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Figure S1. Characterization of OVA-expressing B16-F10 melanoma cell lines and tumors, related 
to Figures 1 and 2. a, Design of the different OVA-expressing B16-F10 cell lines, expressing 
membrane OVA (mOVA) or soluble OVA. b, OVA expression in the modified B16 cell lines in 
culture in vitro, assessed by qPCR (N≥6, mean ± SD, ANOVA with Sidak's post-test). c, OVA 
expression in the modified B16 tumors in vivo, assessed by qPCR (N≥4, mean ± SD, ANOVA with 
Sidak's post-test). d, Cell-surface staining of OVA quantified by flow cytometry via the mean 
fluorescence intensity. e, Detection of cell plasma membrane-bound OVA on the different OVA-
expressing B16 cell lines assessed by microscopy (red: anti-OVA; scale bar = 50 μm).  
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Figure S2. Gating strategy for the characterization of T and NK cells, related to Figure 1. Multi-
colored flow cytometry was used to analyze the subsets of T and NK cells in the tumors at day 10 post-
injection. Subset of immune cells were defined using the following markers: NK cells (FSCLO, SSCLO, 
CD45+, NK1.1+, CD3ε-), NK T cells (FSCLO, SSCLO, CD45+, CD3ε+, NK1.1+), CD8+ T cells (FSCLO, 
SSCLO, CD45+, NK1.1-, CD3ε+, CD8+), CD4+ T cells (FSCLO, SSCLO, CD45+, NK1.1-, CD3ε+, CD8+), 
effector T cells (same markers than T cells yet with CD44+, CD62L-), effector memory T cells (same 
markers than T cells yet with CD44+, CD62L+). regulatory T cells (same as CD4+ T cells with CD25+, 
FoxP3+).  
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Figure S3. Gating strategy for the characterization of B cells and myeloid cell subsets, related to 
Figure 1. Multi-colored flow cytometry was used to analyze the subsets of B cells and myeloid cells in 
the tumors at day 10 post-injection. Subset of immune cells were defined using the following markers: 
Macrophages (CD45+, F4/80+, CD11b+), Granylocytic myeloid-derived suppressor cells (MDSC) 
(CD45+, F4/80-, CD3ε-, Ly6G+, Ly6CMID/HI), Monocytic MDSC (CD45+, F4/80-, CD3ε-, Ly6G-, Ly6CHI), 
B cells (CD45+, F4/80-, CD3ε-, Ly6G-, Ly6CLO/MID, CD19+, B220+), dendritic cells (DCs) (CD45+, F4/80-

, CD3ε-, Ly6G-, Ly6CLO/MID, CD11c+, MHCII+), CD11b+ DCs (same than DCs with CD11b+), CD103+ 
DCs (same than DCs with CD11b-, B220-, CD103+).  
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Figure S4. Comparison of B16mOVA and B16-OVA melanoma tumor immunogenicity in mice, 
related to Figure 1. Flow cytometry analysis of immune cells infiltrated in tumors 10 days post-injection 
(N≥4, mean ± SD, ANOVA with Tukey's post-test and Brown-Forsythe correction when needed). a, 
CD8+ and b, CD4+ effector and effector memory T cells subsets in the different tumors. c, Proportion of 
PD-1 expressing CD8+ and CD4+ T cells. d, Proportion of NK T cells, B cells, dendritic cells, 
macrophages and myeloid-derived suppressor cells relative to the total CD45+ immune cell populations. 
e, Intratumoral cytokine quantification via Legendplex in vivo in tumors at day 10.  
 

 

 

 
 
Figure S5. Expression of MHC by the different modified B16-F10 melanoma cells lines and 
presence of OVA on their secreted extracellular vesicles, related to Figure 1. a, b, MHC-I (H-2Kb) 
(a) and MHC-II (IA/IE) (b) expression on B16-mOVA and B16-OVA cell lines measured via flow 
cytometry. c, Western blot analysis for OVA detection in the extracellular vesicles (EV) produced in 
vitro by B16mOVAHI or B16-OVAHI cells lines or in the non-EV fraction (black = positive detection of 
OVA).  
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Figure S6. Analysis of the subcellular localizations of the tumor mutated genes and their 
subsequent impact on patient survival, related to Figure 3. a, Number of tumor mutated genes 
associated with each subcellular location among the 469 genes sequenced by MSK-IMPACT method. 
b, Proportion of tumor mutated genes per subcellular location in patients treated with immunotherapy in 
the pan-cancer group, and corresponding percentile cutoff values used for the analysis in Fig. 3. c-f, 
Survival of ICI-treated patients harboring high (Top 50% or 10%) or low (Bottom 50% or 10%) 
proportions of mAg (c) of cAg (d) of nAg (e) and of of sAg (f) (log-rank tests). g, Survival of ICI-treated 
patients with high (Top 25%) proportion of mAg or sAg (log-rank test). h, HR of survival at different 
proportion of mAg vs cAg, nAg, or sAg (HR < 1 indicate significant extension of survival by mAg).  
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Figure S7. Survival of patients according to their TMB level, distributions of patients by cancer 
types and according to their mAg proportion, related to Figures 4 and 5. a, Survival of patients with 
TMB <10 mut/Mbp (69.7% of the cohort), TMB between 10 and 20 mut/Mbp (15.5% of the cohort) or 
TMB >20 mut/Mbp (14.6% of the cohort). No difference in survival were further observed for patients 
within the group with TMB > 20 mut/Mbp. b, Distribution of the ICI-treated patients per cancer type 
included in the pan-cancer analysis. c, Differences in patient distribution per cancer type for the groups 
with high (Top 25%) or low (Bottom 25%) proportion of mAg, as compared to the distribution of the 
entire ICI-treated cohort as in panel b.  
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Figure S8. Response to immunotherapy based on the proportion of neoantigens at specific 
subcellular localizations, related to Figure 6. Patients (N=75) with non-small cell lung cancer were 
treated with anti-PD-1 + anti-CTLA-4 in the cohort from Hellman et al.8, and patients (N=38) with 
advanced melanoma cancer were treated with anti-PD-1 in the cohort from Hugo et al.9. In both studies, 
tumor mutated genes were sequenced by the WES method. a, Number of tumor mutated genes detected 
across all patients in the Hellman et al. and Hugo et al. studies, respectively, and their associated 
subcellular locations. b, Comparison of the mAg proportion detected in ICI-treated patient cohorts from 
the studies by Samstein et al.7, Hellman et al. and Hugo et al. c, Proportion of mutated genes per 
subcellular location in patients that responded or not to immunotherapy in the Hellman et al. cohort 
(Mann-Whitney test). d, Survival of patients with high (Top 25% and 50%) or low (Bottom 25% and 
50%) proportion of mAg in the Hellman et al. cohort (log-rank test). e, Correlation between the 
proportion of mAg and the expression of PD-L1 in the tumor (Spearman correlation). f, Same as in panel 
d, but with the patient cohort from Hugo et al. g, Proportion of responders or non-responders to anti-PD-
1 among patients that have high (Top 25%) or low (Bottom 25%) proportion of mAg in the Hugo et al. 
cohort (Fisher's exact test). h, Same as in panel c, but with the patient cohort from Hugo et al. 
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Figure S9. Mutated genes encoding for membrane proteins act as neoantigens, related to Figure 6. 
a, Prediction of peptides (all, and affinity < 500 nM) and epitopes (affinity < 50 nM) derived from 
membrane, cytoplasmic, nuclear and secreted proteins on MHC-I and comparison of their 
immunogenicity score using tools from IEDB36. b, Correlations between the predicted neoantigen burden 
and the proportion of mAg in the dataset from Hellman et al. c, Same as panel b in the dataset from Hugo 
et al.  
 
 
 

 
 
Figure S10. Proportion of mAg at the different membranes, related to Figure 6. Proportion of 
mutated genes encoding proteins at the cell plasma membrane or in other specific membrane-containing 
cell organelles in responders and non-responders to immunotherapy from the Hugo et al.  
 
 
 
 

 
Figure S11. Specific membrane-associated mutated genes as predictive clinical biomarkers for 
extended survival upon ICI, related to Figure 7. Data analyzed from Samstein et al.7 using the ICI-
treated or non-ICI-treated cohorts. a, b, Survival curves of ICI and non-ICI treated patients bearing 
NOTCH3 (a) or RNF43 (b) mutations in colorectal cancer and associated TMB burden. 
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Methods S1. Original codes used for the data processing and analysis 
 
Three original codes were generated for processing using RStudio, version 1.4.1103 (2009-2021 Rstudio, 
PBC). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL 
http://www.rstudio.com/ 
 
The same codes were used for the processing of the datasets of Samstein et al., Hellman et al. and Hugo 
et al.; below are the codes used for the processing of Samstein et al. dataset. 
 
Code n°1: Directory.  
 
This code finds the subcellular location for each mutated genes appearing in the Samstein et al. cohort. 
 
Input files: 

- SamsteinData.csv (list of mutated genes per patient). 
- HomoSapiens gene protein localisation (Data S1). 

Output files:  
- AllGeneNames.csv (subcellular location for all mutated genes). 
- Samstein_directory-AllLocal.csv (classification of mutated genes in the categories: membrane, 

cytosol, nucleus and secreted). 
 
Raw code:  
 
library(corrplot) 
library(tidyverse) 
library(biomaRt)   
library(data.table) 
library(BiocManager) 
library(UniProt.ws) 
library(org.Hs.eg.db)  
library(UniprotR) 
#install.packages('openssl') 
library(openssl) 
UniProt.ws(taxId=9606) 
 
rm(list=ls()) 
 
#load the directory from other patients  
partial.directory <-read.csv("HomoSapiens Gene Protein Localization.csv", header = TRUE, sep = ",", stringsAsFactors = F) 
 
#filter duplicates 
Hdata <- read.csv("SamsteinData.csv", header = TRUE, sep = ";", stringsAsFactors = F) 
names <- Hdata[,2] 
names<-as.data.frame(names) 
all.gene.names <- distinct(names)  
col <- c(1:469)*0 # 469 is the total number of genes mutated in Samstein et al. patients. 
all.gene.names <- cbind(all.gene.names, col) 
all.gene.names <- as.data.frame(all.gene.names) 
all.gene.names[,2] <- lapply(all.gene.names[,2], as.character) 
 
#Go through all gene names and find localization  
for(row in 1:469){ 
  gene.name <- all.gene.names[row,1] 
  if(!isEmpty(gene.name[like(gene.name,";")])){  
    ind<-str_locate(gene.name,";") 
    pos<-ind[1]-1 
    gene.name<-substr(gene.name,1,pos) 
  } 
   #Locate the index where gene.name is found in directory 
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  row.number <- grep(gene.name, partial.directory[ ,5], ignore.case = FALSE, perl = F, value = FALSE, 
                     fixed = FALSE, useBytes = FALSE, invert = FALSE)  
   
  final.row.number<-integer() 
   
  if(length(row.number) != 0){ 
     
    # Ensure that the gene's name is not a substring of another gene name 
    for (ligne in 1:length(row.number)){ 
      list.names<-str_split(partial.directory[row.number[ligne],5], " ", simplify=TRUE) 
      if(gene.name %in% list.names){ 
        final.row.number<-rbind(final.row.number, row.number[ligne]) 
      } 
    } 
    final.row.number<-as.integer(final.row.number) 
  }else {final.row.number<-row.number} 
 
  local<-character() 
   
    # Find the gene subcellular location 
     
    if(length(final.row.number)==0){ 
    all.gene.names[row,2]<-as.character("GENEnotFOUND") 
    count.missed.genes<-count.missed.genes+1 
    missed.genes <- rbind(missed.genes,data.frame(gene.name)) 
   }else { 
    for (l in final.row.number){#1:length(final.row.number)){ 
       local<-paste(local,partial.directory[l,9],sep="") # 7 au lieu de 9 si on clean partial directory 
    } 
     
    if (local!="") { 
      #get localization info 
      all.gene.names[row,2]<-local 
      #print("Sublocalization filled") 
    }else { 
      #if not found in partial directory then get it from website 
      new.localization <- GetSubcellular_location(partial.directory[final.row.number[1],1], directorypath = NULL) 
      if(is.na(new.localization[1,1])){ 
        # print("Sublocalization unknown") 
        all.gene.names[row,2]<-as.character("Unknown") 
        unknown.localization<-rbind(unknown.localization,data.frame(gene.name,partial.directory[row.number,1])) 
        count.unknown.localization<-count.unknown.localization+1 
      }else{ 
        #print("Sublocalization FOUND") 
        count.found.localization<-count.found.localization+1 
        newlocal<-as.character(new.localization[1,1]) 
        all.gene.names[row,2]<-newlocal 
      } 
    } 
  } 
}   
write.csv(all.gene.names, file = "AllGeneNames.csv", row.names= FALSE, sep = ",") 
 
all.gene.names<-read.csv("AllGeneNames.csv", header = TRUE, sep = ",", stringsAsFactors = F) 
directory<-all.gene.names 
 
#Now make the localization in different columns  
for (i in 1:469){  
  protein<-directory[i,2] 
 
  directory[i,3]<-0 
  directory[i,3]<-!isEmpty(protein[like(protein, "Nucleus")]) 
  if (directory[i,3] == "TRUE"){ 
    directory[i,3] <- 1 
  } 
  directory[i,4]<-0 
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  directory[i,4]<-!isEmpty(protein[like(protein, "Cytoplasm")]) 
  if (directory[i,4] == "TRUE"){ 
    directory[i,4] <- 1 
  } 
   directory[i,5]<-0 
  directory[i,5]<-!isEmpty(protein[like(protein, "Cell membrane")|like(protein,"Membrane")]) 
  if (directory[i,5] == "TRUE"){ 
    directory[i,5] <- 1 
  } 
  directory[i,6]<-0 
  directory[i,6]<-!isEmpty(protein[like(protein, "Secreted")]) 
  if (directory[i,6] == "TRUE"){ 
    directory[i,6] <- 1 
  } 
   directory[i,7]<-0 
  directory[i,7]<-!isEmpty(protein[like(protein, "Cell membrane")]) 
  if (directory[i,7] == "TRUE"){ 
    directory[i,7] <- 1 
  } 
  directory[i,8]<-0 
  directory[i,8]<-!isEmpty(protein[like(protein, "Membrane")]) 
  if (directory[i,8] == "TRUE"){ 
    directory[i,8] <- 1 
  } 
  directory[i,9]<-0 
  directory[i,9]<-!isEmpty(protein[like(protein, "reticulum")|like(protein,"Reticulum")]) 
  if (directory[i,9] == "TRUE"){ 
    directory[i,9] <- 1 
  } 
  directory[i,10]<-0 
  directory[i,10]<-!isEmpty(protein[like(protein, "golgi")|like(protein,"Golgi")]) 
  if (directory[i,10] == "TRUE"){ 
    directory[i,10] <- 1 
  } 
  directory[i,11]<-0 
  directory[i,11]<-!isEmpty(protein [like(protein, "endosome") | like(protein,"Endosome")| like(protein,"Endosomal") | 
like(protein,"endosomal") ] ) 
  if (directory[i,11] == "TRUE"){ 
    directory[i,11] <- 1 
  }   
  directory[i,12]<-0 
  directory[i,12]<-!isEmpty(protein[like(protein, "Mitochondrion")]) 
  if (directory[i,12] == "TRUE"){ 
    directory[i,12] <- 1 
  } 
} 
colnames(directory)<-c("GeneName", "Localization","Nucleus", "Cytoplasm", "CellMembraneBoth", "Secreted", "CellMem", 
"Membrane", "Reticulum", "Golgi", "Endosome", "Mitochondrion") 
write.csv(directory, file = "Samstein_directory-AllLocal.csv", row.names= FALSE, sep = ",") 
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Code n°2: Patients.  
 
This code lists the subcellular location of mutated genes for each patients of Samstein et al.   
 
Input files: 

- SamsteinData.csv (list of mutated genes per patient). 
- Samstein_directory-AllLocal.csv (from Code n°1). 

Output files:  
- AllPatientsLocalization_Samstein-AllLocal.csv (list of patients’ mutated genes with the 

corresponding subcellular locations) 
 
Raw code:  
 
library(corrplot) 
library(tidyverse) 
library(biomaRt)   
library(data.table) 
library(BiocManager) 
library(UniProt.ws) 
library(org.Hs.eg.db)  
library(UniprotR) 
library(openssl) 
UniProt.ws(taxId=9606) 
 
rm(list=ls()) 
 
AllPatients <- read.csv("SamsteinData.csv", header = TRUE, sep = ";", stringsAsFactors = F) 
AllPatients <- distinct(AllPatients) # -- No if snSNV 
 
SamsteinDirectory <- read.csv("Samstein_directory-AllLocal.csv", header = TRUE, sep = ",", stringsAsFactors = F) 
 
row.number <- which(AllPatients[,2] == "") 
 
for (i in row.number){ 
  AllPatients[i,1]="X" 
  } 
 
for (i in 1:nrow(AllPatients)){ 
   
  row.number <- which(SamsteinDirectory$GeneName == AllPatients[i,2]) 
   
  if(length(row.number)!=0){ 
    AllPatients[i,3:12] <- SamsteinDirectory[row.number,3:12] 
  } 
} 
 
write.csv(AllPatients, file = "AllPatientsLocalization_Samstein-AllLocal.csv", row.names= FALSE, sep = ",") 
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Code n°3: SplitPatientsMutations.  
 
This code finds the subcellular location for each mutated genes in the patients cohort of Samstein et al.   
 
Input files: 

- AllPatientsLocalization_Samstein-AllLocal. (from Code n°2). 
 
Output files:  

- SummaryMutationsPatients-AllLocal.csv (mutation counts per localisation per patient) 
 
Raw code:  
 
library(corrplot) 
library(tidyverse) 
library(biomaRt)   
library(data.table) 
library(BiocManager) 
library(UniProt.ws) 
library(org.Hs.eg.db)  
library(UniprotR) 
library(openssl) 
UniProt.ws(taxId=9606) 
 
AllPatients <- read.csv("AllPatientsLocalization_Samstein-AllLocal.csv", header = TRUE, sep = ",", stringsAsFactors = F) 
 
NumberPatients <- AllPatients[,1] 
NumberPatients<-as.data.frame(NumberPatients) 
NumberPatients<-distinct(NumberPatients) 
 
for (i in 1:length(NumberPatients[,1])){ 
   
  row.patients<-which(AllPatients[,1]==NumberPatients[i,1]) 
   
  TotalMut<-length(row.patients) 
  MutNucleus<-0 
  MutCytoplasm<-0 
  MutMembraneBoth<-0 
  MutSecreted<-0 
  MutCell<-0 
  MutMem<-0 
  MutReti<-0 
  MutGolgi<-0 
  MutEndos<-0 
  MutMitoch<-0 
     
  for (p in row.patients) 
  { 
    MutNucleus<-MutNucleus+AllPatients[p,3] 
    MutCytoplasm<-MutCytoplasm+AllPatients[p,4] 
    MutMembraneBoth<-MutMembraneBoth+AllPatients[p,5] 
    MutSecreted<-MutSecreted+AllPatients[p,6] 
    MutCell<-MutCell+AllPatients[p,7] 
    MutMem<-MutMem+AllPatients[p,8] 
    MutReti<-MutReti+AllPatients[p,9] 
    MutGolgi<-MutGolgi+AllPatients[p,10] 
    MutEndos<-MutEndos+AllPatients[p,11] 
    MutMitoch<-MutMitoch+AllPatients[p,12] 
     
    # Somme de toutes les colonnes sauf CellMem and Membrane 
    res<-
AllPatients[p,3]+AllPatients[p,4]+AllPatients[p,5]+AllPatients[p,6]+AllPatients[p,9]+AllPatients[p,10]+AllPatients[p,11]+AllPa
tients[p,12]  
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    resMem<-
AllPatients[p,3]+AllPatients[p,4]+AllPatients[p,6]+AllPatients[p,7]+AllPatients[p,8]+AllPatients[p,9]+AllPatients[p,10]+AllPati
ents[p,11]+AllPatients[p,12]  
  } 
   
  NumberPatients[i,2]<-TotalMut 
  NumberPatients[i,3]<-MutNucleus 
  NumberPatients[i,4]<-MutCytoplasm 
  NumberPatients[i,5]<-MutMembraneBoth 
  NumberPatients[i,6]<-MutSecreted 
  NumberPatients[i,7]<-MutCell 
  NumberPatients[i,8]<-MutMem 
  NumberPatients[i,9]<-MutReti 
  NumberPatients[i,10]<-MutGolgi 
  NumberPatients[i,11]<-MutEndos 
  NumberPatients[i,12]<-MutMitoch 
   
} 
 
colnames(NumberPatients)<-c("Patients", "TotalMutations","TotalNucleusGenes", "TotalCytoplasmGenes", 
"TotalMembraneBothGenes", "TotalSecretedGenes", "TotalCellOnlyGenes", "TotalMemOnlyGenes", "TotalReticulumGenes", 
"TotalGolgiGenes", "TotalEndosomalGenes","TotalMitochondriumGenes") 
#colnames(NumberPatients)<-c("Patients", "TotalMutations","TotalNucleusMutations", "TotalCytoplasmMutations", 
"TotalMembraneBothMutations", "TotalSecretedMutations", "TotalCellOnlyMutations", "TotalMemOnlyMutations", 
"TotalReticulumMutations", "TotalGolgiMutations", "TotalEndosomalMutations","TotalMitochondriumMutations") 
write.csv(NumberPatients, file = "SummaryMutationsPatients-AllLocal-verif.csv", row.names= FALSE, sep = ",") 

 
 


