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1. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S1: UNSUPERVISED STDP-BASED
SNN

Unsupervised learning is an essential cognitive function of the brain. STDP is a widespread
rule of synaptic weight modification in the brain. It updates the synaptic weights according
to the temporal relationship of the pre-and post-synaptic spikes. In BrainCog, we design an
unsupervised STDP-based spiking neural network model [1] as a functional module incorporated
to BrainCog. The architecture of unsupervised STDP-based SNN is shown in Fig. S1.
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Fig. S1. The framework of the unsupervised STDP-based spiking neural network model.

Unsupervised STDP-based SNN contains various adaptive mechanisms to improve the self-
organization ability of the overall network. STP is another synaptic learning mechanism that
exists in the brain. Based on the STDP and STP in BrainCog, we designed an adaptive synaptic
filter (ASF) that integrates input currents through nonlinear units, and an adaptive threshold
balance (ATB) that dynamically changes the threshold of each neuron to avoid excessively high
or low firing rates. The combination of the two controls the firing balance of neurons. We
also address the problem of coordinating neurons within a single layer with an adaptive lateral
inhibitory connection (ALIC). The mechanism has different connection structures for different
input samples. Finally, in order to solve the problem of low efficiency of STDP training, we
designed a sample temporal batch STDP. It combines the information between temporal and
samples to uniformly update the synaptic weights, as shown by the following formula.
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Where W(x) is the function of STDP, Ny, is the batchsize of the input, Ty, is the batch of
time step, N is the number of neurons.

We verified the unsupervised learning ability of BrainCog on MNIST and Fashion-MNIST,
achieving 97.9% and 87.0% accuracy, respectively. To the best of our knowledge, these are the
state-of-the-art results for unsupervised SNNs based on STDP. To better illustrate the power of
our model on small sample training, we tested the model with small samples and found that this
model has stronger small sample processing ability than ANN with similar structures, as shown
in Tab. S1.

Table S1. The performance of unsupervised SNN compared with ANN on MNIST dataset with
different number of training samples.

samples 200 100 50 10
ANN 79.77%  71.40% 68.72% 47.12%
Ours 81.45%  75.44% 72.88%  51.45%

Difference 1.68%  4.04%  4.16%  4.33%




2. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S2: SNN WITH GLOBAL FEED-
BACK CONNECTIONS

Most SNNs are based on feedforward structures, while the importance of brain-inspired feedback
structures has been ignored. The feedback connections carry out the predictions from the top layer
to cooperate with the local plasticity rules to formulate the learning and inference in the brain.
In BrainCog, we introduce the global feedback connections and the local differential learning
rule [2] in the training of SNNs.
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Fig. S2. The feedforward and feedback pathway in the SNN model. The global feedback path-
way propagates the target of the hidden layer.

We use the LIF spiking neuron model in the BrainCog to simulate the dynamical process
of the membrane potential V(t). We use the mean firing rates S; of each layer to denote the
representation of the Iy, layer in the forward pathway, and the corresponding target is denoted as
S;. Here we use the mean squared loss (MSE) as the final loss function. $;_1 denotes the target of
the penultimate layer, and is calculated as shown in Eq. S2, Wy _; denotes the forward weight
between the (L — 1), layer and the Ly,. 1; represents the learning rate of the target.

S11 =511 —AS =S 1 —1:W[_;(Sout — ST) (52)

The target of the other hidden layer can be obtained through the feedback connections:

S1 =51 — Gy(Sout — ST) ($3)

By combining the feedforward representation and feedback target, we compute the local MSE
loss. We can compute the local update of the parameters with the surrogate gradient. We have
conducted experiments on the MNIST and Fashion-MNIST datasets, and achieved 98.23% and
89.68% test accuracy with three hidden layers. Each hidden layer is set with 800 neurons. The
details are shown in Fig. S3.
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Fig. S3. The test accuracy on MNIST and Fashion-MNIST datasets of the SNNs with global
feedback connections.



3. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S3: BIOLOGICAL-BP SNN

For backpropagation-based SNN training methods, BrainCog provides a biologically plausible
spatio-temporal adjustment [3], as shown in Fig. 54, which can correctly assign credit according
to the contribution of the neuron to the membrane potential at each moment.
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Fig. S4. The forward and backward process of biological BP-based SNNs for BrainCog.

Based on LIF spiking neuron, the direct input encoding strategy, the MSE loss function and the
surrogate gradient function supplied in BrainCog, we propose a Biologically Plausible Spatio-
Temporal Adjustment (BPSTA) to help the BP algorithm with more reasonable error adjustment
in the spatio-temporal dimension [3]. The algorithm realizes the reasonable adjustment of the
gradient in the spatial dimension, avoids the unnecessary influence of the neurons that do not
generate spikes on the weight update, and extracts more important features. By applying the
temporal residual pathway, our algorithm helps the error to be transmitted across multiple spikes
and enhances the temporal dependency of the BP-based SNNs. Compared with SNNs and
ANNSs with the same structure that only used the BP algorithm, our model greatly improves
the performance of SNNs on the DVS-CIFAR10 and DVS-Gesture datasets, while also greatly
reducing the energy consumption and decay of SNNs, as shown in Tab. S2.

Table S2. The energy efficiency study. The former represents our method, the latter represents
the baseline.

Dataset Accuracy Firing-rate =~ EE= %‘NN
SNN

MNIST 99.58%/99.42%  0.082/0.183  35.1x/15.7x
N-MNIST 99.61%/99.32% 0.097/0.176  29.6x/16.3x
CIFAR10 92.33%/89.49%  0.108/0.214  26.6x/13.4x
DVS-Gesture  98.26%/93.92%  0.083/0.165  34.6x/17.4x
DVS-CIFARIO0  77.76%/71.40%  0.097/0.177  29.5x/16.2x

4. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S4: ANN-SNN CONVERSION
WITH BURST SPIKES

Conversion methods can produce spike neural networks with performance comparable to artificial
neural networks while minimizing training costs. However, traditional conversion methods
normalize weights based on activation values obtained from sampled data, resulting in a trade-off
between speed and accuracy for SNNs. Furthermore, previous work commonly uses AvgPooling
instead of MaxPooling because selecting neurons with maximum firing rate in the time dimension
is challenging.

To address the issue of the residual membrane potential of neurons, we introduce a bursting
mechanism, as illustrated in Fig. S5, that allows neurons to send multiple spikes between two
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Fig. S5. The forward process of SNN with burst spikes and LIPooling.

time steps depending on the current membrane potential. This approach enables neurons to
transmit the remaining information by sending spikes between two time steps, leading to an
increased firing rate of the SNN and passing on the remaining membrane potential to the next
layer of neurons. Inspired by the lateral inhibition mechanism, we propose LIPooling to transform
the maximal ensemble layer, as shown in Fig. S5. Operationally, the winner in LIPooling inhibits
other neurons, potentially preventing the neuron with the highest firing rate from spiking due to
the suppression of other neurons in the history. LIPooling aggregates the output of all neurons
during the simulation, utilizing competition between neurons to obtain an accurate sum (equal to
the actual maximum) rather than merely picking winners.

We tested our approach in VGG16 and ResNet16 networks on CIFAR100 datasets, achieving
significant improvements in conversion speed and accuracy. Our method achieved a performance
of 77.93% on VGG16 using 84 time steps and 80.17% on ResNet20 using 93 time steps, as
demonstrated in the Tab. S3.

Table S3. The classification accuracy of converted SNNs on CIFAR100 with BrainCog.

Method Model ANN Acc(%) SNN Best Acc(%) Time Step

VGGI16 77.75 72.13 256
baseline
ResNet20 80.25 72.01 256
VGG16 77.75 77.93 84
ours
ResNet20 80.25 80.17 93

5. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S5: QUANTUM SUPERPOSITION
INSPIRED SNN

In the microscopic size, quantum mechanics dominates the rules of operation of objects which
reveals the probabilistic and uncertainties of the world. New technologies based on quantum
theory like quantum computation and quantum communication provide an alternative to infor-
mation processing. Researches show that biological neurons spike at random and the brain can
process information with huge parallel potential like quantum computing.

Inspired by this, we propose the Quantum Superposition Inspired Spiking Neural Network
(QS-SNN) [4], complementing quantum image (CQIE) method to represent image in the form of
quantum superposition state and then transform this state to spike trains with different firing
rate and phase. The effort tries to incorporate the quantum superposition mechanism into SNNs
as a new form of encoding strategy for BrainCog, and the model finally shows its capability
on robustness for learning. The proposed QS-SNN model is tested on background inverted
MNIST datasets. Using the quantum superposition encoding module (QSEncoder) provided by
BrainCog, the background reverse images are represented by quantum superposition state and
then transferred to spike sequences of different frequencies and phases.

Furthermore, we use two-compartment spiking neural networks to process these spike trains.
The SNN model is built by multi-compartment neuron integrated in BrainCog, which contains



dendrite and soma computing parts. The dendrite process the input spike signal. The soma
integrates the dendritic potential and generates spike output. The proposed QS-SNN model is
trained by using dendrite prediction and proximal gradient method.
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Fig. S6. QS-SNN classifies background reverse MNIST images. (a) Background reverse MNIST
images. (b) Comparison of QS-SNN and other models on MNIST dataset.
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We compare the QS-SNN model with other convolutional models. The result in Fig. S6
shows that our QS-SNN model overtakes other convolutional neural networks in recognizing
background-inverted image tasks. The traditional fully-connected ANNs and convolutional
models struggle to handle large changes in image properties, such as background inversion,
even if the spatial features of the image remain unchanged. Compared with other models, the
QS-SNN model can keep the recognition performance basically unchanged when recognizing
the background reversed image. The VGG16, ResNet101 and DenseNet121 models with deep
architectures also face drastic performance degradation in the face of image background inversion.
In contrast, although the QS-SNN model also suffered from performance degradation when the
image information was blurred, the QS-SNN model regained its recognition ability when the
digital features of the background-reversed image became clear.

6. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S6: BRAIN-INSPIRED SEQUENCE
PRODUCTION SNN

Sequence production is an essential function for Al applications. Components in BrainCog enable
the community to build SNN models to handle this task. In this paper, we introduce the brain-
inspired symbol sequences production spiking neural network (SPSNN) model [5] that has been
incorporated in BrainCog. SPSNN incorporates multiple neuroscience mechanisms including
Population Coding, STDP, Reward-Modulated STDP, and Chunking Mechanism, mostly covered
and provided by BrainCog. After reinforcement learning, the network can complete the memory
of different sequences and production sequences according to different rules.

For Population Coding, this model utilizes populations of neurons to represent different sym-
bols. The whole neural loop of SPSNN is divided into Working Memory Circuit, Reinforcement
Learning Circuit, and Motor Neurons [5]. The Working Memory Circuit is mainly responsible for
completing the memory of the sequence. The Reinforcement Learning Circuit is responsible for
acquiring different rules during the reinforcement learning process. The Motor Neurons can be
regarded as the network’s output.

In the working process of the model, the Working Memory Circuit and the Reinforcement
Learning Circuit cooperate to complete the memory and production of different sequences [5]. It
is worth mentioning that with the increase of background noise, the recall accuracy of symbols at
different positions in a sequence gradually decreases, and the overall change trend follows the
"U-shaped accuracy”, which is consistent with experiments in psychology and neuroscience [6].
The results are highly consistent due to the superposition of primacy and recency effects. Our
model provides a possible explanation for both effects from a computational perspective.



7. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S7: COMMONSENSE KNOWL-
EDGE REPRESENTATION GRAPH SNN

BrainCog provides commonsense knowledge representation SNN (CKR-SNN) to explore SNN-
based commonsense knowledge representation and reasoning. Inspired by the population
coding mechanism, this module encodes the entities and relations of commonsense knowledge
graph into different populations of neurons. Via the spiking timing-dependent plasticity (STDP)
learning principle, the synaptic connections between neuron populations are formed after guiding
the sequential firings of corresponding neuron populations [7]. Neuron populations together
constructed the giant graph spiking neural networks, which contain the commonsense knowledge.
In this module, CKR-SNN represents a subset of Commonsense Knowledge Graph ConceptNet [8].
After training, CKR-SNN can complete conceptual knowledge generation and other cognitive
tasks [7].

8. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S8: CAUSAL REASONING SNN

In BrainCog, we constructed causal reasoning SNN, as an instance to verify the feasibility of
spiking neural networks to realize deductive and inductive reasoning. Specifically, Causal
Reasoning Spiking Neural Network (CRSNN) module contains a brain-inspired causal reasoning
spiking neural network model [9]. This model explores how to encode a static causal graph into a
spiking neural network and implement subsequent reasoning based on a spiking neural network.

The CRSNN module adopts the population coding mechanism and uses neuron populations to
represent nodes and relationships in the causal graph. Each node indicates different events in the
causal graph. By giving current stimulation to different neuron populations in the spiking neural
networks and combining the STDP learning rule [10], CRSNN can encode the topology between
different nodes in a causal graph into a spiking neural network. Furthermore, according to this
network, CRSNN completes the subsequent deductive reasoning tasks. Then, by introducing an
external evaluation function, we can grasp the specific reasoning path in the working process
of the network according to the firing patterns of the model, which gives the CRSNN more
interpretability compared to traditional ANN models [9].

9. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S9: DROSOPHILA-INSPIRED
DECISION-MAKING SNN

Drosophila decision-making consists of value-based nonlinear decision and perception-based
linear decision, where the nonlinear decision could help to amplify the subtle distinction between
conflicting cues and make winner-takes-all choices [11]. Based on the learningrule, Customlinear
and node component in BrainCog, we build Drosophila nonlinear and linear decision-making
pathways as shown in Fig. S7a-b. The entire model consists of a training phase and a testing
phase as same as [12]. In the training phase, a two-layer SNN with LIF neurons is trained by
reward-modulated STDP, which combines local STDP synaptic plasticity with global dopamine
regulation. The training phase learns the safe pattern (upright-green T) and the punished pattern
(inverted-blue T) [12]. Therefore, it is safe for green color and upright T shape factors, while blue
color and inverted T shape are dangerous.

Two cues (color and shape) are restructured during the testing phase, requiring linear and
nonlinear pathways to make a choice between inverted-green T and upright-blue T, as shown
in Fig. S7c. The linear decision directly uses the knowledge acquired during the training phase
to make decisions. The nonlinear network models the recurrent loop of the DA-GABA-MB
circuit [11, 13, 14]: KC activates the anterior posterior lateral (APL) neurons, which in turn
releases GABA transmitter to inhibit the activity of KC. KC also provides mushroom body output
neuron (MBON) with exciting input in order to generate behavioral choices. When faced with
conflicting cues, the level of DA increases rapidly and produces mutual inhibition with APL,
thereby producing a disinhibitory effect on KC. The excitatory connection between DA and
MBON also helps speed up decision-making.

To verify the consistency of drosophila-inspired decision-making SNN with the conclusions
from neuroscience [11], we count the behavior paradigm of our model under different color
intensities over a period of time. First, we run the network for 500 steps to count the time f; of
selecting behavior 1 (avoiding) and the time t; of selecting behavior 2 (approaching). Then we

calculate prefer index (PI) values under different color intensity: PI = }Z;Z} . From Fig. 574,

we find that nonlinear circuits could achieve a gain-gating effect to enhance relative salient
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Fig. S7. Drosophila-inspired decision-making SNN. (a) Linear Pathway. (b) Nonlinear Pathway.
(c) Experiments for training and choice phases. (d) Experimental results of linear and nonlinear
networks under the dilemma. The X-axis refers to the color density, and the Y-axis represents
the PI values.

cue and suppress less salient cue, thereby displaying the nonlinear sigmoid-shape curve [12].
However, the linear network couldn’t amplify the difference between conflicting cues, thus
making an ambiguous choice (linear-shape curve) [12]. This work proves that drawing on the
neural mechanism and structure of the nonlinear and linear decision-making of the Drosophila
brain, the brain-inspired computational model implemented by BrainCog could obtain consistent
conclusions with the Drosophila biological experiment [11].

10. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S10: EMOTION-DEPENDENT
ROBOTIC MUSIC COMPOSITION AND PLAYING.

Stylistic Music Composition. Inspired by the mechanisms of the human brain, we introduce a
brain-inspired spiking neural network (SNN) that contains several collaborative subnetworks
to learn and generate music melodies. The architecture is shown in Fig. S8. Inspired by the
function of brain areas which is related to music learning and human creativity (Fig. S8a), the
SNN contains three subsystems: 1) The knowledge subsystem is responsible for encoding and
learning the background information of a musical piece. As is shown in Fig. S8b, the genre
cluster stores the genre of classical music pieces, the composer cluster represents the names of
famous composers, and the title cluster mainly encodes the titles of musical pieces. Connections
between layers are dynamically generated and updated. Furthermore, neurons in the upper
layers project to those in the lower layers. This hierarchical structure helps the model organize
and learn complex background information. 2) The emotion subsystem is a neural cluster that
simply expresses four emotional types. 3) The sequential memory subsystem, consisting of the
pitch subnetwork and duration subnetwork, is critical for music learning and generating. The
pitch subnetwork mainly encodes musical pitches and learns the ordered relationships among
musical notes. The duration subnetwork represents the temporal intervals of musical notes.
Both subnetworks are composed of numerous minicolumns in which neurons with the same
preferences are organized in vertical structures. Synaptic connections with different transmission
delays are dynamically generated and modulated during the learning process [15].

Learning Process. First, neurons in these subnetworks receive the background knowledge and
musical notes as the external stimulus. Since neurons have their preferences for this information,
we use the Gaussian filters to simulate these specific neural properties and transform these
external stimuli into the input currents. Then neurons that preferred the input information emit
spikes continuously. Meanwhile, synaptic connections between these activated neurons are
generated and the synaptic weights are updated by the STDP learning rule [15, 16].
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Fig. S8. The architecture of the music learning and composition model, (a) shows the brain
areas related to the music memory and stylistic composition, and (b) describes the architecture
of the entire spiking neural network.

Generating Process. After the learning process, the model can generate melodies with different
styles. Three conditions should be specified first: music style, beginning notes, and the melody
length (number of the notes) to be generated. Music style refers to the emotional types, musical
genre styles or the composers’ characteristics. Based on the learning process, neurons that encode
initial information are activated and fire. Since the synaptic weights are modulated during the
learning process, different neurons in pitch and duration subnetworks are triggered and emit
spikes.

Experiments. A classical piano dataset, including 331 western classical piano works recorded
in MIDI format, is employed here to train the model. The musical works in this dataset are
labeled with different styles: four emotional types (joyful, sorrowful, peaceful and passionate),
three genre types (Baroque, Classical and Romantic), and twenty-five composers” styles). We
also invited 41 human listeners to evaluate the qualities of generated melodies and score the
generated melodies. The score ranges from 1 (which means the piece has no apparent features) to
5 (the melody style is quite similar to the specified type). In fact, the evaluation results depend on
subjective preferences and social experiences, the experiments are relatively complex. The final
experiments indicate that the generated melodies with different genres get high scores. However,
those with various composers’ styles depend on the musicians’ characteristics. Similarly, the
generated melodies with joyful, sorrowful and peaceful types get high scores [16].
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