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THE BIGGER PICTURE To integrate the scientific exploration of the nature of biological intelligence and
develop artificial intelligence (AI), the research community urgently requires an open-source platform
that can simultaneously support brain-inspired AI and brain simulation across multiple scales. To meet
this need, we release a spiking neural network (SNN)-based, brain-inspired cognitive intelligence engine
(BrainCog) that provides a variety of universal essential components, including spiking neurons, encoding
strategies, learning rules, brain areas, and hardware-software co-design. With these easy-to-use compo-
nents, BrainCog incorporates numerous brain-inspired AI models that cover five categories of brain-
inspired cognitive functions. It also supports multi-scale brain structure and function simulation. We also
provide BORN, an SNN-driven, brain-inspired AI engine that integrates multiple BrainCog components
and cognitive functions to build advanced AI models and robotics applications.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY
Spiking neural networks (SNNs) serve as a promising computational framework for integrating insights from
the brain into artificial intelligence (AI). Existing software infrastructures based on SNNs exclusively support
brain simulation or brain-inspired AI, but not both simultaneously. To decode the nature of biological intelli-
gence and create AI, we present the brain-inspired cognitive intelligence engine (BrainCog). This SNN-based
platform provides essential infrastructure support for developing brain-inspired AI and brain simulation.
BrainCog integrates different biological neurons, encoding strategies, learning rules, brain areas, and hard-
ware-software co-design as essential components. Leveraging these user-friendly components, BrainCog
incorporates various cognitive functions, including perception and learning, decision-making, knowledge
representation and reasoning, motor control, social cognition, and brain structure and function simulations
across multiple scales. BORN is an AI engine developed by BrainCog, showcasing seamless integration of
BrainCog’s components and cognitive functions to build advanced AI models and applications.
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INTRODUCTION

The human brain can self-organize and coordinate different

cognitive functions to flexibly adapt to changing environments.

A major challenge for artificial intelligence (AI) and computational

neuroscience is integrating multi-scale biological principles to

build brain-inspired intelligent models. As the third generation

of neural networks,1 spiking neural networks (SNNs) are more

biologically plausible at multiple scales, includingmembrane po-

tential, neuronal firing, synaptic transmission, synaptic plasticity,

and coordination of multiple brain areas. More importantly,

SNNs are more biologically interpretable, more energy efficient,

and naturally more suitable for modeling various cognitive func-

tions of the brain and creating brain-inspired AI.

Existing neural simulators attempt to simulate elaborate bio-

logical neuron models, implement large-scale neural network

simulations, and build neural dynamics models and deep SNN

models. Neuron2 focuses on simulating elaborate biological

neuron models. Neural simulation tool (NEST)3 implements

large-scale neural network simulations. Brian/Brian24,5 provides

an efficient and convenient tool for modeling SNNs. Shallow

SNNs implemented by Brian2 can realize unsupervised visual

classification.6 Further, BindsNET7 builds SNNs by coordinating

various neurons and connections and incorporates multiple bio-

logical learning rules for training SNNs. SNNs implemented by

these frameworks can realize machine learning tasks, including

supervised, unsupervised, and reinforcement learning. Howev-

er, supporting more complex tasks remains a challenge for cur-

rent SNN frameworks, and there is a performance gap compared

with traditional deep neural networks (DNNs).

Deep SNNs trained by surrogate gradient or converted from

well-trained DNNs have achieved remarkable progress in the

fields of speech recognition,8 computer vision,9 and reinforce-

ment learning.10 Motivated by this, the SNN conversion toolbox

(SNN-TB)11 provides an artificial neural network (ANN)-to-SNN

framework that can transform DNN models built from different

deep learning libraries (such as Keras, TensorFlow, and Py-

Torch) into SNN models and can provide interfaces with simu-

lation platforms (such as PyNN12 and Brian2) as well as deploy-

ment to hardware (SpiNNaker13 and Loihi14). SINABS15

implements spiking convolutional neural networks (SCNNs)

based on PyTorch. It integrates different types of neurons

and various SCNN training algorithms (such as ANN-to-SNN

conversion, training by backpropagation through time [BPTT])

and supports deploying models to neuromorphic hardware.

SpikingJelly (SJ)16 develops a deep learning SNN framework

(trained by surrogate gradient or converting well-trained

DNNs to SNNs). It provides convenient basic components for

deep supervised learning and reinforcement learning. These

platforms are relatively more inspired by deep learning and

focus on improving the performance of different tasks. They

currently lack in-depth inspiration from brain information pro-

cessing mechanisms and hence short at simulating large-scale

functional brains.

BrainPy17 excels at modeling, simulating, and analyzing the dy-

namics of brain-inspired neural networks from multiple perspec-

tives, including neurons, synapses, and networks.While it focuses

on computational neuroscience research, it fails to consider the

learning and optimization of deep SNNs or the implementation
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of brain-inspired functions. Semantic pointer architecture unified

network (SPAUN)18 is a large-scale brain function model consist-

ing of 2.5 million simulated neurons and is implemented by

Nengo.19 It integrates multiple brain areas and can perform

various brain cognitive functions, including image recognition,

working memory, question answering, reinforcement learning,

and fluid reasoning. However, SPAUN is not suitable for solving

challenging and complex AI tasks that deep learning models

can handle. In summary, the infrastructures for brain simulation

and brain-inspired intelligence do not seem to have the same

goal. Thus, the platforms for brain simulation and brain-inspired

intelligencehavebeendeveloped separately in the past. However,

with a design that organizes biological plausibility and computa-

tional complexity at different levels, the two can be integrated

and unified at the infrastructure level, eliminating the need for

separate development. This integration is beneficial from the

perspective of revealing the computational nature of intelligence

and developing intelligent applications.

Considering the various limitations of existing frameworks

mentioned above, in this paper, we present the brain-inspired

cognitive intelligence engine (BrainCog), an SNN-based open-

source platform for brain-inspired AI and brain simulation at

multiple scales. As shown in Figure 1, BrainCog provides

basic components such as different types of neuron models,

learning rules, encoding strategies, etc., as building blocks

to construct various brain areas and neural circuits to imple-

ment brain-inspired cognitive functions. Based on these

essential components, BrainCog can perform a wide variety

of brain-inspired AI modeling and simulate brain cognitive

functions and structures, showing considerable scalability

and flexibility. BrainCog also supports hardware-software

co-design to facilitate the deployment of different SNN-based

computational models. The platform includes several brain-

inspired cognitive SNN models divided into five categories of

cognitive functions: perception and learning, decision-making,

motor control, knowledge representation and reasoning, and

social cognition. For brain simulation, BrainCog provides sim-

ulations of brain structures and functions at different scales,

from microcircuits and cortical columns to whole-brain struc-

ture simulations (covering the mouse brain, macaque brain,

and human brain). We compare BrainCog with other platforms

in terms of brain structure, learning mechanisms, and cogni-

tive functions in Table 1.

BrainCog is developed based on the deep learning framework

(currently, it is based on PyTorch, but it is easy tomigrate to other

frameworks, such as PaddlePaddle, TensorFlow, etc.). The on-

line repository of BrainCog can be accessed at http://www.

brain-cog.network. With comprehensive, easy-to-use essential

components and a considerable number of use cases (covering

brain-inspired AI models, brain function, and structure simula-

tion), BrainCog enables researchers to learn the platform quickly

and implement their algorithms. In summary, BrainCog provides

a powerful infrastructure for developing AI and computational

neuroscience research based on SNNs.

RESULTS

BrainCog provides an SNN-based open-source platform

that can be applied to brain-inspired AI modeling and brain

http://www.brain-cog.network
http://www.brain-cog.network


Figure 1. The architecture of the brain-inspired cognitive intelligence engine (BrainCog)
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simulation at multiple scales, enabling the integration of

revealing the nature of intelligence and developing brain-inspired

intelligence models at the infrastructure level. This section pre-

sents the current applications and results of brain-inspired AI

models and brain simulation integrated by BrainCog.

Brain-inspired AI
Computational units (different neuron models, learning rules, en-

coding strategies, brain areamodels, etc.) at multiple scales pro-

vided by BrainCog serve as a foundation to develop functional

networks. To enable BrainCog to provide infrastructure support

for brain-inspired AI, cognitive function-centric networks need to

be built and provided as reusable functional building blocks.
Table 1. Comparison of the brain-inspired SNN and brain simulatio

Framework

SNN-TB (Rueckauer

et al.11)

BindsNet

(Hazan et al.7)

SINABS

Library15

Brain structure neuron

connection

brain area

U

U

3

U

U

3

U

U

3

Learning

mechanisms

biologically

conversion

BP

RL

3

U

3

3

U

U

3

U

3

3

U

3

Functions brain-

inspired AI

brain

simulation

types

U

3

little

U

3

little

U

3

little
BrainCog aims to achieve the vision ‘‘the structure and mecha-

nism are inspired by the brain, and the cognitive behaviors are

similar to humans’’ for brain-inspired AI. As a result, BrainCog

provides cognitive function components that collectively form

neural circuits corresponding to 28 brain areas in mammalian

brains, as shown in Figure 2. Drawing on the neural structure

and learning mechanism from the brain, BrainCog implements

a variety of brain-inspired AI models that can be classified into

five categories: perception and learning, decision-making,motor

control, knowledge representation and reasoning, and social

cognition. The source code of the brain-inspired AI models im-

plemented by BrainCog is available at https://github.com/

BrainCog-X/Brain-Cog/tree/main/examples.
n platform

(SynSense SNN

)

SJ (Fang

et al.16)

BrainPy (Wang

et al.17)

SPAIC (Hong

et al.20) BrainCog

U

U

3

U

U

3

U

U

3

U

U

U

3

U

U

U

3

3

U

3

U

3

U

3

U

U

U

U

U

3

little

3

U

much

U

U

much

U

U

rich

Patterns 4, 100789, August 11, 2023 3

https://github.com/BrainCog-X/Brain-Cog/tree/main/examples
https://github.com/BrainCog-X/Brain-Cog/tree/main/examples


Figure 2. Multiple cognitive functions and brain-inspired AI models integrated in BrainCog, along with their related brain areas and neural

circuits
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Perception and learning

For the computational models in sensory information process-

ing, BrainCog implements SNN-based image classification,

detection, and concept learning. BrainCog provides a variety

of supervised and unsupervised methods for training SNNs,

such as the biologically plausible spike-timing-dependent plas-

ticity (STDP) in cooperation with short-term synaptic plasticity

(STP), adaptive synaptic filter, and adaptive threshold bal-

ance21 to improve the performance of the SNN in unsupervised

scenarios (Supplemental experimental procedures S1): global

feedback connections combined with the local plasticity

rule22 (Supplemental experimental procedures S2), the more

biologically plausible backpropagation method based on surro-

gate gradients23 (Supplemental experimental procedures S3),

conversion-based algorithms based on the burst spikes and

lateral inhibition mechanism24 (Supplemental experimental pro-

cedures S4), the leaky integrate and fire or burst neuron with

the dynamic burst pattern,25 excitatory and inhibitory neuron

cooperation with self-feedback connections,26 and capsule

structures routed by the STDP mechanism.27 Inspired by quan-

tum information theory, BrainCog provides a quantum super-

position-inspired SNN model, which encodes complement in-

formation to neural spike trains with different frequencies and

phases.28 In addition, introducing the multi-compartment

spiking neuron, the proposed SNN model achieves robust per-

formance in noisy scenarios28 (Supplemental experimental pro-

cedures S5). Based on the BrainCog engine, we also present a

human-like multi-sensory integration concept learning frame-
4 Patterns 4, 100789, August 11, 2023
work to generate representations with five types of perceptual

strength information.29

Case study 1: Multisensory integration. Combining information

frommultiple senses enhances perception, response times, and

recognition capabilities. BrainCog provides a concept learning

framework that generates integrated representations with five

types of perceptual strength information.29 The framework is

developed with two distinct paradigms: associate merge (AM)

and independent merge (IM), as shown in Figure 3.

IM is a cognitive model that assumes that each type of sensory

information for a concept is processed independently before be-

ing integrated. It uses a two-layer SNNmodel with five neurons in

the first layer representing the five types of perceptual strength

(visual, auditory, haptic, olfactory, and gustatory) and one

neuron in the second layer for integration. The model incorpo-

rates Poisson-encoded presynaptic neurons and leaky integrate

and fire (LIF) or Izhikevich postsynaptic neural models, with

weights between the neurons calculated as Wi = gi=S
n
i gi,

where gi = 1=s2i and s2i is the variance of perceptual strength.

IM converts the postsynaptic neuron’s spiking trains into inte-

grated representations for each concept.

The AM paradigm assumes that each type of modality associ-

ated with a concept is processed together before integration. It

consists of five neurons representing the concept’s distinctmodal

information sources, and they are connected to each other

without self-connections. The input spike trains for AM are gener-

ated through Poisson coding based on perceptual strength. The

weights are defined by the correlation between each pair of



A B

Figure 3. Multisensory integration framework based on BrainCog

(A) The framework of multisensory concept learning based on SNNs.

(B) The correlation results between modality exclusivity (ME) and the average rank of neighbor.
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modalities. The AMmodel converts spike trains of all neurons into

binary code and combines them as the integrated representation.

The multisensory integration framework is evaluated using

similar concepts datasets.30,31 Three multisensory datasets are

investigated (LC823,32,33 brain-based componential semantic

representation (BBSR),34 and Lancaster40k35) respectively.

The results (Figure 3B) show that representations generated by

the framework are closer to human performance than the original

ones. The framework paradigms, IM and AM, are evaluated and

compared using concept feature norms datasets (McRae36 and

Centre For Speech, Language, And The Brain (CSLB)37), and the

findings reveal that IM performs better at multisensory integra-

tion for concepts with higher modality exclusivity, while AM ben-

efits concepts with uniform perceptual strength distribution.

Furthermore, both framework paradigms show good generality

for perceptual strength-free metrics.

Decision-making

For decision-making, BrainCog provides amulti-brain area coor-

dinated decision-making SNN,38 which achieves human-like

learning ability on the Flappy Bird game. The platform also in-

cludes a reward-modulated brain-inspired SNN, empowering

self-organizing obstacle avoidance for a drone swarm.39 In

addition, BrainCog combines SNNs with deep reinforcement

learning, providing a brain-inspired spiking deep Q network

(spike-DQN) model,40 that outperforms vanilla ANN-based

DQN on Atari game experiments.

Case study 2: Brain-inspired decision-making SNN. BrainCog

has developed a brain-inspired decision-making SNN (BDM-

SNN) model38 that simulates the prefrontal cortex (PFC)-basal

ganglia (BG)-thalamus (THA)-premotor cortex (PMC) neural cir-

cuit, as shown in Figure 4A. The BDM-SNN model incorporates

the excitatory and inhibitory connections within the basal ganglia

nuclei and the direct, indirect, and hyperdirect pathways from

the PFC to the BG.41 This BDM-SNN model uses biological

neuron models (LIF and simplified Hodgkin-Huxley [H-H]

models), synaptic plasticity learning rules, and interactive con-

nections among multi-brain areas. The learning process com-

bines global dopamine modulation and local synaptic plasticity

for online reinforcement learning.
The BDM-SNN model implemented by BrainCog can perform

different tasks, such as playing the Flappy Bird game (Figure 4B)

and supporting unmanned aerial vehicle (UAV) online decision-

making. For the Flappy Bird game, our method achieves hu-

man-like performance, stably passing the pipeline on the first

try. Figure 4C illustrates the changes in the mean cumulative re-

wards for LIF and simplified H-H neuronswhile playing the game.

The simplified H-H neuron performs similarly to the LIF neuron.

The BDM-SNN with different neurons can quickly learn the cor-

rect rules and keep obtaining rewards. We also analyze the role

of different ion channels in the simplified H-H model. Figure 4D

shows that sodium and potassium ion channels have opposite

effects on neuronal membrane potential. Removing sodium ion

channels will make the membrane potential decay, while

removing potassium ion channels will make the membrane po-

tential rise faster and fire earlier. These results indicate that so-

dium ion channels can help increase the membrane potential

and that potassium ion channels have the opposite effect. The

experimental results also indicate that a BDM-SNNwith a simpli-

fied H-H model that removes sodium ion channels fails to learn

the Flappy Bird game.

Motor control

Embodied cognition is crucial to realizing biologically plausible

AI. BrainCog provides a multi-brain area coordinated robot mo-

tion SNN model, which incorporates PMC, supplementary

motor area (SMA), BG, and cerebellum functions, inspired by

the brain’s motor control mechanism and embodied cognition.

The model implements multi-brain area cooperation function

and population neuron encoding and can control various robots.

Case study 3:Motor control. Inspired by the brainmotor circuit,

we construct a brain-inspired motor control model with the LIF

neuron provided by BrainCog and implement a robot piano-play-

ing task. The model architecture is shown in Figure 5A. The SMA

and PMC modules produce high-level motion information. The

SMA processes internal movement stimuli and plans advanced

actions. The cerebellum coordinates and fine-tunesmovements.

We build an SNN-based cerebellummodel to process high-level

motor control population embedding. The outputs of popula-

tions are fused to encode motor control information generated
Patterns 4, 100789, August 11, 2023 5



Figure 4. The architecture and experimental results of the BDM-SNN implemented by BrainCog

(A) The overall architecture of the BDM-SNN.

(B) Flappy Bird game.

(C) Experimental result of the BrainCog-based BDM-SNN on the Flappy Bird game. The y axis shows the mean of cumulative rewards.

(D) Effects of different ion channels on membrane potential for the simplified H-H model.
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by the high-level cortex area, then entered into a three-layer cer-

ebellum SNN, including granule cell (GC), purkinje cell (PC), and

deep cerebellar nuclei (DCN) modules. The DCN layer generates

the final joint control outputs. We use BrainCog’s cross-layer

connection and population-codingmodules to construct themo-

tion control SNN according to the connection mechanism of the

motor cortex in the biological brain. The entire motor control

model is feedforward and can be trained using the spatiotem-

poral backpropagation (STBP) method provided by BrainCog.

Table 2 shows the brain areas and the number of neurons used

for the motor control SNN. The SMA receives an input of music

note information, and the PMC encodes the information with

16 groups of population-encoding neurons for action selection.

The cerebellum’s GC, PC, and DCN parts form a residual

connection and receive the output of the movement population

neurons. The DCN puts out joint and end-effector coordinate

control signals. We use the Euclidean distance between the

model output end-effector position and the target end-effector

position required to play a specific note as the loss function.

The distance between the end effector and target and the playing

key accuracy rate during the training process are shown in

Figures 5B and 5C.

Knowledge representation and reasoning

BrainCog incorporates multiple neuroplasticity- and popula-

tion-coding mechanisms for knowledge representation and

reasoning. We develop a brain-inspired music memory and sty-

listic composition model that can represent and memorize note

sequences and generate music in different styles.42,43 We also

develop a sequence production SNN that can memorize and
Figure 5. Motor control implemented by BrainCog

(A) The motor control SNN based on BrainCog.

(B) End-effector distance to target.

(C) Playing key accuracy during training.
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reconstruct symbol sequences according to different rules44

(Supplemental experimental procedures S6). We build a

commonsense knowledge representation graph SNN that

uses multi-scale neural plasticity and population coding to

represent commonsense knowledge in a graph SNN model45

(Supplemental experimental procedures S7). We design a

causal reasoning SNN that encodes a causal graph into an

SNN and performs deductive reasoning tasks46 (Supplemental

experimental procedures S8).

Case study 4: Stylistic composition SNN musical learning

BrainCog provides an example of SNN-based musical knowl-

edge learning and creation of melodies in different styles. We

develop a stylistic composition SNN that consists of a knowl-

edge network and a sequence memory network.43 As shown in

Figure 6A, the knowledge network is designed as a hierarchical

structure that encodes and learns musical knowledge. These

layers store the genre (such as baroque, classical, and romantic),

the names of famous composers, and the titles of musical

pieces. The sequence memory network stores the ordered

notes. During learning, synaptic connections are projected

from the knowledge network to the sequence memory network.

This example takes the LIF model, supported by the BrainCog

platform, to simulate neural dynamics. During learning, synaptic

connections from the knowledge network to the sequencemem-

ory network are updated dynamically by the STDP learning rule.

Musical composition

Given the beginning notes and the melody length to be gener-

ated, the genre-based composition can produce a single-part

melody with a specific genre style. This task is achieved by the



Table 2. Motor control brain area and number of neurons

Brain area SMA Basal ganglia PMC Cerebellum

Neuron number 512 128 128 GC, 512; PC, 512; DCN, 7
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neural circuits of genre cluster and sequential memory system.

Similarly, the composer-based composition can produce mel-

odies with composers’ characters. The composer cluster and

sequential memory system circuits contribute to this process.

We train the model by using a classical piano dataset including

331 musical works recorded in the musical instrument digital

interface (MIDI) format.47 Figure 6B shows a sample of a gener-

ated melody with Bach’s style.

Social cognition

For social cognition, BrainCog provides brain-inspired bodily self-

perceptionanda theoryofmind (ToM)model that enable theagent

toperceive andunderstand itself andothers andhelp the robots to

pass themulti-robotmirror self-recognition test48 and theAI safety

risksexperiment.49 Inaddition,weconstruct abrain-inspired robot

pain SNNbased on BrainCog, which simulates the neural mecha-

nismofpainful emotionemergenceand realizes two taskswith real

robots: the alerting actual injury task and the preventing potential

injury task.50Wealso construct a brain-inspired affective empathy

SNN based on BrainCog, which simulates the mirroring mecha-

nism in the brain to achieve pain empathy and an altruistic rescue

task among intelligent agents.51 Based on the BrainCog platform,

we build a multi-agent theory of mind decision-making model to

elevate multi-agent cooperation and competition52 and a brain-

inspired intention predictionmodel to enable the robot to perform

actions according to the user’s intention.53

Case study 5: Brain-inspired bodily self-perception and theory

of mind model

The nature and neural correlates of social cognition are

advanced topics in cognitive neuroscience. In the field of AI

and robotics, few in-depth studies take seriously the neural cor-

relation and brain mechanisms of biological social cognition.

Although the scientific understanding of biological social cogni-

tion is still in a preliminary stage, we integrate the biological find-

ings of bodily self-perception54 and theory of mind55 into a brain-

inspired bodily self-perception and theory of mind model to

extend the functions of BrainCog. This model use the neuron

models, STDP learning rule, and interactive connections among

multi-brain areas provided by BrainCog, as shown in Figure 7A.

This model enables the robot and the agents to pass the multi-

robot mirror self-recognition test and the AI safety risks experi-

ment, as shown in Figures 7B and 7C. The former is a classic

experiment of self-perception in social cognition, and the latter

is a variation and application of the theory of mind experiment

in social cognition.

Brain simulation
In addition to brain-inspired AI models, BrainCog also shows ca-

pabilities regarding brain cognitive function simulation andmulti-

scale brain structure simulation based on SNNs. BrainCog incor-

porates as much published anatomical data as possible to

simulate cognitive functions such as decision-making and work-

ing memory. Anatomical and imaging multi-scale connectivity

data are used to make whole-brain simulations from mouse

and macaque to human more biologically plausible.
Brain cognitive function simulation

To demonstrate the capability of BrainCog for cognitive function

simulation, we provide Drosophila decision-making and PFC

working memory function simulations.56,57 For Drosophila

nonlinear and linear decision-making simulations, BrainCog ver-

ifies the winner-takes-all behaviors of the nonlinear dopami-

nergic neuron-GABAergic neuron-mushroom body (DA-GABA-

MB) circuit under a dilemma and obtains consistent conclusions

with Drosophila biological experiments56 (for more details, see

Supplemental experimental procedures S9). For the PFC work-

ing memory network implemented by BrainCog, we discover

that using human neurons instead of rodent neurons without

changing the network structure can significantly improve the ac-

curacy and completeness of an image memory task,57 implying

that the evolution of brains affects not only structures but also

single neurons.

Case study 6: PFC working memory

Understanding the detailed differences between the brains of

humans and other species on multiple scales will help illuminate

what makes us unique as a species.57 We extract the key mem-

brane parameters of human neurons from the human brain

neuron database of the Allen Institute for Brain Science.58

Different types of neuron models are established based on the

adaptive exponential integrate-and-fire (aEIF) model, supported

by BrainCog. As shown in Figure 8A, we build a 6-layer PFC col-

umn model based on biometric parameters,59 following the

model of a single PFC proposed by Hass et al.60 The pyramidal

cells and interneurons are proportionally distributed from the

literature,61,62 and connection probabilities for different types

of neurons are based on previous studies60,63,64 (Figure 8B).

We test the accuracy of information maintenance on the rodent

neuron PFC network model. In Figure 8C, we can see that keep-

ing the network structure and other parameters unchanged, only

using human neurons instead of rodent neurons, can signifi-

cantly improve the accuracy and integrity of image output. This

is consistent with biological experiments65 showing that human

neurons have a lower membrane capacitance and fire more

quickly, thus improving the efficiency of information transmis-

sion. This data-driven PFC column model in BrainCog provides

an effective simulation-validation platform to study other high-

level cognitive functions.66

Multi-scale brain structure simulation

BrainCog simulates the biological brain of several species at

different scales, from microcircuits and cortical columns to

whole-brain structure simulations. (1) Neural microcircuit.

BrainCog simulates the decision-making neural circuit of PFC-

BG-THA-PMC in the mammalian brain (as shown in Figure 4A).

Based on anatomical architecture, the neural microcircuit simu-

lation models excitatory and inhibitory connections between nu-

cleus clusters in the basal ganglia and between cortical (PFC and

PMC) and subcortical (BG and THA) brain areas as well as

the direct, indirect, and hyperdirect pathways from the PFC

to BG. BrainCog builds a multi-brain area coordinated deci-

sion-making neural circuit by using the LIF neuron and

CustomLinear connectivity modules in BrainCog. This brain-

inspired neural microcircuit, combined with dopamine-regulated

learning rules, enables human-like decision-making ability. (2)

Cortical column. BrainCog builds a mammalian thalamocortical

column based on realistic anatomical data.67 This column is
Patterns 4, 100789, August 11, 2023 7



Figure 6. Stylistic composition SNN implemented by BrainCog

(A) Stylistic composition SNN model.

(B) A sample of a generated melody with Bach’s characteristics.
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made up of a six-layered cortical structure consisting of eight

types of excitatory and nine types of inhibitory neurons. The

thalamic neurons cover two types of excitatory neurons, inhibi-

tory neurons, and GABAergic neurons in thalamic reticular neu-

rons (TRNs). Neurons are simulated by the Izhikevich model,

which BrainCog applies to exhibit their specific spiking patterns

depending on their different neural morphologies. Each neuron

hasmultiple dendritic brancheswithmany synapses. The synap-

tic distribution and the microcircuits are reconstructed in

BrainCog based on previous studies.67 Figure 9A describes

the details of the minicolumn. The column contains 1,000 neu-

rons and over 4,200,000 synapses. (3) Mouse brain. The

BrainCog mouse brain simulator is an SNN model covering

213 mouse brain areas based on the Allen Mouse Brain Connec-

tivity Atlas.68 Each neuron is modeled by aEIF neuron model and

simulated with a resolution of dt = 1 ms. This model includes a

total of 6 types of neurons: excitatory (E) neurons, interneuron

basket cells (I-BCs), interneuronMatinotti cells (I-MCs), thalamo-

cortical relay neurons, thalamic interneurons (TIs) and TRNs. The

connections between brain areas follow the quantitative

anatomical dataset from the Allen Mouse Brain Connectivity

Atlas.68 Figure 9B shows the spontaneous activity of the model

without external stimulation. (4) Macaque brain. The BrainCog

macaque brain simulator is a large-scale SNN model covering
8 Patterns 4, 100789, August 11, 2023
383 macaque brain areas,69 with 1.21 billion spiking neurons

and 1.3 trillion synapses, which is 1/5 of a real macaque brain.

The types of neurons in the cortical brain areas include excitatory

neurons (80% of the neurons are of this type in the simulation)

and inhibitory neurons (20% of the neurons are of this type in

the simulation). The spiking neuron follows the H-Hmodel, which

is supported by BrainCog. Figure 9C shows the running demo of

the model. The platform allows flexible settings for the neuron

number, the connections, and the excitatory-inhibitory ratio in

each region. (5) Human brain. The BrainCog human brain simu-

lator follows an approach similar to the BrainCog macaque brain

simulator. It uses the Human Brainnetome Atlas70,71 to build 246

brain areas. The details of the micro-circuit, including the excit-

atory and inhibitory neurons, are also considered. The final

model (as shown in Figure 9D) includes 0.86 billion spiking neu-

rons and 2.5 trillion synapses, which is 1/100 of a real human

brain. The brain simulation demonstrates the framework’s ability

to deploy on multi-scale computer clusters.

DISCUSSION

BORN: An SNN-driven AI engine based on BrainCog
BrainCog is an open-source platform to enable the community to

build SNN-based, brain-inspired AI models and brain simulators.



Figure 7. The brain-inspired bodily self-perception and theory of mind model and experiments

(A) Brain-inspired bodily self-perception and theory of mind model.

(B) Multi-robot mirror self-recognition test. Three robots with identical appearances move their arms randomly in front of the mirror at the same time, and each

robot needs to determine which mirror image belongs to it.

(C) AI safety risks experiment. After observing the behavior of the other two agents, the green agent can infer their actions by using its ToM ability when envi-

ronmental changesmay pose safety risks (e.g., the intersection may block the agents’ view and cause collisions). (I) Example 1. The green agent observes others’

behaviors. (II) Example 2. The green agent observes others’ behaviors. (III) The green agent with ToM can help other agents avoid risks. (IV) The green agent

without ToM is unable to help other agents avoid risks.
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Herewe discuss future research and potential applications of the

BrainCog platform. Based on the essential components devel-

oped for BrainCog, one can develop domain-specific or gen-

eral-purpose AI engines. To further demonstrate how BrainCog

can support the development of a brain-inspired AI engine, we

introduce BORN, an ongoing SNN-driven, brain-inspired AI en-

gine that leverages SNNs to build a general-purpose living AI

system. As shown in Figure 10, the high-level architecture of

BORN integrates spatial and temporal plasticities to implement

various brain cognitive functions, such as perception and

learning, decision-making, motor control, working memory,

long-term memory, attention and consciousness, emotion,

knowledge representation and reasoning, and social cognition.

Spatial plasticity incorporates multi-scale neuroplasticity princi-

ples at micro, meso, and macro scales. Temporal plasticity con-

siders learning and developmental and evolutionary plasticity at

different timescales. How the human brain selects and coordi-

nates various learning methods to solve complex tasks is crucial

for understanding human intelligence and inspiring future AI.

BORN is dedicated to addressing critical research issues like

this. The learning framework of BORN consists of multi-task

continual learning, few-shot learning, multi-modal concept

learning, online learning, lifelong learning, teaching learning,

transfer learning, etc. To demonstrate the ability and principles

of BORN, we provide a relatively complex application of
emotion-dependent robotic music composition and playing.

This application involves a humanoid robot that can compose

and play music based on visual emotion recognition. This appli-

cation of BORN covers the whole process, from perception and

learning to knowledge representation and reasoning and motor

control. It consists of three modules built by BrainCog: the visual

(emotion) recognition module, the emotion-dependent music

composition module, and the robot music-playing module. As

shown in Figure 11, the visual emotion recognition module en-

ables robots to recognize the emotions (such as joy or sadness)

expressed in images captured by the humanoid robot’s eyes.

The emotion-dependent music composition module generates

music pieces that correspond to the emotions in the image.

Finally, with the help of the robot music-playing module, the

robot controls its arms and fingers to perform the music on the

piano. We introduce some details of these modules as follows.

(1) Visual emotion recognition. For emotion recognition, inspired

by the ventral visual pathway, we construct a deep convolutional

SNN with the LIF neuron model and surrogate gradient provided

by BrainCog. The structure of the network is 32C3-32C3-MP-

32C3-32C3-300-7, where 32C3 means the output channels of

the convolution layer are 32, the kernel size is 3, and MP means

max pooling. We train and test our model on the Emotion6 data-

set,72 which contains 6 emotions: anger, disgust, fear, joy,

sadness, and surprise. Each emotion consists of 330 samples.
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Figure 8. Anatomical and network simulation diagram
(A) The connection of a single PFC column.

(B) The distribution proportion of different types of neurons in each column layer.

(C) Network persistent activity performance.
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On this basis, we extend the original Emotion6 dataset with

exciting emotion, which we collect online. We use 80%of the im-

ages as the training set and the remaining 20% as the test set. (2)

Emotion-dependent music composition. We construct an SNN

that contains multiple subnetworks that collaborate to simulate

different brain areas involved in representing, learning, and

generating music melodies with different emotions. The model

uses LIF neurons provided by BrainCog and the STDP learning

rule to update the synaptic connections. We train the model on

a dataset of 331 MIDI files of classical piano works.47 As shown

in Figure 11, the amygdala network receives the outputs of visual

emotion recognition as the input. The PFC and primary auditory

cortex (PAC) networks then generate musical melodies that

match the emotional categories. More details of the model are

given in Supplemental experimental procedures S10. (3) Robot

music-playing. We build a multi-brain area coordinated robot

motor control SNN model based on the brain motor control cir-

cuit. The SNN model uses LIF neurons and incorporates SMA,

PMC, BG, and cerebellum functions. The music notes are first

processed by SMA, PMC, and BG networks to generate high-

level target movement directions, and the output of the PMC is

encoded by population neurons to target movement directions.

The population coding of movement directions is then pro-

cessed by the cerebellum model for low-level motor control. A

humanoid robot, iCub, is used to validate the abilities of robotic

music composition and playing, depending on the result of visual

emotion recognition. The cerebellum SNN module implements

the three-level residual architecture to process motor intentions

and generate joint control outputs for the robot arms. The robot

plays the music by moving its hand according to the generated

sequence of music notes and pressing the keys with corre-
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sponding fingers. BrainCog aims to provide a community-based,

open-source platform for developing SNN-based AI models and

cognitive brain simulators. It integrates multi-scale biological

plausible computational units and plasticity principles. Unlike ex-

isting platforms, BrainCog provides task-ready SNN models for

AI and supports brain function and structure simulations at mul-

tiple scales. With the basic and functional components provided

in the current version of BrainCog, we have shown how a variety

of models and applications can be implemented for brain-

inspired AI and brain simulations. Based on BrainCog, we are

also committed to building BORN into a powerful SNN-based

AI engine that incorporates multi-scale plasticity principles to

realize human-level brain-inspired cognitive functions. Powered

by 9 years of developing BrainCog modules, components, and

applications, and inspired by biological mechanisms and natural

evolution, continuous efforts on BORN will enable it to be a gen-

eral-purpose AI engine. We have already started efforts to

extend BrainCog and BORN to support high-level cognition,

such as theory of mind,49 consciousness,48 and morality,49

which are essential for building true and general-purpose AI for

human and ecological good. We invite you to join us on this

exploration to create a future for a human-AI symbiotic society.

Limitations of study
This paper introduces BrainCog, a brain-inspired cognitive intel-

ligence engine that supports brain-inspired AI and brain simula-

tion research. This integrated design enables researchers from

different domains to collaborate more effectively on a common

platform. However, we still face some challenges in achieving

deep coordination between them. Althoughwe strive to integrate

the precise simulation of brain functions with the computational



Figure 9. Illustration of multi-scale brain structure simulation

(A) The structure of the thalamocortical column.

(B–D) Running of the BrainCogmouse brain (B), macaque brain (C), and human brain (D) simulators. The shining point is the spiking neuron at time t, and the point

color represents the neuron belonging to the respective brain area.
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efficiency of deep learning, the current brain-inspired AI module

has not been able to fully simulate the functions and structures of

the real brain. Moreover, even though our brain simulation tools

have demonstrated commendable performance on various

tasks, they face difficulties when dealing with higher-complexity

tasks that are inherent to deep learning. These challenges may

affect the performance of our platform in some scenarios that

require precise brain simulation. In the future, we will continue

to improve the BrainCog platform to promote deep coordination

between brain simulation and brain-inspired AI and further

enhance its applications in neuroscience and AI research.

BrainCog will play a key role in interdisciplinary collaboration

and research, and we will also actively address its current

limitations.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Yi Zeng (yi.zeng@braincog.ai).

Materials availability

This study did not generate new unique materials.

Data and code availability

Human brain neuron parameters are extraced directly from the Allen Brain

Atlas Cell Types Database: https://celltypes.brain-map.org/. The online repos-

itory of BrainCog can be found at https://github.com/BrainCog-X/Brain-Cog

and Zenodo109 (https://doi.org/10.5281/zenodo.7955594). Demo videos

related to applications of BrainCog can be found at https://www.youtube.

com/watch?v=xActrzjamOE.
Essential and fundamental components

BrainCog provides essential and fundamental components, including various

biological neuron models, learning rules, encoding strategies, and models of

different brain areas. One can build brain-inspired SNN models by reusing

and refining these building blocks. Expanding and refining the components

and cognitive functions included in BrainCog is an ongoing effort. We believe

this should be a continuous community effort, and we invite researchers and

practitioners to join us in enriching and improving the work in a synergistic

way. Here we list some of the basic components incorporated in BrainCog.

Neuron models

BrainCog supports various models for spiking neurons, such as the following.

(1) Integrate-and-Fire (IF) spiking neurons:73

C
dV

dt
= I (Equation 1)

I denotes the input current from the pre-synaptic neurons. C denotes the

membrane capacitance. When the membrane potential reaches the threshold

Vth, the neuron j fires a spike.73

(2) LIF spiking neurons:74

t
dV

dt
= � V +RI (Equation 2)

t = RC denotes the time constant, andR andC denote the membrane resis-

tance and capacitance, respectively.74.

(3) aEIF spiking neurons:75,76

8>>><
>>>:

C
dV

dt
= � gLðV � ELÞ+gLDT exp

�
V � Vth

DT

�
+ I � w

tw
dw

dt
= aðV � ELÞ � w

(Equation 3)
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Figure 10. The functional framework and vision of BORN
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gL is the leak conductance, EL is the leak reversal potential, Vr is the reset po-

tential, DT is the slope factor, I is the background current, and tw is the adap-

tation time constant. When the membrane potential is greater than the

threshold Vth, V = Vr , and w = w+b. a is the subthreshold adaptation, and

b is the spike-triggered adaptation.75,76

(4) Izhikevich spiking neurons:77

8>><
>>:

dv

dt
= 0:04v2 + 5v + 140 � u+ I

du

dt
= aðbv � uÞ

(Equation 4)

When the membrane potential v is greater than the threshold:�
v = cu
u = u+d

(Equation 5)

u represents the membrane recovery variable, and a;b; c;d are the dimension-

less parameters.77 (5) H-H spiking neurons:78

I = C
dV

dt
+ gKn

4ðV � VKÞ + gNam
3hðV � VNaÞ+gLðV � VLÞ (Equation 6)

8>>>>>>><
>>>>>>>:

dn

dt
= anðVÞð1 � nÞ � bnðVÞn

dm

dt
= amðVÞð1 � mÞ � bmðVÞm

dh

dt
= anðVÞð1 � hÞ � bnðVÞh

(Equation 7)

ai and bi are used to control the ith ion channel. n, m, and h are dimension-

less probabilities between 0 and 1. gi is the maximal value of the conduc-

tance.78 The H-H model shows elaborate modeling of biological neurons.

To apply it more efficiently to AI tasks, BrainCog incorporates a simplified

H-H model (C = 0:02mF=cm2; Vr = 0; Vth = 60mV ), as illustrated in Wang

et al.79 (6) Multi-compartment spiking neurons.80 The multi-compartment

neuron (MCN) model regards the dendrites, somata, and other parts of neu-

rons as independent computing units. BrainCog provides a multi-compart-

ment spiking neuron model containing basal dendrites, apical dendrites,

and soma compartments. The basal and apical dendrites receive different

source signals:
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8>>><
>>>:

tB
dVb

t

dt
= � Vb

t + xbt

xbt =
X
j

wb
j o

b
j;t

(Equation 8)

8>>><
>>>:

tA
dVa

t

dt
= � Va

t + xat

xat =
X
j

wa
j o

a
j;t

(Equation 9)

tL
dut

dt
= � ut +

gB

gL

�
Vb
t � ut

�
+
gA

gL

�
Va
t � ut

�
(Equation 10)

Vb
t is basal dendrite potential, and Va

t is the apical dendrite potential. tA, tB,

and tL are decay time constants of dendrites and the soma compartment,

while gB, gA, and gL are conductance hyperparameters. The somatic potential

ut integrates the basal and apical dendritic potentials, and when the somatic

potential exceeds the threshold, the neuron fires a spike as output.

Learning rules

BrainCog provides various plasticity principles and rules to support biologi-

cally plausible learning and inference, such as (1) Hebbian learning theory:81

Dwt
ij = xti x

t
j (Equation 11)

wt
ij means the ith synapse weight of jth neuron at the time t. xti is the output of ith

synapse at time t. xtj is the output of jth neuron at time t.81 (2) STDP:82

Dwj =
XN
f = 1

XN
n = 1

W
�
tfi � tnj

�
(Equation 12)

WðDtÞ =

(
A+e

�Dt
t+ if Dt > 0

�A�e
Dt
t� if Dt < 0

Dwj is themodification of the synapse j, andWðDtÞ is the STDP function. t is the

time of the spike. A+;A� mean the modification degree of STDP. t+ and t�
denote the time constant.82 (3) Bienenstock-Cooper-Munro (BCM) theory:83

Dw = yðy � qMÞx � ew (Equation 13)

x and y denote the firing rates of pre-synaptic and post-synaptic neurons,

respectively, and threshold qM is the average of historical activity of the



Figure 11. The procedure of multi-cognitive function coordinated emotion-dependent music composition and playing by a humanoid robot

based on BORN
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post-synaptic neuron.83 (4) STP.84 Short-term plasticity is used to model the

synaptic efficacy changes over time.

wk = uk$Rk (Equation 14)

uk+1 = U+ ukð1 � UÞ exp ð�Dtk = tfacÞ (Equation 15)

Rk+1 = 1+ ðRk � ukRk � 1Þ exp ð�Dtk = trecÞ (Equation 16)

w denotes the synaptic weight, and U denotes the fraction of synaptic re-

sources. tfac and trec denote the time constant for recovery from facilitation

and depression. The variable Rk models the fraction of synaptic efficacy avail-

able for the kth spike, and ukRk models the fraction of synaptic efficacy.84 (5)

Reward-modulated STDP (R-STDP):85 R-STDP uses synaptic eligibility trace

e to store temporary information of STDP. The eligibility trace accumulates

the STDP DwSTDP and decays with a time constant te.
85

De = � e

te
+DwSTDP (Equation 17)

Then, synaptic weights are updated when a delayed reward r is received, as

shown in Equation 18.85

Dw = r � De (Equation 18)

(6) Backpropagation based on surrogate gradient.23 Because of the non-

differentiable nature of the spiking function, researchers try to use the gradient

of a smoother function (i.e., the surrogate gradient) as an alternative to the real

gradient. The surrogate gradient enables the backpropagation algorithm to be

successfully applied to the training of SNNs and allows SNNs to be applied to

more complex network structures and tasks.

vL

vwl
=

XT
t = 1

vL

vol
i ½t�

vol
i ½t�

vul
i ½t�

vul
i ½t�
wl

(Equation 19)

The model’s loss function is Lð $Þ, and the gradient of the l layer’s neuron

synaptic weight wl is calculated using the chain rule with derivative of neuron

spike ol and potential ul.

Encoding strategies

BrainCog supports a number of different encoding strategies to encode the in-

puts of SNNs. (1) Rate coding.86 Rate coding ismainly based on spike counting

to ensure that the number of spikes issued in the time window corresponds to

the real value. Poisson distribution can describe the number of random events

occurring per unit of time, which corresponds to the firing rate.86 Set as a �
Uð0;1Þ, the input can be encoded as follows:

sðtÞ =

�
1; if x >a

0; else
(Equation 20)

(2) Phase coding.87 The idea of phase coding can be used to encode the

analog quantity changing with time. The value of the analog quantity in a period

can be represented by a spike time, and the change of the analog quantity in

the whole time process can be represented by the spike train obtained by con-

necting all of the periods. Each spike has a corresponding phase weighting un-
der phase encoding, and generally, the pixel intensity is encoded as a 0/1

input, similar to binary encoding. Here [ denotes the shift operation to the

right, and K is the phase period.87 Pixel x is enlarged to x0 = x � ð2K �1Þ and
shifted k = K � 1 � ðt mod KÞ to the right, where mod is the remainder oper-

ation. If the lowest bit is one, then swill be one at time t. & means bit-wise AND

operation.

sðtÞ =

�
1; if ðx0[ kÞ&1 = 1
0; else

(Equation 21)

(3) Temporal coding.88 The characteristic of the neuron spike is that the form

of the spike is fixed, and there are only differences in quantity and time. A com-

mon way to implement this is to express information regarding the timing of in-

dividual spikes. The stronger the stimulus received, the earlier the spike gen-

erates.89 Let the total simulation time be T, and the input x of the neuron can

be encoded as the spike at time ts:

ts = T � roundðT 3 xÞ (Equation 22)

(4) Quantum superposition coding.28 Quantum superposition-inspired

spike coding processes different characteristics of information with spatio-

temporal spike trains. The original information xi and complementary infor-

mation xi are encoded to the superposition state IðqÞ. The spiking phase 4i

is generated from mixing parameter q, and the superposition state is trans-

ferred to spiking rate ri . Final spiking trains Sðsjri ;4iÞ are generated from

the Poisson spike process with corresponding rate and phase arguments.

This spatiotemporal coding method has been proven to be robust in pro-

cessing noisy information.28

jIðqÞD =
1

2n

X22n � 1

i = 0

ðcosðqiÞjxiD + sinðqiÞjxDiÞ5 jiD (Equation 23)

ri =
k jIðqÞD k � sinð4iÞ
cosð4iÞ � sinð4iÞ

(Equation 24)

(5) Population coding:90 The intuitive idea of population coding is to

make different neurons have different sensitivity to different types of

inputs. A classical population coding method is the neural information

coding method based on the Gaussian tuning curve, referred to in Equa-

tion 25. Suppose that m (m> 2) neurons are used to encode a variable x

with a value range of ½Imin; Imax �. fðxÞ can be firing time or membrane

potential.

fðxÞ = x
� ðx�mÞ2

2s2 (Equation 25)

The corresponding mean m and variance s of the ith (i = 1; 2;.;m) neuron

with adjustable parameter b are as follows:

m = Imin +
2i � 3

2

Imax � Imin

m � 2
(Equation 26)

s =
1

b

Imax � Imin

m � 2
(Equation 27)
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m represents the optimal input of the neuron, while s controls the size of the

receptive field of the neuron.

Brain area models

Brain-inspired models of several functional brain areas are constructed for

BrainCog from different levels of abstraction. (1) PFC. The PFC plays a crucial

role in human high-level cognitive behavior. In BrainCog, many cognitive

tasks based on SNNs are inspired by the mechanisms of the PFC,91 such

as decision-making, working memory,92 knowledge representation,93 and

theory of mind and music processing.94 Different circuits are involved in

completing these cognitive tasks. In BrainCog, the data-driven PFC column

model contains 6 layers and 16 types of neurons. The distribution of neurons,

membrane parameters, and connections of different types of neurons are all

derived from existing biological experimental data.58,59 The PFC brain area

component mainly employs the LIF neuron model to simulate the neural dy-

namics. The STDP and R-STDP learning rules are utilized to compute the

weights between different neural circuits. (2) Basal ganglia. Basal ganglia

facilitate desired action selection and inhibit competing behavior (making

winner-takes-all decisions).95 They cooperate with the PFC and THA to

realize the decision-making process in the brain.96 BrainCog models the

basal ganglia brain area, including excitatory and inhibitory connections

among the striatum, globus pallidus internus (Gpi), globus pallidus externus

(Gpe), and subthalamic nucleus (STN) of basal ganglia.97 The BG brain area

component adopts the LIF or simplified H-H neuron model in BrainCog as

well as the STDP learning rule and CustomLinear to build internal connections

of the BG. Then, the BG brain area component can be used to build BDM-

SNNs. (3) PAC. The PAC is responsible for analyzing sound features and

memory and extraction of inter-sound relationships.98 This area exhibits a

topographical map, which means neurons respond to their preferred sounds.

In BrainCog, neurons in this area are simulated by the LIF model and orga-

nized as minicolumns to represent different sound frequencies. To store the

ordered note sequences, the excitatory and inhibitory connections are up-

dated by the STDP learning rule. (4) Inferior parietal lobule (IPL). The function

of the IPL is to realize motor-visual associative learning.99 The IPL consists of

two subareas: IPLM (motor perception neurons in the IPL) and IPLV (visual

perception neurons in the IPL). The IPLM receives information generated by

self-motion from the ventral PMC (vPMC), and the IPLV receives information

detected by vision from the superior temporal sulcus (STS). Motor-visual

associative learning is established according to the STDP mechanism and

the spiking time difference of neurons in the IPLM and IPLV. The IPL brain

area component of BrainCog adopts CustomLinear to build internal connec-

tions of the IPL with Izhikevich neurons and the STDP learning rule. (5) Hippo-

campus (HPC). The HPC is part of the limbic system and plays an essential

role in the learning and memory processes of the human brain. It is involved

in the key process of converting short-term memory to long-term memory.100

In BrainCog, we draw on the population-coding mechanism of the HPC to

realize knowledge representation and reasoning, music memory, and stylistic

composition models. (6) Insula. The role of the insula is to realize self-repre-

sentation.54 That is, when the agent detects that the movement in the visual

field is generated by itself, the insula is activated. The insula receives informa-

tion from the IPLV and STS. The IPLV puts out the visual feedback information

predicted according to its motion, and the STS puts out the motion informa-

tion detected by vision. When both are consistent, the insula will be activated.

In BrainCog, the insula brain area component integrates Izhikevich neurons

and the STDP mechanism. (7) THA. Research has shown that the THA is

composed of a series of nuclei connected to different brain areas and plays

a crucial role in many brain processes. In BrainCog, this area is discussed

from anatomic and cognitive perspectives. Understanding the anatomical

structure of the THA can help researchers to grasp the mechanisms of the

THA. Based on essential and detailed anatomic thalamocortical data,67

BrainCog reconstructs the thalamic structure by involving five types of neu-

rons (including excitatory and inhibitory neurons) to simulate the neuronal dy-

namics and building the complex synaptic architecture according to the

anatomic results. Inspired by the structure and function of the THA, the

BDM model implemented by BrainCog considers the transfer function of

the THA and cooperates with the PFC and BG to realize a multi-brain area co-

ordinated decision-making model. (8) Ventral visual pathway. Cognitive

neuroscience research has shown that the brain can receive external input

and quickly recognize objects because of the hierarchical information pro-
14 Patterns 4, 100789, August 11, 2023
cessing of the ventral visual pathway. The ventral visual pathway is mainly

composed of the primary visual cortex (V1), visual area 2 (V2), visual area 4

(V4), inferior temporal (IT), and other brain areas, which mainly process infor-

mation such as object shape and color.101 These visual areas are connected

through forward, feedback, and self-layer projections. The interaction of

different visual areas enables humans to recognize visual objects. V1 is selec-

tive for simple edge features. As information flows to higher-level regions,

they integrate lower-level features into larger and more complex receptive

fields that can recognize more abstract objects.102 Inspired by the structure

and function of the ventral visual pathway, BrainCog builds a deep forward

SNNwith layer-wise information abstraction and a feedforward and feedback

interaction deep SNN. The performance is verified on several visual classifi-

cation tasks. (9) Motor cortex. Biological motor function requires coordination

of multiple brain areas. The extra circuits consisting of the PMC, cerebellum,

and BA6 motor cortex area are primarily associated with motor control eli-

cited by external stimuli, such as visual, auditory, and tactual inputs. The in-

ternal motor circuits, which include the basal ganglia and the SMAs, dominate

in self-initiated, learned movements.103 The population activity of motor

cortical neurons encodes the direction of movement. Each neuron has a

preferred direction and fires more strongly when the target movement direc-

tion matches its preferred direction.104 Inspired by the organization of the

brain’s motor cortex, we use BrainCog’s LIF neuron to construct amotor con-

trol model. The cerebellum receives input from motor-related cortical areas

such as the PMC, SMA, and PFC, which are important for fine movement

execution, maintaining balance, and coordination of movements.105 We train

this model using the surrogate gradient backpropagation method imple-

mented in BrainCog and apply it to control the iCub robot, which can play

the piano according to musical pieces.

Hardware-software co-design

Although BrainCog has already integrated a complete infrastructure for

brain-inspired SNN algorithm design, existing neuromorphic hardware im-

poses strict constraints on algorithms in terms of neuron models, encoding

strategies, learning rules, and connection topologies. There’s a huge gap

between the ever-changing algorithms and the hard-to-use neuromorphic

hardware. We use field programmable gate array (FPGA)-based hard-

ware-software co-design to facilitate deployment of BrainCog. We can sup-

port different kinds of SNN algorithms with the least hardware limitations by

utilizing the reconfigurable FPGA platforms. We can deploy brain-inspired

models to unmanned vehicles or drones in real-world applications using

FPGA edge devices. Our exploration of the hardware design is ongoing.

FireFly106 is our initial attempt to achieve hardware-software co-design

for the BrainCog project. FireFly is a lightweight accelerator for high-perfor-

mance SNN inference. We propose a method to improve arithmetic and

memory efficiency for SNN inference on Xilinx FPGA edge devices. We

plan to apply more hardware optimizations and hardware-software co-

design methodologies to the BrainCog project soon.

Implementation details

BrainCog is developed using Python as the main programming language. It in-

corporates PyTorch,107 a widely used open-source machine learning frame-

work, to implement deep learning components. It also employs Tonic,108 a

dedicated library, for preprocessing neuromorphic data. For detailed software

version information, including specific package versions and dependencies,

please refer to the GitHub repository at https://github.com/BrainCog-X/

Brain-Cog. The repository provides comprehensive documentation and in-

structions for setting up and running BrainCog. BrainCog is designed to be a

cross-platform framework that runs on various operating systems, such as

Windows, macOS, and Linux. It supports Python 3.8 or higher versions. Addi-

tionally, BrainCog supports graphic processing unit (GPU) acceleration, which

significantly enhances the speed of deep learning computations. Furthermore,

BrainCog includes implementations of specific network models that can be

deployed on Xilinx FPGAs. This FPGA deployment enables more efficient

and low-power network inference, making it particularly suitable for

resource-constrained environments.
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1. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S1: UNSUPERVISED STDP-BASED
SNN

Unsupervised learning is an essential cognitive function of the brain. STDP is a widespread
rule of synaptic weight modification in the brain. It updates the synaptic weights according
to the temporal relationship of the pre-and post-synaptic spikes. In BrainCog, we design an
unsupervised STDP-based spiking neural network model [1] as a functional module incorporated
to BrainCog. The architecture of unsupervised STDP-based SNN is shown in Fig. S1.

Adaptive Lateral 
Inhibition Connection

ASF

Adaptive 
Synaptic Filter

Adaptive 
Threshold Balance

Conv Pooling

SpikeNorm

FC Voting

Fig. S1. The framework of the unsupervised STDP-based spiking neural network model.

Unsupervised STDP-based SNN contains various adaptive mechanisms to improve the self-
organization ability of the overall network. STP is another synaptic learning mechanism that
exists in the brain. Based on the STDP and STP in BrainCog, we designed an adaptive synaptic
filter (ASF) that integrates input currents through nonlinear units, and an adaptive threshold
balance (ATB) that dynamically changes the threshold of each neuron to avoid excessively high
or low firing rates. The combination of the two controls the firing balance of neurons. We
also address the problem of coordinating neurons within a single layer with an adaptive lateral
inhibitory connection (ALIC). The mechanism has different connection structures for different
input samples. Finally, in order to solve the problem of low efficiency of STDP training, we
designed a sample temporal batch STDP. It combines the information between temporal and
samples to uniformly update the synaptic weights, as shown by the following formula.

dw(t)
j

dt

+

=
Nbatch

∑
m=0

Tbatch

∑
n=0

N

∑
f=1

W(t f ,m
i − tn,m

j ) (S1)

Where W(x) is the function of STDP, Nbatch is the batchsize of the input, Tbatch is the batch of
time step, N is the number of neurons.

We verified the unsupervised learning ability of BrainCog on MNIST and Fashion-MNIST,
achieving 97.9% and 87.0% accuracy, respectively. To the best of our knowledge, these are the
state-of-the-art results for unsupervised SNNs based on STDP. To better illustrate the power of
our model on small sample training, we tested the model with small samples and found that this
model has stronger small sample processing ability than ANN with similar structures, as shown
in Tab. S1.

Table S1. The performance of unsupervised SNN compared with ANN on MNIST dataset with
different number of training samples.

samples 200 100 50 10

ANN 79.77% 71.40% 68.72% 47.12%

Ours 81.45% 75.44% 72.88% 51.45%

Difference 1.68% 4.04% 4.16% 4.33%

1



2. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S2: SNN WITH GLOBAL FEED-
BACK CONNECTIONS

Most SNNs are based on feedforward structures, while the importance of brain-inspired feedback
structures has been ignored. The feedback connections carry out the predictions from the top layer
to cooperate with the local plasticity rules to formulate the learning and inference in the brain.
In BrainCog, we introduce the global feedback connections and the local differential learning
rule [2] in the training of SNNs.

ou
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Feedforward Pathway

Feedback Pathway

Fig. S2. The feedforward and feedback pathway in the SNN model. The global feedback path-
way propagates the target of the hidden layer.

We use the LIF spiking neuron model in the BrainCog to simulate the dynamical process
of the membrane potential V(t). We use the mean firing rates Sl of each layer to denote the
representation of the lth layer in the forward pathway, and the corresponding target is denoted as
Ŝl . Here we use the mean squared loss (MSE) as the final loss function. ŜL−1 denotes the target of
the penultimate layer, and is calculated as shown in Eq. S2, WL−1 denotes the forward weight
between the (L − 1)th layer and the Lth. ηt represents the learning rate of the target.

ŜL−1 = SL−1 − ηt∆S = SL−1 − ηtWT
L−1(Sout − ST) (S2)

The target of the other hidden layer can be obtained through the feedback connections:

Ŝl = Sl − Gl(Sout − ST) (S3)

By combining the feedforward representation and feedback target, we compute the local MSE
loss. We can compute the local update of the parameters with the surrogate gradient. We have
conducted experiments on the MNIST and Fashion-MNIST datasets, and achieved 98.23% and
89.68% test accuracy with three hidden layers. Each hidden layer is set with 800 neurons. The
details are shown in Fig. S3.
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Fig. S3. The test accuracy on MNIST and Fashion-MNIST datasets of the SNNs with global
feedback connections.
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3. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S3: BIOLOGICAL-BP SNN

For backpropagation-based SNN training methods, BrainCog provides a biologically plausible
spatio-temporal adjustment [3], as shown in Fig. S4, which can correctly assign credit according
to the contribution of the neuron to the membrane potential at each moment.
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Fig. S4. The forward and backward process of biological BP-based SNNs for BrainCog.

Based on LIF spiking neuron, the direct input encoding strategy, the MSE loss function and the
surrogate gradient function supplied in BrainCog, we propose a Biologically Plausible Spatio-
Temporal Adjustment (BPSTA) to help the BP algorithm with more reasonable error adjustment
in the spatio-temporal dimension [3]. The algorithm realizes the reasonable adjustment of the
gradient in the spatial dimension, avoids the unnecessary influence of the neurons that do not
generate spikes on the weight update, and extracts more important features. By applying the
temporal residual pathway, our algorithm helps the error to be transmitted across multiple spikes
and enhances the temporal dependency of the BP-based SNNs. Compared with SNNs and
ANNs with the same structure that only used the BP algorithm, our model greatly improves
the performance of SNNs on the DVS-CIFAR10 and DVS-Gesture datasets, while also greatly
reducing the energy consumption and decay of SNNs, as shown in Tab. S2.

Table S2. The energy efficiency study. The former represents our method, the latter represents
the baseline.

Dataset Accuracy Firing-rate EE = EANN
ESNN

MNIST 99.58%/99.42% 0.082/0.183 35.1x/15.7x

N-MNIST 99.61%/99.32% 0.097/0.176 29.6x/16.3x

CIFAR10 92.33%/89.49% 0.108/0.214 26.6x/13.4x

DVS-Gesture 98.26%/93.92% 0.083/0.165 34.6x/17.4x

DVS-CIFAR10 77.76%/71.40% 0.097/0.177 29.5x/16.2x

4. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S4: ANN-SNN CONVERSION
WITH BURST SPIKES

Conversion methods can produce spike neural networks with performance comparable to artificial
neural networks while minimizing training costs. However, traditional conversion methods
normalize weights based on activation values obtained from sampled data, resulting in a trade-off
between speed and accuracy for SNNs. Furthermore, previous work commonly uses AvgPooling
instead of MaxPooling because selecting neurons with maximum firing rate in the time dimension
is challenging.

To address the issue of the residual membrane potential of neurons, we introduce a bursting
mechanism, as illustrated in Fig. S5, that allows neurons to send multiple spikes between two
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Fig. S5. The forward process of SNN with burst spikes and LIPooling.

time steps depending on the current membrane potential. This approach enables neurons to
transmit the remaining information by sending spikes between two time steps, leading to an
increased firing rate of the SNN and passing on the remaining membrane potential to the next
layer of neurons. Inspired by the lateral inhibition mechanism, we propose LIPooling to transform
the maximal ensemble layer, as shown in Fig. S5. Operationally, the winner in LIPooling inhibits
other neurons, potentially preventing the neuron with the highest firing rate from spiking due to
the suppression of other neurons in the history. LIPooling aggregates the output of all neurons
during the simulation, utilizing competition between neurons to obtain an accurate sum (equal to
the actual maximum) rather than merely picking winners.

We tested our approach in VGG16 and ResNet16 networks on CIFAR100 datasets, achieving
significant improvements in conversion speed and accuracy. Our method achieved a performance
of 77.93% on VGG16 using 84 time steps and 80.17% on ResNet20 using 93 time steps, as
demonstrated in the Tab. S3.

Table S3. The classification accuracy of converted SNNs on CIFAR100 with BrainCog.

Method Model ANN Acc(%) SNN Best Acc(%) Time Step

baseline
VGG16 77.75 72.13 256

ResNet20 80.25 72.01 256

ours
VGG16 77.75 77.93 84

ResNet20 80.25 80.17 93

5. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S5: QUANTUM SUPERPOSITION
INSPIRED SNN

In the microscopic size, quantum mechanics dominates the rules of operation of objects which
reveals the probabilistic and uncertainties of the world. New technologies based on quantum
theory like quantum computation and quantum communication provide an alternative to infor-
mation processing. Researches show that biological neurons spike at random and the brain can
process information with huge parallel potential like quantum computing.

Inspired by this, we propose the Quantum Superposition Inspired Spiking Neural Network
(QS-SNN) [4], complementing quantum image (CQIE) method to represent image in the form of
quantum superposition state and then transform this state to spike trains with different firing
rate and phase. The effort tries to incorporate the quantum superposition mechanism into SNNs
as a new form of encoding strategy for BrainCog, and the model finally shows its capability
on robustness for learning. The proposed QS-SNN model is tested on background inverted
MNIST datasets. Using the quantum superposition encoding module (QSEncoder) provided by
BrainCog, the background reverse images are represented by quantum superposition state and
then transferred to spike sequences of different frequencies and phases.

Furthermore, we use two-compartment spiking neural networks to process these spike trains.
The SNN model is built by multi-compartment neuron integrated in BrainCog, which contains
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dendrite and soma computing parts. The dendrite process the input spike signal. The soma
integrates the dendritic potential and generates spike output. The proposed QS-SNN model is
trained by using dendrite prediction and proximal gradient method.
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Fig. S6. QS-SNN classifies background reverse MNIST images. (a) Background reverse MNIST
images. (b) Comparison of QS-SNN and other models on MNIST dataset.

We compare the QS-SNN model with other convolutional models. The result in Fig. S6
shows that our QS-SNN model overtakes other convolutional neural networks in recognizing
background-inverted image tasks. The traditional fully-connected ANNs and convolutional
models struggle to handle large changes in image properties, such as background inversion,
even if the spatial features of the image remain unchanged. Compared with other models, the
QS-SNN model can keep the recognition performance basically unchanged when recognizing
the background reversed image. The VGG16, ResNet101 and DenseNet121 models with deep
architectures also face drastic performance degradation in the face of image background inversion.
In contrast, although the QS-SNN model also suffered from performance degradation when the
image information was blurred, the QS-SNN model regained its recognition ability when the
digital features of the background-reversed image became clear.

6. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S6: BRAIN-INSPIRED SEQUENCE
PRODUCTION SNN

Sequence production is an essential function for AI applications. Components in BrainCog enable
the community to build SNN models to handle this task. In this paper, we introduce the brain-
inspired symbol sequences production spiking neural network (SPSNN) model [5] that has been
incorporated in BrainCog. SPSNN incorporates multiple neuroscience mechanisms including
Population Coding, STDP, Reward-Modulated STDP, and Chunking Mechanism, mostly covered
and provided by BrainCog. After reinforcement learning, the network can complete the memory
of different sequences and production sequences according to different rules.

For Population Coding, this model utilizes populations of neurons to represent different sym-
bols. The whole neural loop of SPSNN is divided into Working Memory Circuit, Reinforcement
Learning Circuit, and Motor Neurons [5]. The Working Memory Circuit is mainly responsible for
completing the memory of the sequence. The Reinforcement Learning Circuit is responsible for
acquiring different rules during the reinforcement learning process. The Motor Neurons can be
regarded as the network’s output.

In the working process of the model, the Working Memory Circuit and the Reinforcement
Learning Circuit cooperate to complete the memory and production of different sequences [5]. It
is worth mentioning that with the increase of background noise, the recall accuracy of symbols at
different positions in a sequence gradually decreases, and the overall change trend follows the
"U-shaped accuracy", which is consistent with experiments in psychology and neuroscience [6].
The results are highly consistent due to the superposition of primacy and recency effects. Our
model provides a possible explanation for both effects from a computational perspective.
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7. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S7: COMMONSENSE KNOWL-
EDGE REPRESENTATION GRAPH SNN

BrainCog provides commonsense knowledge representation SNN (CKR-SNN) to explore SNN-
based commonsense knowledge representation and reasoning. Inspired by the population
coding mechanism, this module encodes the entities and relations of commonsense knowledge
graph into different populations of neurons. Via the spiking timing-dependent plasticity (STDP)
learning principle, the synaptic connections between neuron populations are formed after guiding
the sequential firings of corresponding neuron populations [7]. Neuron populations together
constructed the giant graph spiking neural networks, which contain the commonsense knowledge.
In this module, CKR-SNN represents a subset of Commonsense Knowledge Graph ConceptNet [8].
After training, CKR-SNN can complete conceptual knowledge generation and other cognitive
tasks [7].

8. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S8: CAUSAL REASONING SNN

In BrainCog, we constructed causal reasoning SNN, as an instance to verify the feasibility of
spiking neural networks to realize deductive and inductive reasoning. Specifically, Causal
Reasoning Spiking Neural Network (CRSNN) module contains a brain-inspired causal reasoning
spiking neural network model [9]. This model explores how to encode a static causal graph into a
spiking neural network and implement subsequent reasoning based on a spiking neural network.

The CRSNN module adopts the population coding mechanism and uses neuron populations to
represent nodes and relationships in the causal graph. Each node indicates different events in the
causal graph. By giving current stimulation to different neuron populations in the spiking neural
networks and combining the STDP learning rule [10], CRSNN can encode the topology between
different nodes in a causal graph into a spiking neural network. Furthermore, according to this
network, CRSNN completes the subsequent deductive reasoning tasks. Then, by introducing an
external evaluation function, we can grasp the specific reasoning path in the working process
of the network according to the firing patterns of the model, which gives the CRSNN more
interpretability compared to traditional ANN models [9].

9. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S9: DROSOPHILA-INSPIRED
DECISION-MAKING SNN

Drosophila decision-making consists of value-based nonlinear decision and perception-based
linear decision, where the nonlinear decision could help to amplify the subtle distinction between
conflicting cues and make winner-takes-all choices [11]. Based on the learningrule, Customlinear
and node component in BrainCog, we build Drosophila nonlinear and linear decision-making
pathways as shown in Fig. S7a-b. The entire model consists of a training phase and a testing
phase as same as [12]. In the training phase, a two-layer SNN with LIF neurons is trained by
reward-modulated STDP, which combines local STDP synaptic plasticity with global dopamine
regulation. The training phase learns the safe pattern (upright-green T) and the punished pattern
(inverted-blue T) [12]. Therefore, it is safe for green color and upright T shape factors, while blue
color and inverted T shape are dangerous.

Two cues (color and shape) are restructured during the testing phase, requiring linear and
nonlinear pathways to make a choice between inverted-green T and upright-blue T, as shown
in Fig. S7c. The linear decision directly uses the knowledge acquired during the training phase
to make decisions. The nonlinear network models the recurrent loop of the DA-GABA-MB
circuit [11, 13, 14]: KC activates the anterior posterior lateral (APL) neurons, which in turn
releases GABA transmitter to inhibit the activity of KC. KC also provides mushroom body output
neuron (MBON) with exciting input in order to generate behavioral choices. When faced with
conflicting cues, the level of DA increases rapidly and produces mutual inhibition with APL,
thereby producing a disinhibitory effect on KC. The excitatory connection between DA and
MBON also helps speed up decision-making.

To verify the consistency of drosophila-inspired decision-making SNN with the conclusions
from neuroscience [11], we count the behavior paradigm of our model under different color
intensities over a period of time. First, we run the network for 500 steps to count the time t1 of
selecting behavior 1 (avoiding) and the time t2 of selecting behavior 2 (approaching). Then we
calculate prefer index (PI) values under different color intensity: PI = |t1−t2|

|t1+t2| . From Fig. S7d,
we find that nonlinear circuits could achieve a gain-gating effect to enhance relative salient
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Fig. S7. Drosophila-inspired decision-making SNN. (a) Linear Pathway. (b) Nonlinear Pathway.
(c) Experiments for training and choice phases. (d) Experimental results of linear and nonlinear
networks under the dilemma. The X-axis refers to the color density, and the Y-axis represents
the PI values.

cue and suppress less salient cue, thereby displaying the nonlinear sigmoid-shape curve [12].
However, the linear network couldn’t amplify the difference between conflicting cues, thus
making an ambiguous choice (linear-shape curve) [12]. This work proves that drawing on the
neural mechanism and structure of the nonlinear and linear decision-making of the Drosophila
brain, the brain-inspired computational model implemented by BrainCog could obtain consistent
conclusions with the Drosophila biological experiment [11].

10. SUPPLEMENTAL EXPERIMENTAL PROCEDURES S10: EMOTION-DEPENDENT
ROBOTIC MUSIC COMPOSITION AND PLAYING.

Stylistic Music Composition. Inspired by the mechanisms of the human brain, we introduce a
brain-inspired spiking neural network (SNN) that contains several collaborative subnetworks
to learn and generate music melodies. The architecture is shown in Fig. S8. Inspired by the
function of brain areas which is related to music learning and human creativity (Fig. S8a), the
SNN contains three subsystems: 1) The knowledge subsystem is responsible for encoding and
learning the background information of a musical piece. As is shown in Fig. S8b, the genre
cluster stores the genre of classical music pieces, the composer cluster represents the names of
famous composers, and the title cluster mainly encodes the titles of musical pieces. Connections
between layers are dynamically generated and updated. Furthermore, neurons in the upper
layers project to those in the lower layers. This hierarchical structure helps the model organize
and learn complex background information. 2) The emotion subsystem is a neural cluster that
simply expresses four emotional types. 3) The sequential memory subsystem, consisting of the
pitch subnetwork and duration subnetwork, is critical for music learning and generating. The
pitch subnetwork mainly encodes musical pitches and learns the ordered relationships among
musical notes. The duration subnetwork represents the temporal intervals of musical notes.
Both subnetworks are composed of numerous minicolumns in which neurons with the same
preferences are organized in vertical structures. Synaptic connections with different transmission
delays are dynamically generated and modulated during the learning process [15].

Learning Process. First, neurons in these subnetworks receive the background knowledge and
musical notes as the external stimulus. Since neurons have their preferences for this information,
we use the Gaussian filters to simulate these specific neural properties and transform these
external stimuli into the input currents. Then neurons that preferred the input information emit
spikes continuously. Meanwhile, synaptic connections between these activated neurons are
generated and the synaptic weights are updated by the STDP learning rule [15, 16].
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Fig. S8. The architecture of the music learning and composition model, (a) shows the brain
areas related to the music memory and stylistic composition, and (b) describes the architecture
of the entire spiking neural network.

Generating Process. After the learning process, the model can generate melodies with different
styles. Three conditions should be specified first: music style, beginning notes, and the melody
length (number of the notes) to be generated. Music style refers to the emotional types, musical
genre styles or the composers’ characteristics. Based on the learning process, neurons that encode
initial information are activated and fire. Since the synaptic weights are modulated during the
learning process, different neurons in pitch and duration subnetworks are triggered and emit
spikes.

Experiments. A classical piano dataset, including 331 western classical piano works recorded
in MIDI format, is employed here to train the model. The musical works in this dataset are
labeled with different styles: four emotional types (joyful, sorrowful, peaceful and passionate),
three genre types (Baroque, Classical and Romantic), and twenty-five composers’ styles). We
also invited 41 human listeners to evaluate the qualities of generated melodies and score the
generated melodies. The score ranges from 1 (which means the piece has no apparent features) to
5 (the melody style is quite similar to the specified type). In fact, the evaluation results depend on
subjective preferences and social experiences, the experiments are relatively complex. The final
experiments indicate that the generated melodies with different genres get high scores. However,
those with various composers’ styles depend on the musicians’ characteristics. Similarly, the
generated melodies with joyful, sorrowful and peaceful types get high scores [16].
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