
A. BACKGROUND OF DIFFERENTIAL PRIVACY 17

Supplemental Materials to “Differentially Private
Bayesian Neural Networks on Accuracy, Privacy

and Reliability”

A Background of Differential Privacy

At the core of DP is the Gaussian mechanism which must work on functions with
bounded ℓ2 sensitivity.

Lemma 1 (Definition 3.8 & Theorem 3.22 [12]). The ℓ2 sensitivity of
any function g is

∆g = sup
S,S′
∥g(S)− g(S′)∥2

where the supreme is over all pairs of neighboring datasets (S, S′). Consequently,
the Gaussian mechanism which outputs

ĝ(S) = g(S) + σ∆g · N (0, I)

is (ϵ, δ)-DP for some ϵ depending on (σ, n, p, δ), where the dependence is deter-
mined by the specific privacy accountant.

Notably, in the deep learning regime, the gradients may have unbounded
sensitivity. Therefore, the per-sample clipping with a clipping norm C defined
ab initio is applied to guarantee that the sensitivity of the sum of per-sample
gradients is C.

As for the privacy accountant, we focus on two of the most popular privacy
accountants, which may give different ϵ’s for the same DP algorithm. In practice,
we choose the smallest ϵ given by multiple privacy accountants as all are valid
bounds of the true privacy loss.

In this work, we apply the moments accountant (MA) [1, Theorem 1 &
2] and GDP accountant [5], both implemented efficiently in the Tensorflow
Privacy library4. We remark that empirically GDP always give tighter ϵ than
MA. Furthermore, GDP’s ϵ is explicit in terms of training parameters, yet MA
and Fourier accountant [18] require numerical integral to compute ϵ and thus
the characterization is implicit.

B Details of BBP and MC Dropout

B.1 BBP

To learn the hyperparameters, we minimize a KL divergence between the posterior
distribution and the variational distribution, known as the ‘variational free energy’
4 See MA in https://github.com/tensorflow/privacy/blob/master/

tensorflow_privacy/privacy/analysis/rdp_accountant.py; GDP in
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/
privacy/analysis/gdp_accountant.py

https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/rdp_accountant.py
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/gdp_accountant.py
https://github.com/tensorflow/privacy/blob/master/tensorflow_privacy/privacy/analysis/gdp_accountant.py

18 Zhang, Bu, et al.

and its negative is the ELBO (see http://krasserm.github.io/2019/03/14/
bayesian-neural-networks/#appendix for proof):

min
θ

KL
(
q(w|θ)

∥∥p(w|D)
)

. (3)

We can rewrite this through the following optimization problem

min
θ

KL
(
q(w|θ)

∥∥p(w|D)
)

=KL
(
q(w|θ)

∥∥p(w)
)
− Eq(w|θ) log p(D|w)

=Eq(w|θ) log q(w|θ)− Eq(w|θ) log p(w)
− Eq(w|θ) log p(D|w) (4)

Here KL
(
q(w|θ)

∥∥p(w)
)

is called the ‘complexity cost’, and the term
Eq(w|θ) log p(D|w) is called the ‘likelihood cost’. This objective function can hardly
be calculated, though it can be approximated by drawing w(j) from q(w|θ). We
thus define the optimization objective as

1
N

N∑
j=1

[log q(w(j)|θ)− log p(w(j))− log p(D|w(j))]

where N is the number of sampling. We further denote the summand, with ℓ
being the loss, as

LBBP(D; w(j), θ) := log q(w(j)|θ)− log p(w(j)) + ℓ(D; w(j))

To learn θ from this objective, we borrow a transformation σ = log(1+exp(ρ))
from [4, Section 3.2] so that we can optimize on the unbounded ρ without
constraint, instead of the non-negative σ. Hence we sample from q(w|θ) by
w = µ + log(1 + exp(ρ)) ◦ ϵ, where ◦ is Hadamard prodcut and ϵ ∼ N (0, I), and
we optimize over θ = (µ, ρ). The gradient of the objective with respect to the
mean is

dLBBP(D; θ)
dµ

= dLBBP(D; µ, ρ)
dµ

= 1
N

N∑
j=1

(
∂LBBP(D; w(j), µ, ρ)

∂w(j) + ∂LBBP(D; w(j), µ, ρ)
∂µ

)
(5)

The gradient with respect to the standard deviation term is

dLBBP(D; θ)
dρ

= dLBBP(D; µ, ρ)
dρ

= 1
N

N∑
j=1

(
∂LBBP(D; w(j), µ, ρ)

∂w(j)
ϵ

1 + exp(−ρ) + ∂LBBP(D; w(j), µ, ρ)
∂ρ

)
(6)

http://krasserm.github.io/2019/03/14/bayesian-neural-networks/#appendix
http://krasserm.github.io/2019/03/14/bayesian-neural-networks/#appendix

B. DETAILS OF BBP AND MC DROPOUT 19

This objective leads to the SGD updating rule as

µt = µt−1 −
ηt

|Bt|
∑
i∈Bt

dLBBP(xi, yi)
dµ

,

ρt = ρt−1 −
ηt

|Bt|
∑
i∈Bt

dLBBP(xi, yi)
dρ

(7)

B.2 MC Dropout

We review the MC Dropout [13] for the case of a single hidden layer. Mathemati-
cally, any NN with dropout is approximated to a probabilistic Gaussian process
model, which has a close relationship with BNN. We show this connection in the
context of the regression problem.

Suppose the input xi is an 1×Q vector, the output yi is an 1×D vector and
the hidden layer include K units. We denote the two weight matrices by W1 and
W2 which connect the first layer to the hidden layer and the hidden layer to the
output layer respectively. σ(·) is some element-wise non-linear function such as
RelU (rectified linear). b refers to the biases controlling the input location of each
layer. Therefore, the output is ŷ = σ(xW1 + b)W2. When applying dropout,
we first sample two binary vectors z1 = (z1,1, . . . , z1,Q) and z2 = (z2,1, . . . , z2,K)
with z1,q ∼ Bernoulli(p1) for q = 1, . . . , Q, z2,k ∼ Bernoulli(p2) for k = 1, . . . , K.
Now, the output with dropout is given by ŷ = (σ((x ◦ z1)W1 + b) ◦ z2)W2. It is
mathematiclaly equivalent to ŷ = σ(x(z1W1) + b)(z2W2), which multiplies the
weight matrices with the binary vector by row.

For the regression problem, the NN model is often to optimize the following
objective:

LDropout = 1
2N

N∑
i=1
∥yi − ŷi∥2

2 + λ1 ∥W1∥2
2 + λ2 ∥W2∥2

2 + λ3 ∥b∥2
2 , (8)

with regularization parameters λi for i = 1, 2, 3. Now we would apply the Gaussian
Process (GP) to the NN model described above to see why NN with dropout is
equivalent to BNN. First, define the covariance function:

K(x, y) =
∫

p(w)p(b)σ(wT x + b)σ(wT y + b)dwdb

with 1×Q standard multivariate normal distribution p(w) and some distribution
p(b). The Monte Carlo approximation to this covariance function is given by:

K̂(x, y) = 1
K

K∑
k=1

σ(wT
k x + bk)σ(wT

k y + bk)

20 Zhang, Bu, et al.

with wk ∼ p(w) and bk ∼ p(b). Therefore, our NN model with Gaussian process
is equivalent to the following generative model:

W1 = [wk]Kk=1, b = [bk]Kk=1

wk ∼ p(w), bk ∼ p(b)
F(X)|X, W1, b ∼ N(0, K̂(X, X))

Y|F(X) ∼ N(F(X), τ−1In),

from which the predictive distribution is given by:

p(Y|X) =
∫

p(Y|F(X))p(F(X)|W1, b, X)p(W1)p(b)dW1dbdF(X)

=
∫
N (Y; 0, ΦΦT + τ−1In)p(W1)p(b)dW1db,

where K̂(X, X) = ΦΦT . The normal distribution of Y could be viewed as a joint
normal distribution over the column of the N ×D matrix Y. In particular, we
introduce a K × 1 standard multivariate normal variable wd and each term in
the joint distribution is:

N (yd; 0, ΦΦT + τ−1In) =
∫
N (yd; Φwd, τ−1In)N (wd; 0, IK)dwd.

Therefore, the predictive distribution could be written in the following way:

p(Y|X) =
∫

p(Y|X, W1, W2, b)p(W1)p(W2)p(b)dW1dW2db, (9)

where W2 = [wd]Dd=1. Naturally, the expression (9) could be viewed as BNN with
multivariate standard normal distributions on the weights. To connect with the
idea of dropout, we proceed with the variational inference. Suppose we use the
variational distribution q(W1, W2, b) = q(W1)q(W2)q(b) to approximate the
posterior distribution p(W1, W2, b|X, Y). In particular, the variational distribu-
tion on the weight matrix is factorized over the rows and each term is a mixture
of normal distributions, one centered at 0 and the other centered away from 0:

q(W1) =
Q∏

q=1
q(wq),

q(wq) = p1N (m1,q, σ2Ik) + (1− p1)N (0, σ2Ik),

where p1 refers to dropout rate of the first layer, σ > 0 and mq ∈ RK . A similar
distribution is assigned to W2. And the variational distribution q(b) of the
bias N (m, σ2Ik). Given the definition above, W1 corresponds to a location
matrix Mi = [m1,1, m1,2, . . . , m1,Q]T . Similar for W2. The variational Bayes is
aimed to minimize the Kullback–Leibler (KL) divergence between the variational

C. EXPERIMENTS 21

distribution and the posterior distriburion, which results in the following objective
function:

Lbnn(xi; ŵ
(n)
t−1) = 1

N

N∑
n=1

− log p(yn|xn, ŵn)
τ

+
2∑

i=1

pil
2

2τN
∥Mi∥2

2 + 1
2τN

∥m∥2
2 ,

(10)
where ŵn is sampled from q(W1). Compared to Equation (9), setting parameters
appropriately will lead two optimization problems equivalent. More detailed
explanation could be found in [13].

C Experiments

C.1 Classifiction

Fig. 5: Two pictures from MNIST: the input image 3 is difficult to predict (low
probability in the true class across all three methods); the input image 2 is easy
to predict.

In Section 5.1, we trained our algorithms on the MNIST digits dataset, in
which each image is labelled with some number in between zero to nine. Methods
we considered are with almost identical privacy budgets. Specifically, DP-SGLD
has ϵGDP = 0.861 or ϵMA = 0.989; other DP models have ϵGDP = 0.834 or
ϵMA = 0.955. We consider two NNs with different architectures: multi-layer
perceptron (MLP) and convolutional neural network (CNN). The softmax output
layers have ten units, corresponding to possible labels. For MLP, there are two
hidden layers, both containing 1200 units and activated by ReLU. For CNN, we
use the benchmark architecture in Opacus and Tensorflow Privacy libraries.
For the evaluation of calibration, by splitting the predictions into M equally-
spaced bins {Bm}, we have

ECE =
∑

m∈[M]

|Bm|
n

∣∣∣acc(Bm)− conf(Bm)
∣∣∣, MCE = max

m∈[M]

∣∣∣acc(Bm)− conf(Bm)
∣∣∣,

https://github.com/pytorch/opacus/blob/master/examples/mnist.py
https://github.com/tensorflow/privacy/blob/master/tutorials/walkthrough/mnist_scratch.py

22 Zhang, Bu, et al.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100 0
1
2
3
4
5
6
7
8
9

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100 0
1
2
3
4
5
6
7
8
9

Fig. 6: y-axis refers to the frequency and x-axis refers to the prediction probability.
Prediction distribution on MNIST over 100 repeated samplings (input image is
2, see Figure 5). Left to right: SGLD, BBP, MC Dropout. Upper: non-DP BNNs.
Lower: DP-BNNs.

where acc is the average accuracy and conf is the average confidence.
Given the specific structure of NN, DP-BBP and DP-SGLD assign either the

Gaussian prior N (0, 0.12) or the Laplacian prior L(0, 0.1) to each weight. For
DP-MC Dropout, the dropout rate is 0.5. After careful hyperparameter tuning,
we select the following hyperparameters pairs (learning rate, batch size) for
each method: (2× 10−4, 256) for DP-MC Dropout, (0.25, 256) for DP-BBP and
(5×10−6, 256) for DP-SGLD. We set the privacy δ = 10−5 and the clipping norm
as 1.5. For DP-BBP and DP-MC Dropout, the noise scale is 1.3. Experiments
are conducted over 15 epochs.

To show the prediction uncertainty in Figure 7 and Figure 6, we select two
digits (an easy-to-predict digit 2 and a hard-to-predict digit 3) from the test
dataset, shown in Figure 5.

Fundamentally, the randomness of BNN comes from the weight uncertainty.
For BBP, the weight uncertainty is from the posterior and we sample weights
from their posterior distribution. For MC Dropout, the weight uncertainty is
from the dropout and each time we randomly drop out the units of the trained
NNs with the probability 0.5. For SGLD, the weight uncertainty is from the
weight updating rule and we record the last 100 weight updates from the last
epoch. Finally, for all methods, we collect the posterior probabilities of each class
over 100 independent predictions.

In Figure 6, we plot the empirical distribution of each class (denoted by
different colors) over 100 predictions. The x axis refers to the predicted probability
and the y axis refers to the frequency. Similar as Figure 7, DP influences the
posterior probability in different ways. However, even if three methods predict
with different uncertainty, their predictions are correct no matter for DP or
non-DP.

C. EXPERIMENTS 23

C.2 Regression

For the heteroscedasticity regression problem in Section 5.2, we used a network
with two hidden layers of 200 rectified linear units (ReLU), same as in the MNIST
experiment. For both BBP and SGLD, we only consider the weights with the Gaus-
sian prior. We generate 400 data points, 250 for training and 150 for testing. Each
input x is sampled from the distribution Uniform(−3, 3), while the output y =
(y1, y2, . . . , y400) follows the multivariate normal distribution, whose covariance
matrix is a function of x. In the simulation study, this covariance matrix is the sum-
mation of the radial basis function kernel (RBF) with variance 1, i.e. Kernel(x, x′)
and a diagonal matrix whose diagonal element is (0.3x + 0.6)2. See the public
notebook https://github.com/JavierAntoran/Bayesian-Neural-Networks/
blob/master/notebooks/regression/gp_homo_hetero.ipynb for the code im-
plementation. Notice that the output of the neural network has two elements:
the prediction ŷi and the noise estimation σ̂2

i .5

In Figure 4, we introduce two types of uncertainty. The data uncertainty is cal-
culated by 1

n

∑n
i=1 σ̂2

i . The posterior uncertainty is calculated by 1
n− 1

∑n
i=1(ŷi−

ȳ)2, where ȳ = 1
n

∑n
i=1 ŷi.

– MC Dropout: noise multiplier σ = 10, clipping norm C = 2000, learning rate
0.00005, dropout rate 0.5;

– SGLD: clipping norm C = 100, learning rate 0.00025;
– BBP: noise multiplier σ = 10, clipping norm C = 100, learning rate 0.01;

C.3 Effects of batch size and learning rate

In Figure 2, we empirically study the effects of batch size and learning rate
on DP-SGLD and general DP-SGD. We use the standard DP CNN in Opacus
library6 and train with DP-SGD, which includes the DP-SGLD by Theorem 1.
To be specific, for DP-SGLD, we set the number of epochs as 15, the clipping
norm C = 1.5, and the noise scale as σ = |B|√

60000×η×1.5 in the DP-SGD; for
general DP-SGD, we set the same number of epochs and clipping norm, but
use a noise scale σ = 1.3, which is the benchmark in Opacus and Tensorflow
Privacy libraries, achieving around 95.0% test accuracy with batch size 256.

When the batch size varies, we fix the learning rate at 0.25 for DP-SGD and
0.25/60000 for DP-SGLD; when the learning rate varies, we fix the batch size as
256.

5 See https://github.com/JavierAntoran/Bayesian-Neural-Networks/blob/
master/notebooks/regression/bbp_hetero.ipynb for the network architecture.

6 See https://github.com/pytorch/opacus/blob/master/examples/mnist.py

https://github.com/JavierAntoran/Bayesian-Neural-Networks/blob/master/notebooks/regression/gp_homo_hetero.ipynb
https://github.com/JavierAntoran/Bayesian-Neural-Networks/blob/master/notebooks/regression/gp_homo_hetero.ipynb
https://github.com/JavierAntoran/Bayesian-Neural-Networks/blob/master/notebooks/regression/bbp_hetero.ipynb
https://github.com/JavierAntoran/Bayesian-Neural-Networks/blob/master/notebooks/regression/bbp_hetero.ipynb
https://github.com/pytorch/opacus/blob/master/examples/mnist.py

24 Zhang, Bu, et al.

D Additional Proofs

D.1 Proof of Theorem 1
We start with stating the updating rules for both DP-SGD in Algorithm 1 and
DP-SGLD in Algorithm 2.

wt = wt−1 − ηt

(
1
|B|

∑
i∈B

g̃i + σ · Ct

|B|
· N (0, Id) +∇wr(wt−1)

)
, (DP-SGD)

wt = wt−1 − ηt

(
n

|B|
∑
i∈B

g̃i +√ηtN (0, Id) +∇wr(wt−1)
)

, (DP-SGLD)

where |B|, Ct, σ, g̃i, ηt are defined in Section 2. By matching the coefficients of
these updating rules, it is easy to see

ηSGD = ηSGLD · n,
σSGDCSGD

|B|
= √ηSGLD.

Additionally, the clipping is performed with the same gradient norm, hence
CSGLD = CSGD. Therefore, we obtain

DP-SGLD (ηSGLD = η, CSGLD = C)

≡DP-SGD
(

ηSGD = ηn, σSGD = |B|
n
√

ηC
, CSGD = C

)
,

DP-SGD (ηSGD = η, σSGD = σ, CSGD = C)

≡DP-SGLD
(

ηSGLD = η

n
, CSGLD = C = |B|

√
nησ

)
.

D.2 Proof of Theorem 3
Viewing DP-SGLD as DP-SGD, and pluging the coefficients σ = |B|

n
√

ηC from
Theorem 1 in Theorem 2, we then get the desired result.

D.3 Larger batch size is more private in DP-SGLD
From Theorem 3, the privacy loss in GDP is

√
T (en2ηC2/|B|2 − 1)|B|/n. Denoting

|B|/n as 0 < x ≤ 1, we aim to show
√

T (eηC2/x2 − 1)x is decreasing in x:

d

dx

√
T (eηC2/x2 − 1)x =

√
T ·

(
eηC2/x2(1− ηC2

x2)− 1
)

√
(eηC2/x2 − 1)

≤ 0

because ex(1−x)−1 ≤ 0 for any x ∈ R. This fact can be checked by the derivative
of ex(1 − x) − 1 which indicates the only stationary point is x = 0, and that
e0(1− 0)− 1 = 0. Hence

√
T (en2ηC2/|B|2 − 1)|B|/n is decreasing in |B|.

E Additional plots and tables

E. ADDITIONAL PLOTS AND TABLES 25

Methods DP-ECE DP-MCE Non-DP ECE Non-DP MCE
SGLD (w/ prior) 0.003 0.775 0.001 0.011
SGLD (w/o prior) 0.043 0.371 0.006 0.219

MC Dropout (w/ prior) 0.001 0.275 0.030 0.325
MC Dropout (w/o prior) 0.033 0.230 0.003 0.225

SGD (w/ prior) 0.005 0.391 0.002 0.059
SGD (w/o prior) 0.037 0.365 0.014 0.325

Table 4: Calibration errors of SGLD, MC Dropout, SGD, and their DP counter-
parts on MNIST with four-layer CNN, with or without Gaussian prior.

DP-SGLD DP-BBP DP-MC Dropout
Variational inference No Yes Yes
Sampling approach Yes No No

Optimizing KL divergence No Yes No
General network structure Yes No Yes

General optimizers N/A Yes Yes
General weight prior Yes Yes No
Memory consumption High Low Low

Computation complexity Low High Low
Analytic posterior No Yes No

Table 5: Algorithmic comparison of DP-BNNs.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100 0
1
2
3
4
5
6
7
8
9

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100 0
1
2
3
4
5
6
7
8
9

Fig. 7: Prediction distribution on MNIST with two-layer MLP over 100 repeated
samplings (input image is 3, see Figure 5). Y-axis refers to the frequency and
x-axis refers to the prediction probability. Left to right: SGLD, BBP, MC Dropout.
Upper: non-DP BNNs. Lower: DP-BNNs.

26 Zhang, Bu, et al.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 8: Reliability diagram on MNIST with two-layer MLP under DP regime. Left
to right: SGLD, BBP, MC Dropout. Upper: with Gaussian prior. Lower: without
Gaussian prior.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Fig. 9: Reliability diagram on MNIST with two-layer MLP under non-DP regime
without prior. Left to right: SGLD, BBP, MC Dropout.

E. ADDITIONAL PLOTS AND TABLES 27

x

weight:

update

DP-SGD

no weight
uncertainty

x

weight:

update

DP-SGD with

weight
uncertainty

from
posterior

x

weight:

update

DP-SGD with

weight
uncertainty
from stored

weights

x

weight: with drop out

update

DP-SGD with

weight
uncertainty
from drop

out

Fig. 10: Training procedure of private SGD, BBP, SGLD, and MC Dropout (left
to right). Applying non-DP optimizers instead results in the regular training.

(x)

...

(x)

...

...

(x)

...

 from storage

...

(x)

...

Fig. 11: Inference (or prediction) procedure of non-Bayesian NN and BNNs: BBP,
SGLD, and MC Dropout (left to right). Note that DP-BNNs have the same
procedure as regular BNNs, as DP is enforced during the training procedure.

	Differentially Private Bayesian Neural Networks on Accuracy, Privacy and Reliability

