53.004s 3m8.922s 3m6.894s 3m7.922s 796MB

8 320 7m39.682s 7m41.851s 6m10.678s 6m9.904s 6m16.464s 1.55GB

16 160 15m53.314s 13m1.052s 12m49.414s 12m57.209s 12m1.787s 3.10GB

32 80 31m51.314s 32m35.059s 27m13.123s 26m33.553s 27m4.180s 6.22GB

64 40 ~ 1hr 12.44GB

128 20 ~ 2hrs 24.88GB 
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1. In Figure 2B-2D, the distances around telomeric regions are very striking. Is it a common 
feature or a specific feature either related to specific conditions or specific chromosomes? 
Telomeres are hard to sequence and the resulting Hi-C maps are sparse. This can lead to 
high replicate distances in telomeric regions. The specific locations depend on the reference 
genome (mm9 for liver and thymocytes, mm10 for NPCs). 

2. Figure 2A: the embedding distance plots didn’t have a scale. 
We thank the reviewer for noticing this oversight, we have now amended this in the 
manuscript. 

3. Figure 4B: how the contact domains were defined? If the differential CDs were identified 
by another method, how did the distances identified by Twins coordinate with the differential 
CDs? It’s would be better to include embedding distance plots for the selected regions. 
We have revised the Figure legend to indicate that the embedding distances are included in 
Fig. 4C. Differential domains were quantified by a different method and this is now clarified 
in the legend as well as in in the materials and methods.  

4. Figures S3 and 6: please consider using “high-depth” and “low-depth” other than “high-
res” and “low-res”, which were not appropriate since the resolution was the same. 
We thank the referee for this recommendation, and we agree that the use of low-depth and 
high-depth are more appropriate. We have amended the manuscript accordingly. 

5. Figures 7 and 8: What’s the meaning of the red and blue regions in “isolated features” in 
Figure 7? What are the algorithms to obtain gained and lost features? How the “threshold” 
was defined? 
These are defined using the Twins trained network. The threshold is placed based on the 
0.95 quantile of same operation applied to the replicates. Red is gain between the conditions 
and blue is lost between the conditions this is now clarified in the figure legend. The 
following sentence is added to clarify the choice of threshold in the materials and methods 
“We calculate the threshold by taking the 0.95th percentile of values obtained by the 
application of the same method on the replicate map”.

6. For Hi-C contact images in the manuscript (Figure S2C, S2D, S3B, S3C, S4B), please 
plot a density bar to show the contact numbers in the images. 
We thank the reviewer for their attention to detail and have now included a density bar for 
the chromatin conformation maps requested.  



Reviewer #1 (Remarks to the Author): 

The authors have addressed all my concerms. As a foundation work, the downstream impact may 

be at different areas beyong our expectation, I would like the author to included all results done in 

this study (e.g. the loss function study as described in the response) in public access place (e.g. 

github or supplemental mateirals.) Therefore, other researcher can read the results. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed all my comments. 

Reviewer #3 (Remarks to the Author): 

The authors have addressed my concerns and improved the manuscript according to the 

suggestions. The manuscript is now suitable to be published.


