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Spatial transcriptomics reveals distinct and conserved tumor
core and edge architectures that predict survival and targeted
therapy response



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this manuscript, the authors present an analysis of oral squamous cell carcinoma using spatial 

transcriptomics data, together with integrative analyses with TCGA and other scRNA-Seq datasets. 

The authors distinguish the TC and LE regions in each tumor, and find that the spots annotated for 

each region are highly correlated across patients, and have distinct expression profiles. These regions 

represent different functions in the tumor, as the LE expresses higher EMT signature, which its present 

correlates with worse overall survival. The manuscript is clearly written and presented. While the 

analysis of the two distinct regions of the tumor from a spatial and transcriptomic perspective is 

interesting, it is not a novel observation. Specifically the differences in regional expression may be 

explained by the presence of spatially unique cancer cell states. 

Overall, the authors report on a useful and extensive dataset, however they do analyze their claims 

with the appropriate framework of analysis. Specifically, have the following main concerns: 

The authors highlight the use of single-cell data integration in the abstract and throughout the 

manuscript as a central part of the work. However the integration with scRNA seq data is presented 

only later in the manuscript, and is done by using published HNSCC; i.e. not matched with the ST 

samples. While this data is appropriately used to deconvolve the ST spots, the way it is presented in 

the text is misleading. 

 

The authors claim that they find distinct cancer cell states between the LE and TC regions. In fact a 

central claim of their paper - in the last paragraph of the background - “We find that differences in 

regional expression may be explained by the presence of spatially unique cancer cell states.” However, 

the evidence for this claim is included only in the extended data (5). Indeed the evidence is not 

sufficiently comprehensive to qualify as a description of cell states. The authors do have the ability to 

annotate the ‘cancer only’ spots and analyze them for their cancer cell states, but currently, this is not 

really done. The authors do not make any specific conclusions from this analysis. 

 

The differences between the TC and LE regions shown in Figure 1 are impressive because they 

transcend patients. However, it is revealed in Figure 4 that the differences are largely driven by a 

combination of different signatures of cancer cells and a different composition of cells. This is a critical 

point that the authors do not clarify from the outset. Thus, it isn’t clear what is the significance of the 

Figure 1 findings, since they may stem mainly from the presence of CAFs in one of these regions. It 

should be clear if the differences described in figure 2, for example, are between the regions or 

between the cancer cells in these regions. 

 

In figure 3E, the LE annotation looks to be highly overlapping with stromal tissue (based on the H&E). 

This may suggest that the ST data is picking up stromal rich areas across different cancers, but that 

the cancer core is more tissue specific. If this is the case, this analysis does not add to our current 

knowledge about tumors and areas within the tumor, as this annotation can be simply done by H&E. 

 

The authors find that higher scores of LE, correlates with worse outcomes. Since this signature seems 

to be related to the EMT cells, and invasion of the tumor, this is to be expected, as it also correlates 

with metastasis (Fig. 3j). In other words, if the signature includes EMT related genes, then the result 

is to be expected given a wealth of previous results. As it stands, a novel finding is not supported 

regarding the existence of this signature\region. 

 

Based on the ST data, the authors show that it is challenging to score the different tumor types for the 

TC signature (fig. 3h). It is unclear how did the authors manage to use that score for the TCGA data? 

 

The authors claim that two distinct types of CSC reside in LE and TC, this could be validated in a single 

cell method (such as immunofluorescence), since the analysis is done on ST slides. Also, it should be 

tested if these are different clones that contribute to these populations or this is cell plasticity. To 



make this point stronger, the authors can distinguish between the stem-like and non stem-like cancer 

cells in each region, and specify if the differences between the regions are derived only by the 

differences between the cancer stem cells or also by the rest of the cancer cells in the region. 

 

In figure 5, what does it mean that the trajectories are from TC to LE, while the time scale of RNA 

velocity is much shorter than the time scale for such a phenotypic change in the tumor? 

 

Minor comments: 

 

In Fig1 a, it seems like there are 10 samples, although the text says 11 patients and 12 samples. 

Also, these are 12 arrays of ST and not 12 slides. 

 

In figure 2c, the fold change graph, should show all patients for all the genes. It is not clear and might 

be misleading to show only the patients that follow the general trajectory that the authors want to 

show for each gene. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this study, the investigators performed spatial transcriptomic analysis on oral squamous cell 

carcinoma (OSCC) to characterize tumor core (TC) and leading edge (LE) transcriptional features. 

They analyzed transcriptional profiles, cellular compositions, and ligand-receptor interactions 

comparing TC and LE spots. They showed that spatially-related gene signatures were associated with 

clinical outcomes and can be seen across different cancer types. They also used in silico modeling to 

demonstrate that effective drugs and ineffective drugs produced oppositive RNA velocity patterns 

between TC and LE spots. Overall, this is a novel study in terms of technologies and computational 

analyses. Some of the findings are interesting and the dataset is useful for the research community. 

However, I have a number of concerns regarding the research design and data analyses and 

interpretation, as outlined below. 

 

1) The annotation of TC and LE is critically important for the present work, but there are concerns: 1) 

from the method description, 15 LE genes and 7 TC genes were identified by literature search. 

However, it is unclear what criteria/cutoffs were applied to select these markers (and even the 

literature). 2) some of the markers such as FOXP3, CD8A, FN1, COL4A2, were associated with very 

specific cell types, and they will strongly affect most of the downstream analyses. For example, it is 

not surprising that that they can be separated by the UMAP projection. Also see comments #5. This is 

a major concern. 

 

2) The authors interpreted that TC and LE differences seemed visually conserved across patients in 

UMAP projections from Fig.1d-e. It would be much more helpful to plot TC vs LE abundant across each 

patient, since it is very hard to see at this scale. 

 

 

3) In the pathway and hallmark analyses (Fig.2b), since many pathways were scanned, p values need 

to be adjusted for multiple test burden. Also, a complete list of different pathways between TC vs LE 

will be more informative and will be a good resource for HNSCC community. 

 

4) Related to Fig.2b, are there any pathways/hallmarks higher in TC than LE? 

 

5) Related to #1, the DEG analysis in Fig.2C is actually circular: for example, TNC and FN1 were used 

as markers to annotate LE spots in the first place, and expectedly it will be identified as top 

upregulated genes in LE. Reciprocal examples can be seen in TC (SPRR1B, SPRR2D). This circular 

problem goes beyond just a few genes, since these genes are associated with specific cell types, for 



example FN1 is strongly expressed by fibroblasts. This calls into question again regarding the initial 

annotation, and affects many of the downstream analyses. For example, the observation that LE was 

generally most enriched for the mesenchymal subtype (Extended Data Fig. 2e) is likely because LE 

has more fibroblastic/EMT genes when because of the annotation. Relatedly, the mesenchymal 

subtype is known to have worse survival and thus the survival analyses (Fig.3g) may also be affected. 

 

6) In Fig.3C, in order to show that ML-predicted LE annotations corroborated those annotated by the 

study authors, LE and TC annotated from the original papers need to be indicated. 

 

7) The dynamo/drug sensitivity analyses are far-stretched and poorly developed. First, there are 220 

drugs but only a few examples are shown. Were the results statistically tested? Ie, how confident is 

conclusion that effective drugs and ineffective drugs produced the oppositive RNA velocity patterns? 

Moreover, what does this mean exactly in terms of cell biology? Why were effective drugs reversing 

the RNA flow and what is possible mechanistic basis? 

 

8) Some of the most important pieces of data would be much more strengthened by orthogonal 

validations. For example, the differential cellular compositions shown in Fig.4 can be validated using 

immunostaining using the same or independent sample cohort. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In this article, the authors investigate biological mechanisms underlying the prognostic association 

with the tumor leading edge in oral squamous cell carcinoma (OSCC). Specifically, they seek to 

leverage spatial transcriptomics and single cell RNA-seq to uncover novel associations with the leading 

edge and aggressive clinical behaviour. Surprisingly, they find conserved programs across multiple 

cancer types that dictate leading edge function. 

 

Altogether, this is a fascinating study that adds positively to an emerging and important field. The 

authors have performed sophisticated analyses with results that largely support their conclusions. The 

figures are easy to interpret and follow. Strengths include integration between spatial transcriptomic 

data and existing data from scRNA-seq, TCGA, and other sources. There are exciting findings about 

the implications of the results on patient prognosis across multiple cancer types as well as future drug 

discovery efforts. 

 

Weaknesses include the lack of (1) characterization of immune stroma, (2) multi-sample analysis from 

the same tumor, and (3) validation of drug predictions. While to some extent these analyses could be 

beyond the scope of this study, the authors are encouraged to consider the specific comments below, 

which – if addressed – could result in an even stronger manuscript. 

 

 

MAJOR COMMENTS: 

 

- The literature-curated TC genes include multiple immune genes which would typically be expected to 

be present in storm. What is the rationale for including these genes as positive control for TC? 

 

- Figure 1c/e: Are the TC and LE enriched for any of the pathologist-defined 

segmentations/annotations? Descriptive stats and comparisons would be informative. It would also be 

informative to compare the pathologist-defined annotations with the scRNAseq cell type analysis 

presented in Figure 4. 

 

- Figure 2a: A few samples have a LE with similar or even higher correlation to TCs than to other LEs 

(e.g., S12). Is this related to relative inferred purity of the LE and TC samples for those patients? 



 

- In the TCGA analysis, what is the correlation between TC and LE enrichment scores? Can the authors 

test whether these are independently prognostic using multivariable Cox models? Or alternatively, are 

they essentially redundant and anti-correlated features? 

 

- In Figure 4a, can the authors speculate as to why there is not a strong immune stroma component 

in either the TC or LE (even though there were immune related genes in the literature-curated gene 

sets)? 

 

- Figure 5 presents potentially exciting results with significant implications for future work. The 

interpretation is limited by lack of quantification of the vector field effects. The authors are urged to 

demonstrate quantitatively the magnitude of enrichment for the trajectories depicted in Figure 5g. 

Without this, it is difficult to know how large and generalizable this effect is among different drugs. 

 

- Are there specific classes of drugs that would be predicted to have the desired effect? 

 

- The in silicon drug discovery analysis would be strengthened by further evaluation in other cancer 

types. Are the drug predictions selective for HPV-negative SCC, or if the authors are correct that the 

LE programs are shared across multiple cancer types, are there also shared drug predictions for 

reversing the LE phenotype? 

 

- The in silico drug discovery analysis would be strengthened by validation using preclinical models 

with drug treatment. 

 

 

 

MINOR COMMENTS: 

 

- Figure 1a: The figure indicates that 6/10 patients are M1. Is this accurate? It is not consistent with 

the overall stage categories of I-IVA. M1 would be stage IVC. Why were so many M1 patients included 

in this study? 

 

- Extended Data Figure 1: Provide color key for pathologist annotations. 

 

- Figure 4 and Extended Data Figure 5b: Provide key for sample number. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

This manuscript performed spatial single-cell transcriptomics analysis on HPV-negative oral squamous 

cell (OSCC). Authors for the first time characterized molecular signatures of tumor core (TC) and 

leading edge (LE) regions and their functional and pathological roles across multiple tumor types. They 

also predicted their drug response patterns. It is a very interesting and novel work. The manuscript is 

well-written. 

 

Major issues. 

 

1. More information is needed for the machine learning to predict TC, LE, and other spots. 

Visualization in Figure 3c-e is helpful but is insufficient to justify the accuracy of prediction. A 

quantitative measurement such as pointwise uncertainty quantification is expected. Similarly, the 

confidence of prediction should be estimated for differentiation trajectory predictions. 

 

2. Machine learning models and statistics analyses primarily provide correlations between TC/LE 



signatures and prognoses. It will be interesting to know what causal molecular programs are. 

 

Minor issues. 

 

1. It will be helpful to elaborate what therapeutic targets were derived for OSCC in the main text. 



 

 

Response to Reviewer 1 Comments 
 
Reviewer #1, expertise in scRNAseq/ST and the TME (Remarks to the Author): 
 
In this manuscript, the authors present an analysis of oral squamous cell carcinoma using 
spatial transcriptomics data, together with integrative analyses with TCGA and other scRNA-
Seq datasets. The authors distinguish the TC and LE regions in each tumor, and find that the 
spots annotated for each region are highly correlated across patients, and have distinct 
expression profiles. These regions represent different functions in the tumor, as the LE 
expresses higher EMT signature, which its present correlates with worse overall survival. The 
manuscript is clearly written and presented. While the analysis of the two distinct regions of the 
tumor from a spatial and transcriptomic perspective is interesting, it is not a novel observation. 
Specifically the differences in regional expression may be explained by the presence of spatially 
unique cancer cell states.  
Overall, the authors report on a useful and extensive dataset, however they do analyze their 
claims with the appropriate framework of analysis. Specifically, have the following main 
concerns: 
 

1. The authors highlight the use of single-cell data integration in the abstract and 
throughout the manuscript as a central part of the work. However the integration with 
scRNA seq data is presented only later in the manuscript, and is done by using 
published HNSCC; i.e. not matched with the ST samples. While this data is appropriately 
used to deconvolve the ST spots, the way it is presented in the text is misleading. 

 
We have now restructured our analyses and manuscript to focus on spatially-deconvolved 
cancer cells within our ST samples by performing integration with published scRNA seq data at 
the outset of the manuscript. See Figure 1. Furthermore, we have provided additional 
clarification to the origin of the scRNA-seq dataset used in our analysis. 
 
Page 4: We next determined the composition of malignant tumor cells and other cellular 
subpopulations present in the pathologist-annotated squamous cell carcinoma regions by 
performing integrative analysis of our ST data with a separate, publicly-available HNSCC 
scRNA-seq dataset13 
 

2. The authors claim that they find distinct cancer cell states between the LE and TC 
regions. In fact a central claim of their paper - in the last paragraph of the background - 
“We find that differences in regional expression may be explained by the presence of 
spatially unique cancer cell states.” However, the evidence for this claim is included only 
in the extended data (5). Indeed the evidence is not sufficiently comprehensive to qualify 
as a description of cell states. The authors do have the ability to annotate the ‘cancer 
only’ spots and analyze them for their cancer cell states, but currently, this is not really 
done. The authors do not make any specific conclusions from this analysis. 
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We thank the reviewer for this comment. We have restructured our study to focus on ‘cancer 
only’ spots based on cellular deconvolution and CNV prediction. Using the combination of these 
techniques, we are able to identify ‘cancer only’ spots with high confidence. 
 
Page 4: We next determined the composition of malignant tumor cells and other cellular 
subpopulations present in the pathologist-annotated squamous cell carcinoma regions by 
performing integrative analysis of our ST data with a separate, publicly-available HNSCC 
scRNA-seq dataset.13 To identify malignant tumor spots, we stringently characterized malignant 
cells as having a deconvolution score > 0.99 (Fig. 1c), or CNV probability score >0.99 (Fig. 1d). 
CNV analysis revealed recurrent deletions in chromosome 3, and amplifications in chromosome 
9 (Extended Data Fig. 1n). All 12 samples were identified to have both spatially deconvolved or 
CNV-inferred cancer cells based on the applied cutoff with high confidence, resulting in 13950 
malignant and 10852 nonmalignant spots (Fig. 1e and Extended Data Fig. 1o).  
 
After annotating for ‘cancer only’ spots, we discovered that transcriptomic differences between 
the TC and LE could not be explained by differences in HNSCC molecular subtype composition, 
tumor clonality, and differing cancer stem cell (CSC) proportions. Together with these findings, 
we propose that the transcriptomic differences are attributed to unique cancer cell states. 
 
Page 7: Therefore, we believe that the distinct biological profiles of the TC and LE are explained 
by the presence of unique cancer cell states–conserved gene expression programs that 
dynamically manifest from specific tumor microenvironment interactions – comprising both CSC 
and non-stem-like malignant cells.53,54 Previous literature exploring dynamic CSC states has 
proposed the existence of epithelial-like CSCs that inhabit the LE and mesenchymal-like CSCs 
inhabit the TC (Fig. 3b).55 When we integrated gene-sets associated with these distinct CSC 
states to our ST dataset, we observed higher expression of the mesenchymal-like CSC state in 
the LE (p<0.001) and epithelial-like CSC state in the TC (p<0.001) (Fig. 3c,d). The localization 
of these CSC states was further validated through immunofluorescence staining of serial tissue 
sections, which revealed localization of the CD24 marker at the TC, and the CD44 marker at the 
LE (Extended Data Fig. 3e). These findings reinforce the plasticity within the TC and LE niches 
that promote the propagation of transcriptionally unique cancer cell states. 
 
 
 

3. The differences between the TC and LE regions shown in Figure 1 are impressive 
because they transcend patients. However, it is revealed in Figure 4 that the differences 
are largely driven by a combination of different signatures of cancer cells and a different 
composition of cells. This is a critical point that the authors do not clarify from the outset. 
Thus, it isn’t clear what is the significance of the Figure 1 findings, since they may stem 
mainly from the presence of CAFs in one of these regions. It should be clear if the 
differences described in figure 2, for example, are between the regions or between the 
cancer cells in these regions. 
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As stated earlier, we have restructured our analysis and manuscript to begin by specifically 
annotating ‘cancer only’ spots. By restricting our analysis to ‘cancer only’ spots, our downstream 
analyses conclusively determines that the observed differences in the TC and LE are a function 
of the cancer cells in these regions. Our reanalysis using ‘cancer only’ spots produced similar 
results to our original work and revealed that the differences between the TC and LE regions 
transcend patients (Fig. 2e), alleviating prior concerns expressed by the reviewer that the 
different regional transcriptomic profiles could be attributed to different cellular compositions 
(e.g., CAFs). 
 

4. In figure 3E, the LE annotation looks to be highly overlapping with stromal tissue (based 
on the H&E). This may suggest that the ST data is picking up stromal rich areas across 
different cancers, but that the cancer core is more tissue specific. If this is the case, this 
analysis does not add to our current knowledge about tumors and areas within the 
tumor, as this annotation can be simply done by H&E.  

 
As mentioned earlier, we have restructured our analyses and manuscript to begin by specifically 
annotating ‘cancer only’ spots, therefore ensuring that our downstream annotations do not 
comprise any stromal or non-malignant components. Most of our original findings have 
remained unchanged even when analyzing ‘cancer only’ spots, enabling us to expand on the 
current state of knowledge concerning malignant cell states.   

 
5. The authors find that higher scores of LE, correlates with worse outcomes. Since this 

signature seems to be related to the EMT cells, and invasion of the tumor, this is to be 
expected, as it also correlates with metastasis (Fig. 3j). In other words, if the signature 
includes EMT related genes, then the result is to be expected given a wealth of previous 
results. As it stands, a novel finding is not supported regarding the existence of this 
signature\region. 

 
We agree with the reviewer that there was a possibility that our initial analysis containing the LE 
signature could have been biased from picking up stromal regions that overrepresented EMT-
related genes. When generating our “high” LE enrichment score, these genes could incorrectly 
skew our prognostic findings, and compromise the novelty of our work. 
 
However, our current restructured analysis now rectifies these concerns by ensuring that our LE 
signature is restricted to malignant spots. Our findings now confirm that the LE is a unique 
tumoral niche that demonstrates several invasion-related properties, which have not been 
previously described. We provide further evidence that our signature is not solely biased by 
EMT related programs through our correlation analysis with a previously identified CAF 
signature. CAFs have historically been recognized as prognostic due to their involvement in 
ECM-remodeling and expression of EMT-related programs.1 Our findings ultimately show that 
other mechanisms beyond EMT may be at play in guiding the prognostic features associated 
with the LE. 
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Page 10: A weak negative correlation was also observed between EPIC CAF and our LE 
signature enrichment scores (r=-0.23, p<0.05) (Extended Data Fig. 5f), which may suggest that 
there are other unexplored mechanisms beyond CAF activity driving survival outcomes 
associated with the LE.  
 

6. Based on the ST data, the authors show that it is challenging to score the different tumor 
types for the TC signature (fig. 3h). It is unclear how did the authors manage to use that 
score for the TCGA data?  

 
We acknowledge that by applying the TC signature to other cancers, we conflict with the 
findings from our ML model. We have now corrected our pan-cancer prognostic analysis to only 
examine the prognostic ability of the LE signature (Fig. 5c, d), and exclude the TC signature due 
to its tissue-specific nature.  
 
We still show that the TC signature is associated with patient outcomes in oral cancers in the 
TCGA data (Fig. 5b) and an independent validation cohort (Extended Data Fig. 5c). We can 
score the TC signature in these datasets as they are the same cancer type (oral cancer) as the 
data used in our ST analysis.   
 

7. The authors claim that two distinct types of CSC reside in LE and TC, this could be 
validated in a single cell method (such as immunofluorescence), since the analysis is 
done on ST slides. Also, it should be tested if these are different clones that contribute to 
these populations or this is cell plasticity. To make this point stronger, the authors can 
distinguish between the stem-like and non-stem-like cancer cells in each region, and 
specify if the differences between the regions are derived only by the differences 
between the cancer stem cells or also by the rest of the cancer cells in the region. 

 
We have now performed immunofluorescence staining of epithelial-like and mesenchymal-like 
CSC state markers (CD24 and CD44, respectively) in serial sections to validate their expression 
in OSCC tissue (Extended Data Fig. 3e). 
 
We have also performed an additional clonal analysis using the Numbat package in our 
investigation of TC and LE cancer cell states and find that proportions of subclones do not differ 
across different tumoral spatial regions (Extended Data Fig. 3d), reinforcing that TC and LE 
differences are likely attributed to cellular plasticity.  
 
Page 6: Next, we considered the association between tumor subclonal architectures and the 
OSCC TC and LE by inferring clonal lineages and evolutionary history through CNV events with 
the Numbat package. We found that multiple subclonal lineages were present throughout the 
OSCC tumor, with similar proportions of subclonal populations across TC and LE regions 
(Extended Data Fig. 3d).  
 
Further, we show that CSCs are found throughout the tumor architecture along with non-stem-
like malignant cells, irrespective of spatial regions (Fig. 3a). Therefore, we believe that 
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differences in the LE and TC are attributed to unique cancer cell states that encompass both 
CSC and non-stem-like malignant cells.  
 
Page 7: We then asked if the contribution of cancer stem cells (CSCs) could help explain the 
differences in TC and LE expression profiles. CSCs are cancer cell populations that possess 
stem-cell like progenitor and malignant properties.51 Given the abundance of EMT-related, 
metastatic, and invasive expression programs at the LE, we hypothesized that CSCs may be 
preferentially localized in the LE. However, we found no significant differences in the expression 
of canonical OSCC CSC markers52 between the LE and TC (p>0.05) (Fig. 3a). Furthermore, 
expression of CSC markers was seen evenly throughout UMAP projections, indicating that CSC 
populations are found throughout the OSCC tumor (Fig. 3a; density plot) along with non-stem-
like malignant cells. 
 
Therefore, we believe that the distinct biological profiles of the TC and LE are explained by the 
presence of unique cancer cell states–conserved gene expression programs that dynamically 
manifest from specific tumor microenvironment interactions – comprising both CSC and non-
stem-like malignant cells.53,54 
 
We also provide additional clarification that there is an enrichment for two distinct types of CSC 
states in the LE and TC, rather than distinct CSC cell populations. The CSC states and 
associated markers have been previously identified as plastic, and change in response to the 
tumor microenvironment.2 These findings help provide further evidence that the observed 
differences between the TC and LE regions can be explained by the existence of unique cancer 
cell states. 
 
Page 7: Previous literature exploring dynamic CSC states has proposed the existence of 
epithelial-like CSCs that inhabit the LE and mesenchymal-like CSCs inhabit the TC (Fig. 3b).55 
When we integrated gene-sets associated with these distinct CSC states to our ST dataset, we 
observed higher expression of the mesenchymal-like CSC state in the LE (p<0.001) and 
epithelial-like CSC state in the TC (p<0.001) (Fig. 3c,d). The localization of these CSC states 
was further validated through immunofluorescence staining of serial tissue sections, which 
revealed localization of the CD24 marker at the TC, and the CD44 marker at the LE (Extended 
Data Fig. 3e). These findings reinforce the plasticity within the TC and LE niches that promote 
the propagation of transcriptionally unique cancer cell states. 
 

8. In figure 5, what does it mean that the trajectories are from TC to LE, while the time 
scale of RNA velocity is much shorter than the time scale for such a phenotypic change 
in the tumor? 

 
We thank the reviewer for this important question. In our study, we wish to clarify that instead of 
using the original approach to deriving RNA velocity by La Manno et al.3, we utilized scVelo.4 
scVelo, a dynamical modeling-based iteration of RNA Velocity, extends the applicability of RNA 
velocity estimation to transient systems and systems with heterogeneous subpopulation kinetics 
by incorporating the dynamics of gene expression changes over time. Unlike traditional RNA 
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velocity estimation methods, which rely on steady-state assumptions and assume linear and 
constant gene expression changes over time, scVelo utilizes ordinary differential equations 
(ODEs) to capture the time-dependent dynamics of gene expression changes. This allows 
scVelo to model changes in gene expression over processes such as cellular differentiation or 
response to external stimuli, as well as account for heterogeneous subpopulation kinetics where 
distinct cells may exhibit different gene expression dynamics. In their original paper, the authors 
utilized scVelo to disentangle subpopulation kinetics in neurogenesis and pancreatic 
endocrinogenesis, both of which involve observed phenotypic changes over extended time 
frames. Building on this success, we and others have effectively employed scVelo to investigate 
diverse biological questions. For example, we previously used scVelo to interrogate wound-
responsive fibroblast trajectories spanning multiple biological days (Sinha, Sparks et al., Cell 
2022), while Li et al. employed scVelo to derive "normal to tumor-associated macrophage 
trajectories'', similar to the tumor core to tumor edge transitions outlined in our manuscript. 
 
With regards to the specific query about Figure 5, the observed trajectories depict the inferred 
paths of cells within the tumor, from their initial state to their final state, as they transition from 
the tumor core state towards the leading edge state but does not refer to the time scale for 
tumor phenotypic change. Rather, the time scale referenced in Figure 5 refers to the time scale 
relevant for gene specific differences in RNA velocity. We regret any confusion caused using 
the term "RNA velocity" in the figure. We provide additional clarification to the rationale behind 
the time scale vector in our new Figure 6. 
 
Minor comments: 
 

1. In Fig1 a, it seems like there are 10 samples, although the text says 11 patients and 12 
samples. Also, these are 12 arrays of ST and not 12 slides. 

 
Thank you for highlighting this. Our analysis had 12 samples, and the 11 patients were a typo 
on our end. We have corrected Fig. 1a to indicate 10 patients now correctly. We chose to 
continue using the term “slide” in place of arrays, as the 10X genomics technology utilizes 
spotted arrays found on the surface of glass slides.  
 

2. In figure 2c, the fold change graph, should show all patients for all the genes. It is not 
clear and might be misleading to show only the patients that follow the general trajectory 
that the authors want to show for each gene. 

 
Our fold change graphs display genes differentially expressed in at least 9 out of 12 patients, 
but all patients are faithfully shown on the graph. Interestingly, there are no patients which do 
not follow the general trajectory and we are not omitting any patients from the fold change 
graphs. For more information, please refer to Supplementary Table 5 which reports DEG 
Log2FC values, stratified by patient. 
 
Response to Reviewer 2 Comments 
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Reviewer #2, expertise in OSCC genomics (Remarks to the Author): 
 
1. In this study, the investigators performed spatial transcriptomic analysis on oral squamous 
cell carcinoma (OSCC) to characterize tumor core (TC) and leading edge (LE) transcriptional 
features. They analyzed transcriptional profiles, cellular compositions, and ligand-receptor 
interactions comparing TC and LE spots. They showed that spatially-related gene signatures 
were associated with clinical outcomes and can be seen across different cancer types. They 
also used in silico modeling to demonstrate that effective drugs and ineffective drugs produced 
oppositive RNA velocity patterns between TC and LE spots. Overall, this is a novel study in 
terms of technologies and computational analyses. Some of the findings are interesting and the 
dataset is useful for the research community. However, I have a number of concerns regarding 
the research design and data analyses and interpretation, as outlined below.  
 
1) The annotation of TC and LE is critically important for the present work, but there are 
concerns: 1) from the method description, 15 LE genes and 7 TC genes were identified by 
literature search. However, it is unclear what criteria/cutoffs were applied to select these 
markers (and even the literature). 2) some of the markers such as FOXP3, CD8A, FN1, 
COL4A2, were associated with very specific cell types, and they will strongly affect most of the 
downstream analyses. For example, it is not surprising that that they can be separated by the 
UMAP projection. Also see comments #5. This is a major concern.  
 
Thank you for highlighting this. We have now addressed these concerns by restructuring our 
analysis, please refer to Reviewer 2, Major Comment #5 for more details.  
 
2) The authors interpreted that TC and LE differences seemed visually conserved across 
patients in UMAP projections from Fig.1d-e. It would be much more helpful to plot TC vs LE 
abundant across each patient, since it is very hard to see at this scale.  
 
Thank you for highlighting this. We have now added this abundance plot in Extended Data Fig. 
2m. 
 
3) In the pathway and hallmark analyses (Fig.2b), since many pathways were scanned, p values 
need to be adjusted for multiple test burden. Also, a complete list of different pathways between 
TC vs LE will be more informative and will be a good resource for HNSCC community.  
 
We had performed a Benjamini-Hochberg adjustment for the multiple tests performed in our 
hallmark pathway analyses. We have now updated our manuscript text and methods to reflect 
this additional analysis.  
 
Page 5: We found that LE spots displayed higher expression of genes associated with cell cycle 
(p-adj<0.001), epithelial-mesenchymal transition (EMT) (p-adj<0.001), and angiogenesis (p-
adj<0.001) (Extended Data Fig. 2n). 
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Page 16: Select hallmark cancer gene signatures were scored in each spot using the Seurat 
(Version 4.3.0) function ‘addmodulescore’. To test for differences in the module scores 
calculated between the TC and LE, a two-sided paired Wilcoxon Rank sum test was conducted 
using the ‘ggpubr’ (Version 0.5.0) function ‘stat_compare_means’ and corrected using a 
Bonferroni correction. 
 
We have also generated a comprehensive list of different pathways that were enriched in the 
TC and LE. We have included these findings in Extended Data Fig. 2o, and supplementary table 
3 
 
Page 15-16: Differentially regulated hallmark pathways between core and edge cancer cell 
states were identified by modifying code from the SCPA R package (Version 1.2.0). The 
‘compare_seurat’ function queried hallmark genesets in Seurat (Version 4.3) R objects housing 
integrated data and tested for differential pathway activity using multivariate distribution testing 
with a Bonferroni correction applied. Plots comparing hallmark genesets were created using the 
‘ggplot2’ (Version 3.4.0) and ‘ggrepl’ R packages (Version 0.9.2).  
 
4) Related to Fig.2b, are there any pathways/hallmarks higher in TC than LE?  
 
We have now outlined additional pathways that are enriched in the TC, relative to the LE within 
our manuscript text. 
 
Page 5: Cellular function hallmarks that were upregulated in the TC included keratinization, cell 
differentiation, as well as antimicrobial and immune-related pathways… 
 
Furthermore, as stated earlier, we have included a comprehensive list of different pathways that 
were enriched in the TC and LE (Extended Data Fig. 2o, and supplementary table 3) 
 
5) Related to #1, the DEG analysis in Fig.2C is actually circular: for example, TNC and FN1 
were used as markers to annotate LE spots in the first place, and expectedly it will be identified 
as top upregulated genes in LE. Reciprocal examples can be seen in TC (SPRR1B, SPRR2D). 
This circular problem goes beyond just a few genes, since these genes are associated with 
specific cell types, for example FN1 is strongly expressed by fibroblasts. This calls into question 
again regarding the initial annotation, and affects many of the downstream analyses. For 
example, the observation that LE was generally most enriched for the mesenchymal subtype 
(Extended Data Fig. 2e) is likely because LE has more fibroblastic/EMT genes when because of 
the annotation. Relatedly, the mesenchymal subtype is known to have worse survival and thus 
the survival analyses (Fig.3g) may also be affected. 
 
We appreciate how the reviewer might think that our analysis is circular and that some of the 
marker genes used for the TC and LE annotations were included in the DEGs. We have now 
performed a complete reanalysis of our data and have restructured our analysis to begin by 
annotating ‘cancer only’ spots, followed by an unsupervised analysis to identify 3 major clusters, 
which were later labeled as TC, transitory, and LE regions for further analysis. By annotating our 
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tumoral regions with an unsupervised analysis, we ensure that our downstream analyses are no 
longer biased by our initial annotations. 
 
Page 5: After identifying and annotating malignant tumor spots that were primarily composed of 
cancer cells, we performed unsupervised louvain-clustering to unravel the spatial heterogeneity 
in cancer cell expression profiles. We generated 14 louvain clusters among aggregated 
malignant spots that could be partitioned into 3 major clusters (Fig. 2a). We then characterized 
the major clusters through differential gene expression analysis (DGEA) (Fig. 2b). Top DEGs 
enriched in cluster 1 included genes involved in keratinization SPRR2D, SPRR2E, SPRR2A, 
and inhibition of EMT DEFB4A and LCN2 (ref.18,19), while DEGs in cluster 3 included genes 
involved in the ECM matrix COL1A1, FN1, COL1A2, TIMP1, COL6A2 (Fig. 2b and 
Supplementary Table 2). DEGs enriched in cluster 2 shared attributes of both cluster 1 and 3, 
with genes involved in keratinization KRT6C, KRTDAP, KRT6B (ref.20), and ECM remodeling 
LYPD3, SLPI (ref.21,22) (Fig. 2b and Supplementary Table 2). Interestingly, the expression of 
CLDN4 and SPRR1B HNSCC TC markers,13 and LAMC2 and ITGA5 HNSCC LE markers13 
corresponded to clusters 1 and 3, respectively (Fig. 2b,c and Supplementary Table 2). These 
findings prompted us to annotate cluster 1 as “tumor core” (TC) and cluster 3 as “leading edge” 
(LE) . Cluster 2 was annotated as “transitory” due its composition of TC and LE DEG programs 
(Fig. 2d and Extended Data Fig. 2a-m). 
 
6) In Fig.3C, in order to show that ML-predicted LE annotations corroborated those annotated 
by the study authors, LE and TC annotated from the original papers need to be indicated.  
 
Thank you for this point. As the exact annotations of the leading edge annotations were not 
made publicly accessible by the study authors for quantitative evaluation, we opted to remove 
this claim from our manuscript. In turn, we solidified the power of our ML-prediction algorithm 
through 10-fold cross validation on our own data, highlighting a high predictive capability (Figure 
4c and Supplementary table 7). 
 
7) The dynamo/drug sensitivity analyses are far-stretched and poorly developed. First, there are 
220 drugs but only a few examples are shown. Were the results statistically tested? Ie, how 
confident is conclusion that effective drugs and ineffective drugs produced the oppositive RNA 
velocity patterns? Moreover, what does this mean exactly in terms of cell biology? Why were 
effective drugs reversing the RNA flow and what is possible mechanistic basis?  
 
Thank you for your comment and we understand that our previous analysis could be 
strengthened. To analyze more drugs than the few examples shown, we have now integrated 
our cell line efficacy data with a drug-gene interaction database (DGIdb), to enable systematic 
querying of drugs. Through quantifying our in silico-based approach using a vector field 
integration approach, we are now able to perform statistical tests to compare vector field fate 
probabilities between TC, transitory, and LE cancer cells. We also provide a likely explanation 
as to why effective drugs can better reverse RNA flow.  
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Page 11: Dynamo is an in-silico technique that is capable of accurately predicting cell-fate 
transition following genetic perturbation based on learned splicing vector fields.68 We analyzed 
PharmacoDB drug-response data69 for 417 drugs across at least 25 HPV negative HNSCC cell 
lines and found 140 drugs with sufficient drug-gene interactions identified as being upregulated 
or downregulated from the DGIdb70 (Fig. 6f and Supplementary Table 9). We then restricted our 
analysis to 70 drugs that demonstrated significant perturbations, and stratified drugs as ‘high 
AAC’ and ‘low AAC’ by the median (0.164; 0.026-0.560 [total range]) (Supplementary Table 9). 
We derived quantitative inferences for net measures of ‘incoming’ and ‘outgoing’ transition 
probabilities among tumor core and leading edge cells (Fig. 6e). 
Among effective drugs (high AAC), dynamo based in-silico perturbations in high AAC drugs 
generally displayed transition hierarchies with a reversal of the baseline state, represented by 
an increase in outgoing transition probabilities from the LE (Fig. 6g). This was reflected through 
a significant increase in the quantitative measure of net outgoing LE transition probabilities in 
high AAC drugs relative to low AAC drugs (p<0.05) (Fig. 6h). 
 
Page 13: We hypothesize that effective anticancer drugs direct the transition from a LE-like 
cancer cell state to a TC-like cancer cell state, therefore making these cells less phenotypically 
less aggressive by suppressing invasive/metastatic signaling.  
 
8) Some of the most important pieces of data would be much more strengthened by orthogonal 
validations. For example, the differential cellular compositions shown in Fig.4 can be validated 
using immunostaining using the same or independent sample cohort. 
 
We have now included additional orthogonal validations, with immunofluorescence staining of 
serial tissue sections with CD24 and CD44 markers to confirm the presence of dynamic CSC 
states (Extended Data Fig. 3e). We have now restructured our manuscript to focus on ‘cancer 
only’ spots, therefore making our previous differential cellular compositions analysis less 
relevant to the major findings of our work. 
 
Response to Reviewer 3 Comments 
 
Reviewer #3, expertise in OSCC genomics (Remarks to the Author): 
 
In this article, the authors investigate biological mechanisms underlying the prognostic 
association with the tumor leading edge in oral squamous cell carcinoma (OSCC). Specifically, 
they seek to leverage spatial transcriptomics and single cell RNA-seq to uncover novel 
associations with the leading edge and aggressive clinical behaviour. Surprisingly, they find 
conserved programs across multiple cancer types that dictate leading edge function. 
 
Altogether, this is a fascinating study that adds positively to an emerging and important field. 
The authors have performed sophisticated analyses with results that largely support their 
conclusions. The figures are easy to interpret and follow. Strengths include integration between 
spatial transcriptomic data and existing data from scRNA-seq, TCGA, and other sources. There 
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are exciting findings about the implications of the results on patient prognosis across multiple 
cancer types as well as future drug discovery efforts.  
 
Weaknesses include the lack of (1) characterization of immune stroma, (2) multi-sample 
analysis from the same tumor, and (3) validation of drug predictions. While to some extent these 
analyses could be beyond the scope of this study, the authors are encouraged to consider the 
specific comments below, which – if addressed – could result in an even stronger manuscript. 
 
 
MAJOR COMMENTS:  
 

1. The literature-curated TC genes include multiple immune genes which would typically be 
expected to be present in storm. What is the rationale for including these genes as 
positive control for TC? 

 
Thank you for highlighting this. We have now performed a complete reanalysis of our data and 
have restructured our analysis to begin by annotating ‘cancer only’ spots, followed by an 
unsupervised analysis to identify 3 major clusters, which were later labeled as tumor core, 
transitory, and leading edge regions. By performing an unsupervised analysis, we no longer run 
into issues with our choice of marker genes for the TC and LE. 
 

2. Figure 1c/e: Are the TC and LE enriched for any of the pathologist-defined 
segmentations/annotations? Descriptive stats and comparisons would be informative. It 
would also be informative to compare the pathologist-defined annotations with the 
scRNAseq cell type analysis presented in Figure 4. 

 
Our TC and LE regions are limited to the pathologist-defined OSCC tumor regions, labeled SCC 
(Extended Data Fig. 1a-m). We have provided additional clarification in our manuscript to reflect 
these steps in our analysis.  
 
Page 4: We next determined the composition of malignant tumor cells and other cellular 
subpopulations present in the pathologist-annotated squamous cell carcinoma regions by 
performing integrative analysis of our ST data with a separate, publicly-available HNSCC 
scRNA-seq dataset.13 To identify malignant tumor spots, we stringently characterized malignant 
cells as having a deconvolution score > 0.99 (Fig. 1c), or CNV probability score > 0.99 (Fig. 1d). 
All 12 samples were identified to have both spatially deconvolved or CNV-inferred cancer cells 
based on the applied cutoff with high confidence, resulting in 13950 malignant and 10852 
nonmalignant spots (Fig. 1e and Extended Data Fig. 1n). 
 
Page 5: After identifying and annotating malignant tumor spots that were primarily composed of 
cancer cells, we performed unsupervised louvain-clustering to unravel cancer cell expression 
heterogeneity. We generated 14 louvain clusters among aggregated malignant spots that could 
be partitioned into 3 major clusters (Fig. 2a). 
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Page 5: These findings prompted us to annotate cluster 1 as “tumor core” (TC) and cluster 3 as 
“leading edge” (LE). Cluster 2 was annotated as “transitory” due its composition of TC and LE 
DEG programs (Fig. 2d and Extended Data Fig. 2a-m). 
 

3. Figure 2a: A few samples have a LE with similar or even higher correlation to TCs than 
to other LEs (e.g., S12). Is this related to relative inferred purity of the LE and TC 
samples for those patients? 

 
Thank you for your comment. We did not intend to use the correlation matrix as a marker of 
LE/TC purity, but to rather explore if our annotated TC and LE regions were conserved across 
patients based on transcriptomic similarity. We recognize that through our original supervised 
annotation approach, we may have unintentionally captured differing degrees of TC/LE sample 
purity. Therefore, we have reframed our analysis to perform an unsupervised annotation 
approach. We find that our general trends continue to indicate that the TC and LE are 
conserved across patients.  
 
Page 5: We then sought to determine whether the patterns of gene expression in the LE and 
TC were conserved across different patients. To do this, a correlation matrix was generated 
from the whole transcriptome gene expression profiles within the two spatial regions (Fig. 2ea). 
A high degree of correlation was generally observed within the TC, and within the LE, across 
different patients. Interestingly, the correlation between the TC and LE expression programs 
within each patient was relatively low, highlighting the distinct nature of these compartments in 
the tumor microenvironment. Therefore, our TC and LE annotations represent regions with 
unique transcriptomic profiles that are conserved across patients. 
 
We believe that few samples may show similar or even higher correlation to TCs than to other 
LEs, and vice versa, due to intratumoral heterogeneity. However, across almost all samples, the 
correlation between TC-TC and LE-LE exceeds the correlation between TC-LE.  

 
4. In the TCGA analysis, what is the correlation between TC and LE enrichment scores? 

Can the authors test whether these are independently prognostic using multivariable 
Cox models? Or alternatively, are they essentially redundant and anti-correlated 
features? 

 
Thank you for your comment. We have now included additional analysis to directly measure the 
correlation between TC and LE enrichment scores. We find that these two signatures are very 
weakly correlated to one another, and believe these findings reinforce that the TC and LE 
signatures are two distinct programs with important implications on OSCC and cancer 
prognosis. 
 
Page 9: TC and LE signatures were also very weakly negatively correlated to one another (r=-
0.17, p<0.05) (Extended Data Fig. 5d).  
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5. In Figure 4a, can the authors speculate as to why there is not a strong immune stroma 
component in either the TC or LE (even though there were immune related genes in the 
literature-curated gene sets)? 

 
Thank you for your comment. We have now reframed our analysis to focus solely on ‘cancer 
only’ spots, which removes concerns of the lack of immune stromal signature in the annotated 
TC and LE regions. However, based on your comment, we now quantify the number of 
neighboring immune cells and interactions that the TC and LE regions have. 
 
Page 8: To further characterize the tumor microenvironment, we identified and quantified the 
number of adjacent nonmalignant spots neighboring our malignant TC and LE spots. 
Nonmalignant neighboring spots were approximated as a specific cell type based on the most 
enriched non-cancer cell after deconvolution. Our analysis found significantly higher numbers of 
neighboring spots enriched for cytotoxic CD8(+) T cell (p-adj<0.01), ecm.myCAF (p-adj<0.001), 
intermediate fibroblast (p-adj<0.01), and macrophage cells (p-adj<0.01), neighboring LE spots, 
relative to TC spots (Fig. 3i). 
 

6. Figure 5 presents potentially exciting results with significant implications for future work. 
The interpretation is limited by lack of quantification of the vector field effects. The 
authors are urged to demonstrate quantitatively the magnitude of enrichment for the 
trajectories depicted in Figure 5g. Without this, it is difficult to know how large and 
generalizable this effect is among different drugs.  

 
Thank you for your comment and we understand that our previous analysis could be 
strengthened. To analyze more drugs than the few examples shown, we have now integrated 
our cell line efficacy data with a drug-gene interaction database (DGIdb), to enable systematic 
querying of drugs. Through quantifying our in silico based approach using a vector field 
integration approach, we are now able to perform statistical tests to compare vector field fate 
probabilities between TC, transitory, and LE cancer cells.  
 
Page 11: Dynamo is an in-silico technique that is capable of accurately predicting cell-fate 
transition following genetic perturbation based on learned splicing vector fields.68 We analyzed 
PharmacoDB drug-response data69 for 417 drugs across at least 25 HPV negative HNSCC cell 
lines and found 140 drugs with sufficient drug-gene interactions identified as being upregulated 
or downregulated from the DGIdb70 (Fig. 6f and Supplementary Table 9). We then restricted our 
analysis to 70 drugs that demonstrated significant perturbations, and stratified drugs as ‘high 
AAC’ and ‘low AAC’ by the median (0.164; 0.026-0.560 [total range]) (Supplementary Table 9). 
We derived quantitative inferences for net measures of ‘incoming’ and ‘outgoing’ transition 
probabilities among tumor core and leading edge cells (Fig. 6e). 
Among effective drugs (high AAC), dynamo based in-silico perturbations in high AAC drugs 
generally displayed transition hierarchies with a reversal of the baseline state, represented by 
an increase in outgoing transition probabilities from the LE (Fig. 6g). This was reflected through 
a significant increase in the quantitative measure of net outgoing LE transition probabilities in 
high AAC drugs relative to low AAC drugs (p<0.05) (Fig. 6h). 
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7. Are there specific classes of drugs that would be predicted to have the desired effect? 

 
We now stratify our in silico based analysis on drug classes categorized based on their 
mechanism of action. Although we do find significance in quantitative differences of these vector 
field perturbations, many of our drug classes are composed of only two or three therapeutics, 
limiting the conclusions we can draw from this analysis (Extended Data Fig. 6e,f).  
 
Page 11: These findings were further confirmed following drug class stratification, which found 
significant differences in LE outgoing and TC incoming transition probabilities (Extended Data 
Fig. 6e,f). However, several drug classes were underpowered to derive conclusive biological 
inferences (Extended Data Fig. 6e,f and Supplementary Table 9).  
 

8. The in silicon drug discovery analysis would be strengthened by further evaluation in 
other cancer types. Are the drug predictions selective for HPV-negative SCC, or if the 
authors are correct that the LE programs are shared across multiple cancer types, are 
there also shared drug predictions for reversing the LE phenotype?  

 
As our ML-classifier model found that the tumor core was only observed in some cancers, a 
region that is critical in our RNA velocity differentiation hierarchy (and subsequent dynamo gene 
perturbation drug response), we opted to limit our in silico drug discovery analysis to only HPV-
negative oral cancer cells. Successfully testing the in silico drug discovery analysis would 
require a complete re-analysis in other cancer contexts, and would ultimately fall beyond the 
scope of our analysis.  
 

9. The in silico drug discovery analysis would be strengthened by validation using 
preclinical models with drug treatment. 

 
We have opted to refrain from performing additional experimentation involving drug treatment 
on preclinical models. This is because we felt that this would fall beyond the scope of our 
exploratory work. Furthermore, the drugs identified from the PharmacoDB 2.0 database have 
been previously tested in OSCC models, and have pre-existing data indicating drug success or 
failure. Our work primarily sought to identify underlying mechanisms for drug prediction.  
 
MINOR COMMENTS: 
 

1. Figure 1a: The figure indicates that 6/10 patients are M1. Is this accurate? It is not 
consistent with the overall stage categories of I-IVA. M1 would be stage IVC. Why were 
so many M1 patients included in this study? 

 
Thank you for highlighting this. This was a mistake in our manuscript. We have now correctly 
indicated that there are 10 patients that all had M0 staging. 
 

2. Extended Data Figure 1: Provide color key for pathologist annotations. 
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We have now included a color key for pathologist annotations (Fig. 1b and Extended Data Fig. 
1a-m). 
 
3. Figure 4 and Extended Data Figure 5b: Provide key for sample number. 
 
We have now ensured that a key is provided for the sample number in all relevant figures. 
 
Response to Reviewer 4 Comments 
 
Reviewer #4, expertise in in silico modelling, drug response and machine learning (Remarks to 
the Author): 
 
This manuscript performed spatial single-cell transcriptomics analysis on HPV-negative oral 
squamous cell (OSCC). Authors for the first time characterized molecular signatures of tumor 
core (TC) and leading edge (LE) regions and their functional and pathological roles across 
multiple tumor types. They also predicted their drug response patterns. It is a very interesting 
and novel work. The manuscript is well-written.  
 
Major issues. 
 
1. More information is needed for machine learning to predict TC, LE, and other spots. 
Visualization in Figure 3c-e is helpful but is insufficient to justify the accuracy of prediction. A 
quantitative measurement such as pointwise uncertainty quantification is expected. Similarly, 
the confidence of prediction should be estimated for differentiation trajectory predictions.  
 
Thank you for your comment. To support the accuracy of our classifier model, we now perform 
10-fold cross validation of the classifier within our dataset. Similar to a previous published article 
also using scPred,5 we now report the ROC, sensitivity, and specificity of each model used for 
each tumoral region (Fig. 4c and Supplementary table 7).  
 
We now include confidence estimates for our initial velocity differentiation trajectories overlaid 
on a UMAP diagram and find that each spot exhibits a high level of confidence (Fig. 6a). 
 
Page 10: Among spatially deconvolved cancer cells aggregated across all samples, we 
observed a differentiation hierarchy originating from TC extending towards LE (Fig. 6a). This 
hierarchy was highly reproducible and displayed high levels of agreement across spots, 
reflected by high spot velocity vector field confidence of greater than 0.85 in all spots (Fig. 6a).  
 
2. Machine learning models and statistics analyses primarily provide correlations between 
TC/LE signatures and prognoses. It will be interesting to know what causal molecular programs 
are.  
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We have now explored several causal molecular programs by analyzing transcription factors 
and molecular upstream regulators that have predicted activation in the TC and LE from 
SCENIC and Ingenuity Pathway Analysis, respectively (Extended Data Fig. 2p,q).  
 
Page 6: We next explored regulatory differences between the TC and LE using single-cell 
regulatory network inference and clustering (SCENIC) to infer transcription factor (TF) activity. 
SCENIC analysis identified the upregulation of several proto-oncogenic TFs EGR3 and DLX5 
(ref.31,32), and tumor suppressor TFs MXI1, GRHL3, and PITX1 (ref.33–35) in the TC (Extended 
Data Fig. 2pb and Supplementary Table 3). Conversely, the upregulation of several TFs 
including cellular development and differentiation regulatory genes TP63 and HOXB2(ref.36,37), 
and EMT regulatory genes CREB3L1, TCF4, and NFATC4 (ref.38–40) were observed in the LE 
(Extended data Fig. 2pb and Supplementary Table 3). IPA upstream regulatory analysis 
similarly predicted activation of several proto-oncogenic TFs EHF and BCL3 in the TC (ref.41,42), 
and EMT regulatory genes SORL1 and EGFR in the LE (Extended data Fig. 2q) (ref.43,44). 
 
A comprehensive list of SCENIC transcription factors can be accessed via Supplementary Table 
4. 
 
Minor issues. 
 
1. It will be helpful to elaborate what therapeutic targets were derived for OSCC in the main text. 
 
We now explore some of the therapeutic targets within the main text, and additionally provide a 
supplementary table with all information regarding explored therapeutic targets (Supplementary 
table 9). 
 
Page 13: Alvocidib is a CDK inhibitor currently under investigation for its use in acute myeloid 
lymphoma (AML),75 which demonstrated above average outgoing LE and incoming TC 
transitory signals in our analysis. As CDK inhibitors have been previously associated with 
promising results in OSCC cell lines,76,77 Alvocidib may be a promising candidate for further 
research.  
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Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

In the revised manuscript, the authors have adequately addressed all my prior concerns. I particularly 

appreciate that the authors have completed re-analyzed the cancer cell populations via unsupervised 

clustering followed by differential gene expression. This has effectively removed all of the questions 

due to pre-defined marker gene-based annotations (e.g., potential bias, circular problem). 

 

In fact, I am very impressed by the fact that this unsupervised clustering approach largely validated 

the initial marker gene-based approach, strongly suggesting the robustness of the results and its high 

reproducibility! 

 

I further applaud the authors for providing additional orthogonal validations, with immunofluorescence 

staining of serial tissue sections with CD24 and CD44 markers to confirm the presence of dynamic 

CSC states. In addition, their work on drug discovery and integration of the RNA flow of cancel cell 

state has also been strengthened. I would note that this drug discovery part is still exploratory in 

nature, however, the analytical design and data mining is sound and, it will stimulate the field to 

contemplate these data and indications. 

 

Overall, this is an exciting and novel work, with significant implications in the genomics of HNSCC. 

 

Comments on behalf of Reviewer #3 

 

Major Comment 

 

1) The Major Comment-1 from Reviewer-3 shares the similar concern with the Comment-5 from 

Reviewer-2, questioning the use of literature-curated genes in the annotation of tumor spots. During 

the revision, the authors have performed a completely new “de novo” data analysis which has 

addressed this question with satisfaction, validating also their initial observations and conclusions. 

2) The Major Comment-2 has been addressed by the authors. 

3) For the Major Comment-3, the authors have now performed unsupervised clustering, which 

confirms their original supervised data. They have also provided explanations regarding a few samples 

showing the opposite correlation trends, which I agree. 

4) The Major Comment-4 has been addressed by the authors. 

5) Regarding the Major Comment-5, the authors have addressed this by identifying and quantifying 

the number of adjacent nonmalignant spots neighboring either malignant TC or LE spots. 

6) Addressing the Major Comment-5, the authors have now performed statistical quantification of the 

vector field effects. 

7) The authors have provided reasonable exploration and discussion to answer the Major Comment-7. 

8) Regarding the Major Comment-8, it is appropriate that the scope of such in silico drug discovery is 

restricted to HPV- OSCC for this current study. 

9) For Major Comment-9, the authors response is acceptable: some of the drugs identified have been 

previously evaluated in OSCC models using orthogonal approaches, and it is not imperative for the 

current study. 

 

Minor Comments 

The authors have addressed all three of the Minor Comments. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

All major issues raised have been addressed. 



 

 

 

Reviewer #5: 

Remarks to the Author: 

I have reviewed the revision submitted by the authors. In response to the first round of reviews the 

authors focussed their spatial transcriptomics analysis on ‘cancer only’ spots and I believe that this 

solves many of the problems from the original version. The authors have also added several important 

validation experiments that bolster the confidence in the results. The work has many interesting 

analyses and datasets that will be important for the community. 



REVIEWERS' COMMENTS 
 

Reviewer #2 (Remarks to the Author): 
 

In the revised manuscript, the authors have adequately addressed all my prior concerns. I 
particularly appreciate that the authors have completed re-analyzed the cancer cell 
populations via unsupervised clustering followed by differential gene expression. This has 
effectively removed all of the questions due to pre-defined marker gene-based 
annotations (e.g., potential bias, circular problem).  

 
In fact, I am very impressed by the fact that this unsupervised clustering approach largely 
validated the initial marker gene-based approach, strongly suggesting the robustness of 
the results and its high reproducibility!  

 
I further applaud the authors for providing additional orthogonal validations, with 
immunofluorescence staining of serial tissue sections with CD24 and CD44 markers to 
confirm the presence of dynamic CSC states. In addition, their work on drug discovery and 
integration of the RNA flow of cancel cell state has also been strengthened. I would note 
that this drug discovery part is still exploratory in nature, however, the analytical design 
and data mining is sound and, it will stimulate the field to contemplate these data and 
indications.  

 
Overall, this is an exciting and novel work, with significant implications in the genomics of 
HNSCC. 
 
We thank you for your kind comments and second review of our manuscript.  

 
Comments on behalf of Reviewer #3 

 
Major Comment 

 
1) The Major Comment-1 from Reviewer-3 shares the similar concern with the Comment-5 
from Reviewer-2, questioning the use of literature-curated genes in the annotation of 
tumor spots. During the revision, the authors have performed a completely new “de novo” 
data analysis which has addressed this question with satisfaction, validating also their 
initial observations and conclusions. 
 
We thank you for your comments and second review of our manuscript.  
 
2) The Major Comment-2 has been addressed by the authors. 
 



3) For the Major Comment-3, the authors have now performed unsupervised clustering, 
which confirms their original supervised data. They have also provided explanations 
regarding a few samples showing the opposite correlation trends, which I agree. 
 
We thank you for your comments and second review of our manuscript.  
 
4) The Major Comment-4 has been addressed by the authors. 
 
We thank you for your comments and second review of our manuscript.  
 
5) Regarding the Major Comment-5, the authors have addressed this by identifying and 
quantifying the number of adjacent nonmalignant spots neighboring either malignant TC 
or LE spots. 
 
We thank you for your comments and second review of our manuscript.  
 
6) Addressing the Major Comment-5, the authors have now performed statistical 
quantification of the vector field effects. 
 
We thank you for your comments and second review of our manuscript.  
 
7) The authors have provided reasonable exploration and discussion to answer the Major 
Comment-7. 
 
We thank you for your comments and second review of our manuscript.  
 
8) Regarding the Major Comment-8, it is appropriate that the scope of such in silico drug 
discovery is restricted to HPV- OSCC for this current study. 
 
We thank you for your comments and second review of our manuscript.  
 
9) For Major Comment-9, the authors response is acceptable: some of the drugs identified 
have been previously evaluated in OSCC models using orthogonal approaches, and it is not 
imperative for the current study. 
 
We thank you for your comments and second review of our manuscript.  
 
Minor Comments 
The authors have addressed all three of the Minor Comments. 
 
We thank you for your comments and second review of our manuscript.  

 



Reviewer #4 (Remarks to the Author): 
 

All major issues raised have been addressed. 
 
We thank you for your comment and second review of our manuscript.  
 

 
Reviewer #5 (Remarks to the Author): 

 
I have reviewed the revision submitted by the authors. In response to the first round of 
reviews the authors focussed their spatial transcriptomics analysis on ‘cancer only’ spots 
and I believe that this solves many of the problems from the original version. The authors 
have also added several important validation experiments that bolster the confidence in 
the results. The work has many interesting analyses and datasets that will be important for 
the community.  
 
We thank you for your comment and second review of our manuscript.  
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