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MATERIAL AND METHODS 

 

1. Study area 

 

Our study area is tropical South America, defined between 35S-15N as in previous studies (1–4) which 

examined forest and savanna distribution over the continent. To avoid temperature effects on vegetation 

introduced by high altitude, we restrict our analyses to areas below 1,200 m of elevation following Staver 

et al. (2011)(5), using the HydroSHEDS digital elevation model at the 1 km resolution.  

 

To explore the regional-scale patterns of waterlogging and vegetation, we zoom in on six insets in the 

order of decreasing annual precipitation and increasing seasonality: the Pastaza-Marañón Foreland Basin 

(PMFB), Peru; Marajó Island, Brazil; Llanos de Orinoco, Venezuela and Colombia; Llanos de Moxos, 

Bolívia; Bananal Island, Brazil; and the Brazil portion of the Pantanal floodplains. Limits for the PMFB 

were obtained from the literature (6) ,for Marajó Island from the Brazilian Instituto Chico Mendes de 

Conservação da Biodiversidade (https://www.gov.br/icmbio/pt-br/servicos/geoprocessamento/mapa-

tematico-e-dados-geoestatisticos-das-unidades-de-conservacao-federais), for Llanos de Orinoco from 

the World Wildlife Fund (WWF) Terrestrial Ecoregions of the World(7) 

(https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world), and for Llanos de 

Moxos from the Conservation Biology Institute 

(https://databasin.org/datasets/1520177b6b09402a891a5bc27dd0591a/). For Bananal Island we 

delimited the area using satellite imagery and for the Brazilian Pantanal from the Terrabrasilis platform 

maintained by the Brazilian National Institute for Space Research (INPE) 

(http://terrabrasilis.dpi.inpe.br/en/download-2/).   

 

2. Tree cover and land use data 

 

We use tree cover data from the MODIS MOD44B v6 Vegetation Continuous Fields (VCF) product (8), 

at 250 m resolution for the year 2017. All pixels with tree cover equal to or greater than 60% are classified 

as forest, while those below are classified as savanna. Our threshold follows previous studies (1, 2, 4) in 

the tropics reporting the distribution of forests (high tree cover) and savannas (low tree cover). Although 

some studies have questioned whether the bimodality is an artifact derived from biases in remote sensing 

https://www.gov.br/icmbio/pt-br/servicos/geoprocessamento/mapa-tematico-e-dados-geoestatisticos-das-unidades-de-conservacao-federais
https://www.gov.br/icmbio/pt-br/servicos/geoprocessamento/mapa-tematico-e-dados-geoestatisticos-das-unidades-de-conservacao-federais
https://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
https://databasin.org/datasets/1520177b6b09402a891a5bc27dd0591a/
http://terrabrasilis.dpi.inpe.br/en/download-2/


data(9, 10), others have shown that the signal is much stronger than possible biases (11) and independent 

analyses using other remote sensing datasets have confirmed these results (12), adding confidence to the 

use of the MODIS VCF product to distinguish between high and low tree cover. 

 

We carefully exclude all pixels influenced by anthropogenic land-use change that could artificially lower 

tree cover. We combine the land cover MAPBIOMAS Version 6 product (13) for Brazil with the 

MAPBIOMAS Amazonia Version 3 at 30 m resolution for the year 2017. Because these products do not 

cover our entire study area, we use the Copernicus Global Land Cover (14) product outside Brazil, which 

is at 100 m resolution also for the year of 2017. Because the MAPBIOMAS product has higher accuracy, 

we keep it where available and use the Copernicus product elsewhere. We also exclude pixels classified 

as non-natural or open water. Description of each land cover class excluded are given in Table S1. 

 

Table S1 – List and description of human-influenced land cover classes excluded from our analyses 

from the Copernicus Global Land Cover, MAPBIOMAS Brazil and Amazonia products 

 

Code Copernicus MAPBIOMAS Brazil MAPBIOMAS Amazonia 

9 - Forest plantation - 

14 - Farming Farming 

15 - Pasture - 

18 - Agriculture - 

19 - Temporary crop - 

20 - Sugar cane crop - 

21 - Mosaic of uses (anthropogenic) - 

22 - Non-vegetated areas Non-vegetated areas 

24 - Urban area Urban area 

25 - Other non-vegetated areas Other non-vegetated areas 

26 - Water Water 

27 - Not observed Not observed 

30 - Mining Mining 

31 - Aquaculture - 



33 - River, Lake, Ocean River, Lake, Ocean 

34 - - Glacier 

36 - Perennial crop - 

39 - Soybean crop - 

40 

Cultivated and 

managed 

vegetation/agriculture 

(cropland) 

Rice crop - 

41 - Other temporary crops - 

46 - Coffee crop - 

47 - Citrus crop - 

48 - Other perennial crops - 

50 Urban / built up - - 

80 
Permanent water 

bodies 
- - 

200 Open sea - - 

 

3. Potential analysis 

 

We use the potential analysis method to identify precipitation ranges that support forests, forest-savanna 

transition zone, and savannas based on probability theories, for the making of Fig 1b and subsequent 

analyses. The method (15) constructs an empirical stability landscape of tree cover versus mean annual 

precipitation and has been used extensively in studies concerned with forest-savanna distribution (1, 16). 

To define the precipitation range in which tree cover shows bistability we use tree cover data at 1 km 

resolution (see details in “Upscaling” section below) and mean annual precipitation obtained from the 

ERA5-Land reanalysis monthly precipitation product(17) resampled to 1 km resolution (originally 0.1; 

~10km at the equator) for the 1981-2020 period. The ERA5-Land product has finer horizontal resolution 

(9km, compared to 31km in ERA5 and 80km in ERA-Interim) and better represents precipitation, soil 

moisture and river discharge (18). First, we determine the empirical probability distribution of tree cover 

on a 106 sample using a Gaussian kernel estimator (MATLAB function ksdensity) with 7% bandwidth 

and Gaussian weights set as 0.05 times the precipitation range(1). We detect local maxima and minima 



numerically and filter out small maxima/minima using a 0.03 threshold(1), and local minima are 

interpreted as stable states. We define low precipitation as the range where only low tree cover is stable, 

intermediate precipitation as the bistability range and high precipitation as the range where only high 

tree cover is dominant (Fig S1). 

 

 

Fig. S1. Potential analysis results for tree cover against mean annual precipitation for tropical South 

America. (a) Tree cover frequency along a mean annual precipitation (MAP; mm yr-1) gradient, (b) 



Three-dimensional stability landscape. Black dots represent valleys and thus stable states, while white 

dots represent ridges and unstable states. Mean annual rainfall is shown on the x axis, tree cover in the 

y axis and normalized potential in the z axis (values not shown for clarity) (c) Bifurcation plot, with the 

red lines representing the calculated bi-stability range of 1400-1800 mm yr-1. In this range, high and low 

tree cover are considered alternative states. 

 

4. Dynamic hydrological model 

 

Direct observations of water table (WT) depth, the critical hydrologic indicator we use to quantify 

drought and waterlogging, are sparse over the neotropics, far from representing the WT seasonal change 

along topographic (hill to valley) and climate (ever-wet to severe dry season) gradients across the vast 

tropical South America. We thus rely on model simulations that integrate essential water stores and 

fluxes, forced by observed atmosphere, terrain, and vegetation biomass, to constrain the seasonal WT 

depth at regular spatial-temporal grids over the continent, that is internally and dynamics consistent with 

the observable fields.  

 

Our land hydrology model has been described in detail earlier (19–22) and here we briefly describe its 

basic structure. We represent the South America continent as grid cells of 30-arcsecond (~1 km) to 

differentiate upland vs. lowland within computational limits, and at hourly steps for 15 years (2003–

2018) to resolve event-to-seasonal dynamics. The model has two parts: (i) a fully interactive soil-

groundwater-river hydrology forced by atmospheric reanalysis ERA5 

(https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5), observed soil texture and land 

topography, giving infiltration, soil water profile, WT depth and streamflow and flooding at each hour 

and grid cell; the porosity and permeability of each column decrease exponentially with depth from top 

1m values given in global soil database, the rate of decrease depending on land slope, so that the regolith 

is shallow on steep slopes and deep in sedimentary basins; vadose zone soil water is calculated with 1D 

Richards equation, and groundwater below the water table flows from hills to valleys driven by Darcy’s 

law; rivers-floodplains exchange with groundwater freely driven by hydraulic gradients; (ii) soil 

evaporation and ecosystem transpiration driven by hourly reanalysis atmosphere and daily satellite leaf 

area index, giving hourly plant water demand to be met by root uptake; (iii) dynamic root water uptake 

distributed among soil layers using Ohm’s law (Fig. S2), so that uptake is higher from wetter (lower 

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5


resistance) and shallower (shorter lifting) soil layers. The introduction of dynamic root water uptake, to 

meet evapotranspiration needs, made the water table deeper globally by directly simulating the effect of 

vegetation on hydrology (Fig. S3). These processes, driven by observed external forces (climate, terrain), 

fully interacting with dynamic 2-way exchange among all reservoirs, based on first principles (mass and 

momentum conservation, potential driven flow such as Darcy’s law and Ohm’s law), produced a 

regularly gridded, hourly change of water table depth over 15 years. We saved the monthly water table 

depth to quantify seasonal drought and waterlogging. Fig. S4 gives the map of annual mean precipitation 

and water table depth, the latter revealing fine-scaled spatial structure due to topographic relief that 

drives lateral groundwater flow, absent in the broad-stroked precipitation patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2. Schematic representation of the dynamic rooting depth and deep soil water root uptake 

calculation. (a) Root water uptake from "parallel-connected" soil layers illustrating the distribution of 

roots and their water extraction. Blue horizontal line with triangle indicates the level of the water table 

(b) Depiction of soil water potential (blue dashed line) and the ease function (green solid line) profiles, 

demonstrating their relationship and influence on root water uptake. Solid blue line represents the 

water table depth. This allows the soil-groundwater hydrology to influence root uptake, and root 

uptake to influence soil-groundwater hydrology by reducing soil moisture and groundwater recharge. 
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Fig. S3. Comparison of modeled mean water table depth under different root uptake assumptions. (a) 

Static root uptake scenario based on the non-interactive approach by (23), and (b) Dynamic root uptake 

scenario incorporating interactive and deep uptake driven by observed leaf area index, atmospheric vapor 

pressure deficit, and soil moisture profiles determined both by infiltration from the top and capillary rise 

from the bottom (21). The difference reflects the profound influence of plant water use on land 

hydrology. 



 

Fig. S4 – Maps for (a) mean annual precipitation (mm yr-1) and (b) mean water table depth (m) for 

Tropical South America. Note the fine-scaled structure in water table depth under a given climate. White 

pixels correspond to areas excluded from analyses (e.g., open water, agriculture, high elevations). 



We took great care to validate our model using available observations, at multiple scales. In the past 15 

years we have validated the model systematically (Tab S2). First, we compared model results against 

observed daily to monthly soil moisture at multiple depths in N. America (24) and the Amazon (20). 

Second, we compared our modeled water table depth with 10s of thousands of well observations over N. 

America (25, 26), S America (20, 27) and 1.6 million well observations over the globe (23). Third, we 

validated our modeled stream flow against gage observations in N. America (24), the Amazon (19), and 

globally (21, 22). Fourth, modeled monthly evapotranspiration (ET) is compared with observations at 

103 flux-tower sites (21, 22). Fifth, we validated our modeled total terrestrial water storage (TWS), 

monthly, and integrated vertically over surface water (river and floodplain), soil water (in dynamically 

deepening or shallowing vadose zone) and groundwater (all water below the water table) against GRACE 

satellite observations over six large windows in the Amazon (28). Sixth, we validated the capacity of our 

modeled water table depth in representing waterlogging, or wetland distribution and extent against 

mapped wetlands in N. America (26) and flooded vs. non-flooded wetlands in S. America (19). In all 

validations, our model realistically reproduced the observed spatial patterns and seasonal dynamics 

(timing and amplitude), without calibration of any parameters to match the observations. 

 

Here we show validations for our latest global simulations from which we derive our hydrological data, 

include comparisons of ET at 103 eddy-covariance flux towers (Fig. S5), river discharge compared to 

observations at 34 gauges (Fig. S6), and South America comparisons of mean WT at 4885 well 

observations (Fig. S7) and seasonal WT at 12 sites with time series (Tab S2, Fig. S8), and monthly total 

water storage change compared to GRACE observations (Fig. S9). Again, without any calibration, the 

model reproduces the amplitude and timing of seasonal water balance at point scales and across the 

continent. Discrepancies are due to neglecting anthropogenic activities in the model (irrigation affecting 

ET, and diversion and reservoir regulation affecting streamflow and water storage).  

 

 

 

 

 

 

 



Table S2. Past comparisons of model output with observations. 

Reference Model output variables and 

observations used to validate 

Model 

domain 

Spatial 

resolution 

Temporal 

resolution 

Fan et al. 

2007 (25) 
Water table depth at 549,616 well sites N. America 12.5km Equilibrium 

Miguez-

Macho et al. 

2007 (24) 

Streamflow at 5 gages in Mississippi 

basin 
N. America 12.5km Daily 

Soil moisture at 19 sites in Illinois N. America 12.5km Daily 

Soil moisture at 60 sites in Oklahoma N. America 12.5km Bi-weekly 

Fan and 

Miguez-

Macho 2010 

(27) 

Water table depth at 34,351 well sites S. America 
~270m 

(9”) 
Equilibrium 

Fan and 

Miguez-

Macho 2011 

(26) 

Wetland distribution and extent N. America 

~270m 

(9”) and 

~1km 

(30”) 

Equilibrium 

Miguez-

Macho and 

Fan 2012a 

(19) 

Streamflow at 10 gages in Amazon Amazônia ~2km (1’) Daily 

Water table depth at 8 sites reported in 

the literature 
Amazônia ~2km (1’) 

Daily to 

monthly 

Surface flooding frequency and extent Amazônia ~2km (1’) monthly 

Miguez-

Macho & Fan 

2012b (20) 

Soil moisture at 7 sites reported in the 

literature, each site at multiple depths 
Amazônia ~2km (1’) 

Daily to 

monthly 

Flux tower ET at 6 tower sites Amazônia ~2km (1’) Monthly 

Fan et al. 

2013 (23) 

Water table depth at 1,603,781 well 

sites across the globe 
Global 

~1km 

(30”) 
Equilibrium 

Pokhrel et al. 

2013 (28) 

Total terrestrial water storage change 

observed by GRACE satellites 
Amazônia 

1 x 1 

degree 

Monthly 

 



Miguez-

Macho and 

Fan 2021 

(22) 

Flux-tower ET at 103 tower sites 

around the globe for a decade (2004-

2014) 

Global 
~1km 

(30”) 
Monthly 

Gage streamflow at 34 gages around 

the globe for a decade (2004-2014) 
Global 

~1km 

(30”) 
Monthly 

 

 

4.1. Comparison of evapotranspiration with flux tower observations 

 

Figure S5a presents the global distribution of eddy-covariance flux towers from the FLUXNET database 

(https://fluxnet.org/data/fluxnet2015-dataset/). The majority of Amazon data originates from the LBA-

ECO CD-32 Flux Tower Network Brazil 

(https://daac.ornl.gov/LBA/guides/CD32_Brazil_Flux_Network.html) and other published sources. Our 

study includes 103 sites across 30 countries, with varying periods of overlap with our model: over 6 

years in North America and Europe, over 5 years in Australia, and over 1 year in South America, Asia, 

and Africa, where tower data is limited. Figs. S5b-g display monthly comparisons at these sites, grouped 

by continent. The vertical axis represents evapotranspiration (ET) in mm/day, while the horizontal axis 

indicates time (years) in monthly increments. Blue lines depict observed data, and red lines represent 

our model's results. For comparison purposes, we combined canopy evaporation, soil evaporation, and 

plant transpiration to calculate total ET, as flux-tower measurements encompass total ET. 
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Fig. S5. (a) Location, vegetation type and time series length for flux towers used in our comparison. 
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4.2. Comparison of river discharge with gage observations 

 

Fig. S6a displays the 19 major river gauging stations from the Global Runoff Data Center (GRDC, 

https://www.bafg.de/GRDC/EN/Home/homepage_node.html) in red, which overlap with our model 

period. Unfortunately, many GRDC records ceased in the late 1990s. We supplemented the GRDC 

dataset with four gauges from the US Geological Survey (https://waterdata.usgs.gov/nwis/sw) in the 

Mississippi drainage (green), 10 gauges in the Amazon drainage (orange) from Agência Nacional de 

Águas e Saneamento Básico (ANA, https://www.ana.gov.br/portal-ingles/monitoring), and one from a 

published historic reconstruction (black), resulting in 34 gauge records. Figs. S6b-g present monthly 

comparisons at these sites, organized by continent. Unlike flux tower sites with an average 2km footprint, 

stream gauge observations reflect integrated hydrologic responses over river basins. The vertical axis 

plots monthly stream discharge (m³/s), and the horizontal axis represents years in monthly increments. 

Observations are shown in blue, and model results in red. 

 

Our model does not account for anthropogenic streamflow alterations, such as reservoir regulation, river 

diversion for irrigation, or large lakes in river flow routing. Where such processes dominate river flow 

regimes, our model significantly deviates from observations. The Murray River in southeastern Australia 

is a notable example, as it is a vital irrigation source for the semi-arid lower Murray-Darling River basin. 

During the 2004-2010 drought years, when irrigation intensified, streamflow significantly differed from 

the natural flow our model emulates. Another notable example is the Paraná River in South America, 

which drains heavily populated areas in Brazil, such as the State of São Paulo, and is thus highly diverted. 

We present number of upstream reservoirs for the river basins in South America, focus on this study, in 

Table S3. 

 

In high latitudes, our model does not represent seasonal freezing and thawing of rivers, resulting in a 

weak seasonal cycle (e.g., larger rivers draining into the Arctic in Russia). Considering no model 

parameters are calibrated to match observations and our model's primary focus is on exploring 

hydrologic stress on plants from a variable water table, obtaining accurate evapotranspiration (ET) and 

its seasonal cycles is more crucial. Thus, we deem the model sufficient for its intended purpose. 
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Fig. S6. (a) Location of the 34 river gages used in our global comparison; (b) Comparison between 

observed (blue) and modeled (red) monthly river discharge (km3/s).  
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Table S3 – Number of upstream reservoirs of the discharge gages used in the model evaluation (Fig. 

S6). We combined the stations Solimões, Japurá and Purus because individual data was not available. 

All data comes from Agência Nacional das Águas (ANA). 

 

Observation stations Number of upstream reservoirs 

Solimões, Japurá, Purus 72 

Negro 39 

Amazon at Manaus 111 

Madeira 685 

Amazon at Óbidos 815 

Tapajós 2,313 

Xingu 2,931 

Tocantins 18,061 

Paraná 51,470 

 

 

4.3. Comparison of long-term mean water table depth with groundwater well observations 

 

Here we report a new effort to validate the long-term mean water table depth (WTD) from the simulation 

used in this study. We compiled well observations for the entire continent of South America (23) from 

government agencies and the literature. These wells are drilled and sampled in different times and are 

best used to check our modeled 15 year mean WTD. There is a total of 34,508 point-observations, but 

they tend to be concentrated around urban centers and agricultural regions where pumping affects the 

water level. Comparing model output to groundwater well observations is difficult because of the 

mismatch between scales: a 1x1 km model cell vs a point observation. We filter out observations where 

the difference between the model grid and recorded land elevations of the well are greater than the range 

of elevation within a model grid based by high resolution (30 m) DEM. This ensures that the observation 

and the model are at a comparable topographic position. After applying this filter, we used the remaining 

4,885 data points to examine the residuals between observation (hobs) and model mean head (hmodel). 

Ideally, the residuals would (a) be normally distributed, (b) have small standard deviation, and (c) have 

no relationship with topography or climate (systematic bias). Our results (Fig. S7) show that the model 



has a higher or shallower water table than observations, which is expected given that most of the 

groundwater wells are drilled in places of groundwater exploitation and subject to pumping, which 

lowers the natural water table level (23). We also find low correlations between the residuals and the 

elevation and MAP, indicating no significant systematic bias along elevation or rainfall gradients. We 

note that no calibration was performed to improve model-observation fit. 

 

Fig. S7. Validation of mean WTD vs. well observations: (a) histogram of residuals with mean, standard 

deviation, and skewness; (b) residuals vs elevation; and (c) residuals vs MAP. 

 

 

 



4.4. Comparison of monthly water table depth with time series of well observations  

 

We now compare the seasonal cycle of water table to observations. Temporal records of water table 

depth are even scarcer, and we rely on (i) observations from the Brazilian Geological Survey Integrated 

Groundwater Monitoring Network (CPRM-RIMAS) in the Amazônia region available at 

http://rimasweb.cprm.gov.br/ and (ii) a compilation of observations from published literature. Since most 

of the CPRM-RIMAS wells are deep and tap into rock aquifers, we choose only those measuring free 

aquifers (no confining layers), with the entire filter section open to sediment (as opposed to rock) and 

which were not subject to pumping or human water use. This yields a small number of wells, most of 

which have no temporal overlap with the model simulation period. The same can be said of the 

observations compiled from the literature, which pose another set of challenges since usually only the 

general location of the study area is given, instead of the precise coordinates of each well (as in the 

CPRM-RIMAS wells). To overcome these issues, we (i) average the model and observation timeseries 

to obtain the seasonal cycle and compare whether the model captures the correct depth and temporal 

dynamics of the water table; (ii) where precise locations were not available, we choose the closest pixel 

to each site with similar topographic position as noted in the original source (e.g., elevation or plateau 

vs slope vs valley) to extract the corresponding model water table. Information and location of 

observation wells can be found in Table S4 and Fig. S8, and validation plots in Fig. S9. 

 

Table S4. Observations used in water table seasonal cycle comparison 

ID Name Latitude Longitude 
Start 

Date 
End Date Source 

1 Cruzeiro do Sul -7.495556 -72.77528 06/2015 11/2020 
CPRM-

RIMAS 

2 
Fazenda 

Catauba 

-

10.073333 
-67.62694 02/1999 12/2004 

Selhorst and 

Brown (2012) 

(29) 

3 
Jaú National 

Park 
-1.9125 -61.6375 03/2000 10/2010 

Do 

Nascimento et 

al. (2008) (30) 

http://rimasweb.cprm.gov.br/


4 
Reserva 

Cuieiras 
-2.61 -60.2 01/2003 09/2016 

Bastos (2019) 

(31) 

5 Óbidos -1.903333 -55.50861 04/2012 12/2020 
CPRM-

RIMAS 

6 Redenção -7.83333 -50.26666 12/1996 11/2001 

Grogan and 

Galvão (2006) 

(32) 

7 Bananal Island -9.821139 -50.148694 11/2003 12/2006 
Borma et al. 

(2009) (33) 

8 Belém do Pará -1.434444 -48.44917 02/2012 05/2021 
CPRM-

RIMAS 

 

 

 

 

 

 

 

Fig. S8. Location of observations used for water table seasonal cycle comparison. Red lines 

outline the limits of the Amazônia region. 

 



 



Fig. S9. Comparison between modeled water table depth (in m, red) with observations (blue).  

 

Despite the many uncertainties in the model input data – e.g., soil properties and structure of the 

subsurface (e.g., permeability), forcing bias and the scale mis-match – the model captures well both the 

magnitude and the seasonal timing of the rise and fall of the water table across most of the observation 

sites. The high uncertainties in soil properties can partially explain the differences in variability range 

between model and observations in some places (e.g., more dampened in Jaú National Park, more 

variable in Belém do Pará). Vertical and lateral permeability are derived from soil texture(19, 20), and 

can lead to over or underestimation of the velocity with which water moves through the soil. 

Furthermore, the low spatial resolution (1km vs a point at a well) also contributes to the dampening of 

the seasonal cycle, erasing topographic positions such as lower slopes, where the variability of water 

table is high. Despite these issues, the model consistently represents the spatial and temporal 

characteristics of hydrology across different geological domains and rainfall regimes, thus reinforcing 

its usefulness in representing hydrologic states in Amazônia. 

 

4.5. Comparison of terrestrial water storage with GRACE 

 

Because groundwater observations, especially in time, are sparce across Amazônia, we turn to the 

GRACE satellite products to assess the ability of our model to represent seasonal water storage change 

across Amazônia. The GRACE mission’s monthly mass field products allow for the calculation of 

temporal changes in terrestrial water storage (TWS), an integrated measure of water stored in different 

components of the Earth system (34, 35). The product is offered monthly at a 1x1 spatial resolution 

from mid-2002 to mid-2017. Our model estimates of TWS anomalies have been shown to agree well 

with those of GRACE (28) before. Subsurface storage (water in vadose zone + groundwater) has been 

shown to dominate the TWS signal across most of Amazônia(28), except for areas such as the Rio Negro, 

characterized by extensive lowlands with a shallow and stable water table, where superficial storages 

(rivers and floodplains) dominate. Thus, the GRACE product offers us the possibility of evaluating the 

model’s ability to correctly track subsurface water with a spatiotemporal coverage that observations 

alone cannot provide. Here we adopt a similar comparison procedure focusing on 6 ecoregions of 

Amazônia. We use model simulations at the 2-km grid scale and compare model estimates of TWS 

anomalies relative to the 2004-2010 baseline to those of GRACE (36) in the same time period (Fig. S10). 



 

 

Fig. S10. Comparison of simulated terrestrial water storage with GRACE satellite data for the entire 

Amazônia and 6 ecoregions in the basin. 

 

Our results show that the model correctly reproduces both the magnitude and seasonality of TWS change 

for the entire Amazônia region and each ecoregion of interest. We note that the dampened seasonal cycle 

in regions like Central Amazônia can be attributed to the well documented bias in the precipitation 

forcing in earlier versions of the ERA-Interim project, with too much rain in the dry season and too little 

in the wet season (19, 20, 28). This bias has since been corrected and incorporated into the ERA5 version 

of the reanalysis used to force the model in our current study. Nonetheless, we show that the model can 

correctly track the magnitude and timing of the movement and storage of water across many reservoirs 

on land without any calibration and is thus suitable for the purposes of our study. 



5. Measuring hydrologic stress 

 

We define three drainage classes (see Fig. 1b) to represent distinct hydrologic environments or niches 

using a 2m threshold as a rough guidance on rooting depth and 0.25 m as a threshold for waterlogging 

stress. Rooting depth remains a vastly under sampled plant trait, and observations and model results 

show that it can vary greatly following topography, climate and species(21). Therefore, defining a unique 

threshold as accessible versus inaccessible water table is difficult. We argue that the 2 m threshold is 

sufficient to capture the difference between the shallow rooting herbaceous plants which make up the 

majority of savannas biomass, and deep rooting forest species on well-drained hillslopes and plateaus. 

Moreover, a compilation of over 2,000 observations of rooting depth shows that ~70% of all observations 

are shallower than 2 m (21), which gives us confidence that this is a meaningful biological threshold to 

define groundwater access. Previous work shows that the 0.25 m threshold gives the best representation 

of mapped wetlands in North America (26). In a Brazilian hyperseasonal savanna, shallow water tables 

were shown to decrease woody species abundance (37–39), and no woody species were reported to 

survive to adulthood where the water table was within the top 20 cm of soil (37). Comparison with 

simulations of flooding frequency show that the 0.25 m threshold mirrors flooding frequency, and for 

87% of pixels, yields higher waterlogging stress frequency than flooding alone (Fig. S11), making it a 

more powerful indicator than flooding alone. Therefore, we consider that a water table in the top 0.25 m 

of soil is enough to cause oxygen stress to the bulk of plant roots. 

 



 

Fig. S11 – 2-D histogram showing the distribution of pixels in the study area regarding their 

waterlogging and flooding stresses. The horizontal axis shows waterlogging sum exceedance value 

(SEV), calculated as the number of months with water table above 0.25 m, while the vertical axis shows 

flooding SEV, calculated as the number of months with a water column above the soil surface. Darker 

colors indicate a higher concentration of pixels in each bin.   

 

Following the hydrologic niche theory of Silvertown et al. (1999) (40), we compute the sum exceedance 

values (SEV) to quantify the frequency of waterlogging and drought stress experienced at each landscape 

position. We define the drought stress SEV (Fig. S12) as the average number of months per year (over 

15 years) in which the water table is below the 2 m threshold defined above. The waterlogging SEV 

(Fig. S13) is defined as the number of months with water table above 0.25 m. The “deep water table 

(drought stress)” class has pixels in which the water table is always below the 2 m threshold, and 

therefore a drought SEV value of 12 months. The “alternating shallow and deep water table (double 

stress)” class has pixels in which the water table rises above 0.25m in the wet season but falls below in 

the dry season, characterizing highly dynamic locations, and have drought and waterlogging SEVs 

greater than 1 month; the “shallow water table (waterlogging stress)” class has pixels in which the water 

table is always above 0.25 m and imposes permanent waterlogging stress, with a waterlogging SEV 

value of 12 months. For each combination of the three water table and three precipitation (from potential 



analysis above) classes, we compute the tree cover distribution and the relative abundance of forest 

versus savannas on an area basis (Fig. 1b).  

 

 

 

Fig. S12 – Drought sum exceedance value (SEV), calculated as the average number of months with WT 

deeper than 2m. White pixels correspond to areas excluded from analyses (e.g., open water, agriculture, 

high elevations). 

 

 

 



 

Fig. S13 – Waterlogging sum exceedance value (SEV), calculated as the average number of months with 

WT shallower than 0.25 m. White pixels correspond to areas excluded from analyses (e.g., open water, 

agriculture, high elevations). 

 

To construct Fig. 2b, for each possible waterlogging/drought SEV combination, we select all valid model 

pixels which have that specific combination and calculate forest proportion as the ratio of forest pixels’ 

area to the area of all pixels (forests and savannas) inside that bin (Fig. 2b). If all pixels in a specific SEV 

combination are covered by forest vegetation, forest proportion is 100%. If all pixels are savannas, then 

forest dominance is 0%.  

 

We also determine the double stress index (DSI) as the harmonic mean of waterlogging stress SEV and 

drought stress SEV (Fig. S14). DSI ranges from 0, where there is no double stress, to 6, representing the 



maximum double stress intensity of 6 months of drought followed by six months of waterlogging. We 

use the DSI to create three classes of double stress: no double stress (DSI = 0), weak double stress (0 < 

DSI < 4) and strong double stress (DSI > 4). We use these classes to categorize each land pixel into one 

of three classes and plot them in Fig. 2c. 

 

 

 

Fig. S14 – Values of the Double Stress Index (DSI) for each waterlogging and drought sum exceedance 

value (SEV) bin. Values range from 0, where there’s no stress or only waterlogging/drought stress, to 6, 

where both waterlogging and drought SEVs equal 6 months. 

 

In Fig. 3, for each of the six insets, we calculate the distribution of tree cover using seaborn’s KDEplot 

function for two drainage classes: non-double stressed and double stressed, defined using the DSI index 

described above. To obtain the seasonal cycle of precipitation and WTD, we use ERA5-Land 

precipitation averaged for all pixels in each region, and model WTD data average for all waterlogged 

pixels (at least one month of WTD shallower than 0.25 m) in each region. We show in Table S5 below 



the proportion of forest and savanna in each drainage condition (non-double stressed or double stressed) 

for all six floodplains. 

 

Table S5 – Proportion of forest and savanna in each drainage condition (non-double stressed or double 

stressed) for the six floodplains shown in the Fig. 3 of the main text. 

Location Condition Forest (%) Savanna (%) 

Pastaza-Marañón Foreland Basin 
Non-double stressed 96 4 

Double stressed 96 4 

Marajó Island 
Non-double stressed 87 13 

Double stressed 55 45 

Llanos de Orinoco 
Non-double stressed 3 97 

Double stressed 1 99 

Llanos de Moxos 
Non-double stressed 16 84 

Double stressed 8 92 

Bananal Island 
Non-double stressed 6 94 

Double stressed 4 96 

Pantanal 
Non-double stressed 5 95 

Double stressed 3 97 

 

 

6. Sensitivity and statistical analyses 

 

To test whether our results on savanna-forest distribution in the double-stress space are robust to 

errors/biases in the modeled water table dynamics, we perform a sensitivity analysis using the water 

table data. First, to assess the magnitude of the biases, we use the groundwater monitoring wells with 

available time series to estimate the average monthly error between observation and model in magnitude, 

and also a possible displacement in time (lag) between model and observations (Fig. S15) below. Our 

results show that the model has a mean error of – 0.58 m (deeper than observations), and while 11 points 

had no lag between model and observations, one point (Bananal Island valley) did show a 2-month lag 

between both. 

 



 

 

 

Fig. S15 – Statistics for comparison between modeled and observed water table depth. We show the 

distribution of mean error (observation – model) for all wells in (a) and also the distribution of temporal 

lag between observations and model in (b). 

 

With these results, we then design two analyses to test the sensitivity of our results to these biases: (1) a 

shallower water table analysis, adjusting the model water table by the mean error (0.58 m above) and (2) 

a lagged water table, moving the temporal series by 2 months (representing the highest observed lag). 

The results of forest/savanna proportions in drainage and rainfall classes (as shown in Fig. 1 in the paper) 

show minor changes in the shallower WT analysis, and no change in the lagged WT analysis (Table S6 

below). 

 

 

 

 

 

 

 

 

 



Table S6 – Sensitivity analysis results of forest and savanna proportions according to rainfall and 

drainage classes (comparable to Fig. 1 in main text). Green color indicates increase compared to 

original run; red indicates decrease and yellow indicates no change. 

 

Rainfall Drainage Simulation 
Forest 

(%) 
Savanna (%) 

Low rainfall 

Deep water table 

 

Original 5.7 94.3 

Adjusted, shallower WT 5.8 94.2 

Adjusted, lagged WT 5.7 94.3 

Alternating water 

table 

Original 5.2 94.8 

Adjusted, shallower WT 4.5 95.5 

Adjusted, lagged WT 5.2 94.8 

Shallow water table 

Original 9.9 90.1 

Adjusted, shallower WT 12.3 87.7 

Adjusted, lagged WT 9.9 90.1 

Intermediate 

rainfall 

Deep water table 

 

Original 50.4 49.6 

Adjusted, shallower WT 51.3 48.7 

Adjusted, lagged WT 50.4 49.6 

Alternating water 

table 

Original 23.6 76.4 

Adjusted, shallower WT 22.7 77.3 

Adjusted, lagged WT 23.6 76.4 

Shallow water table 

Original 50.1 49.9 

Adjusted, shallower WT 50.6 49.4 

Adjusted, lagged WT 50.1 49.9 

High rainfall 

Deep water table 

 

Original 87.5 12.5 

Adjusted, shallower WT 87.6 12.4 

Adjusted, lagged WT 87.5 12.5 

Alternating water 

table 

Original 68.5 31.5 

Adjusted, shallower WT 69.7 30.3 

Adjusted, lagged WT 68.5 31.5 



Shallow water table 

Original 84.9 15.1 

Adjusted, shallower WT 86.6 13.4 

Adjusted, lagged WT 84.9 15.1 

 

We then test whether the patterns of forest/savanna dominance in the SEV space (Fig. 2 in the 

manuscript) were sensitive to the two changes in WT (Fig. S16 below). Our results show that while some 

pixels changed in the shallower WT run, the pattern of increased savanna dominance as double stress 

increases (diagonally from the origin) remains the same. There were no changes for the lagged WT 

analysis. 

 

 

 

Fig S16 – Comparison of forest-savanna proportion in the 2-D sum exceedance value (SEV) space. The 

horizontal axis represents the frequency of drought (water table deeper than 2 m, in months), while the 

vertical axis represents the frequency of waterlogging (water table shallower than 0.25 m, in months). 



We show the results for the (a) original water table, (b) adjusted, shallower water table and (c) adjusted, 

lagged water table. 

 

To statistically test the combined effects of mean annual precipitation, seasonality, and double stress on 

the existence of forest and savanna, we first model log-transformed tree cover using a Generalized Least 

Squares (GLS) linear model, assuming normally distributed errors, with increasing complexity of 

predictors. We start with mean annual precipitation (MAP) as the only predictor. We then add the 

seasonality of rainfall, measured using the relative entropy index (41, 42). The relative entropy measures 

how different a pixel’s mean monthly precipitation is from the uniform distribution (MAP equally 

distributed through the year), thus giving us a seasonality measure that does not rely on assumptions 

regarding the definition of dry season rainfall totals, the start of the dry season or ET rates, such as the 

MCWD (43). Finally, we add the Double Stress Index (DSI) as a predictor, calculated as described 

above. All predictors had low Variance Inflation Factor (VIF), between 1 and 1.5 (see Table SX below), 

suggesting low multicollinearity and therefore suitability to be employed as independent predictors in 

our model. 

 

Table S7 – Variance Inflation Factor (VIF) for the predictor environmental variables used to predict 

tree cover. 

 

Environmental variable VIF 

Mean Annual Precipitation (MAP) (mm yr-1) 1.418 

Relative Entropy of Precipitation (RE) 1.411 

Double Stress Index (DSI) 1.01 

 

 

Our results (Table S8) show that the model with 3 predictors (MAP, RE and DSI) has the best 

performance, measured by the Akaike Information Criterion (AIC), the Bayesian Information Criterion 

(BIC) and the Adjusted-R2. Moreover, the coefficients of the best model (Table S9) show that MAP has 

the first and strongest control on tree cover, followed by seasonality and double stress. Seasonality and 

double stress have similar coefficients, and both show a negative relation with tree cover (decreasing 

tree cover with increasing rainfall seasonality and increasing double stress, as stated in our paper). The 



other models show that, out of all the predictors, MAP has the best performance compared to seasonality 

and DSI, which is consistent with the argument that rainfall drives the large-scale changes in tree cover, 

while seasonality and especially the groundwater-induced double stress control finer-scale features. 

 

Table S8 – Performance metrics for the Generalized Least Squares (GLS) models of tree cover as a 

function of one or multiple environmental variables. Models are sorted from the best (based on lowest 

AIC value) to worst. 

 

Formula AIC BIC Adjusted R2 

log(tree cover) ~ MAP + RE + DSI 4.757e6 4.757e6 0.452 

log(tree cover) ~ MAP + DSI 4.846e6 4.846e6 0.447 

log(tree cover) ~ MAP + RE 4.900e6 4.900e6 0.444 

log(tree cover) ~ MAP 4.999e6 4.999e6 0.439 

log(tree cover) ~ RE + DSI 8.674e6 8.675e6 0.178 

log(tree cover) ~ RE 8.697e6 8.697e6 0.176 

log(tree cover) ~ DSI 1.053e7 1.053e7 0.001 

 

 

Table S9 – Coefficients for the best Generalized Least Squares (GLS) model of tree cover as a function 

of mean annual precipitation, relative entropy of precipitation and double stress index. 

Variable Coefficient P value 

Intercept 0.987 < .0001 

MAP 0.261 < .0001 

RE -0.035 < .0001 

DSI -0.038 < .0001 

 

Second, we define three classes of double stress: no double stress (no stress or single 

waterlogging/drought stress, DSI = 0), weak double stress (DSI ranging from 0 – 4, or 4 months of 

waterlogging + 4 of drought) and strong double stress (DSI ranging from 4 – 6, or 6 months of 

waterlogging + 6 of drought). We then compare the distribution of tree cover in each class (Fig. S17). 

We test the difference in median values of tree cover between classes using the Mann-Whitney-Wilcoxon 



two-sided test. Our results show that median tree cover decreases with increasing double stress, and the 

median tree cover values in each group are statistically different from one another. However, we do point 

out that all three classes have large variability in tree cover, stemming from the complexity behind the 

determinants of tree cover. As the model above shows, low tree cover can be caused by low precipitation, 

high seasonality, high double stress, or a combination of the three. Moreover, there are other controls on 

tree-savanna coexistence that we do not account for in this paper, such as fire occurrence and soil nutrient 

composition (44, 45). Even with these limitations, our results show that double stress is a statistically 

significant predictor of tree cover, favoring the occurrence of low tree cover where double stress is high. 

 

 

Fig S17 – Tree cover distribution for three double stress classes: no double stress (no stress or only 

drought or waterlogging stress), weak double stress (double stress index from 0 to 4) and strong double 

stress (double stress index higher than 4). Whiskers extend to 1.5 times the interquartile range, and 

horizontal line represents the median value of tree cover in each group. While all three classes have 

similar ranges of variability, median tree cover is significantly lower especially in the strong double 

stress class. Asterisks denote statistical significance from a two-sided Mann-Whitney-Wilcoxon test. 

****: p < 0.0001. 

 

 



7. Future hydrologic simulation 

 

To explore potential future shifts (Fig. 4), we use two hydrologic simulations at the end of 20th and 21st 

century (19, 20, 46). These earlier runs are at a coarser resolution (~2km) and did not simulate dynamic 

rooting depth but solved the full momentum equation in river and floodplain routing, reproducing 

backwater effects and floodplain inundation important in Amazônia (47). We contrast between a 

historical simulation for 10 years at the end of the 20th century, and a future simulation for 10 years at 

the end of the 21st century. Both simulations were forced with output from the Hadley Center Global 

Environment Model version 2 (HadGEM2-ES). The Hadley Center model is one of the most accurate 

models in representing precipitation and temperature fields in Amazônia (48), albeit with a wet bias in 

the southwest and a dry bias in the northeastern wet season (46). The future simulation uses the 

Representative Concentration Pathways Scenario 8.5 (RCP8.5), which leads to ~ 940 ppm CO2 by the 

end of the century, and a 0.62 m mean sea level rise projected by the IPCC-AR5(49). The historic run 

has been validated against WTD, soil moisture, evapotranspiration, streamflow and flooding, and total 

terrestrial water storage (against GRACE) observations (19, 20, 28, 46). 

 

We calculate waterlogging and drought stress SEVs as discussed above and use the difference between 

the historical and future run to identify areas currently covered by forest and not exposed to double stress 

but will be exposed to double stress in the future. To identify only those forests exposed to the most 

stressful conditions, we use only combinations of drought and waterlogging SEVs associated with 

savanna dominance greater than 62.5% (oranges and red bins in Fig. 2). 

 

8. Upscaling 

 

Because most of our datasets are at different spatial resolutions, we adopt the following upscaling 

procedures. First, we upscale the MAPBIOMAS and Copernicus products from their original resolutions 

(30 and 100 m, respectively) to the native MODIS resolution (250 m) using average resampling using 

the rasterio package on land cover data with pixel_value = 1 representing human-influenced pixels and 

pixel_value = 0 representing natural vegetation. With this methodology, we can assess the percentage of 

each MODIS pixel that is affected by non-natural cover. We upscale tree cover to the two water table 

data resolutions using an average algorithm. Because the averaging algorithm in rasterio takes the 



average of all non-invalid pixels within the larger pixel, we use an 80% valid threshold to avoid small 

sample sizes inside each larger pixel.  

 

9. Software 

All data analyses were performed in Python 3.9.5. Potential analysis was performed in MATLAB 

R2020a. 
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