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Figure S1. A distinct transcriptional and immunogenic profile of BMMNCs in VEXAS. Related to Figure 1.

(A) Expression of lineage signature genes! or single cell-type specific genes are highlighted in Uniform Manifold
Approximation and Projection (UMAP) plots of batch-corrected single-cell gene expression in BMMNC:s of all VEXAS
patients and healthy donors: the same UMAP plots in Figure 1B.

(B) Gene-ontology (GO) semantic similarity matrix of differentially expressed genes in VEXAS. GO terms involved in
similar functional matrices were adjacent and formed a block with Pearson R values ranging from 0 to 1. Terms noted on the
right side depict common biological processes from blocks of GO terms.

(C) Gene Set Enrichment Analysis (GESA) plots of expressed genes of BMMNCs in VEXAS patients compared with those
in healthy donors. GSEA enrichment plots for represented signaling pathways upregulated in HSPCs in VEXAS patients.
GSEA were based on the Kolmogorov Smirnov test.

(D) Representative ELISpot wells showing IFN-y secretion by BMMNCs from two VEXAS patients and two healthy donors
in a first batch of a validation cohort, in triplicate. Right, quantification of IFN-y or TNF-a-positive spots in BMMNCs
plated (VEXAS patients n = 5 and healthy donors n =2, in triplicate). p-values with the two-sided unpaired Mann-Whitney

test are shown.
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Figure S2. Distinct transcriptional and phenotypic profiles of HSPCs in VEXAS. Related to Figure 2.

(A) Phenotypes of HSPCs in VEXAS patients and healthy donors by flow cytometry. Cell populations were defined as
reported:2 HSC, Lineage CD34"CD38"; CMP/MEP, Lineage CD34"CD38"CD10-CD45RA"; GMP, Lineage
CD34*CD38"CD10-CD45RA"; LymP, Lineage CD34*CD38"CD10*. HSC, hematopoietic stem cells and multipotent
progenitors; CMP, multipotent common myeloid progenitor; MEP, megakaryocytic-erythrocytic progenitors; GMP,
granulocytic-monocytic progenitors; LymP, lymphoid progenitors.

(B) Proportions of progenitor populations quantified by flow cytometry in (E) were compared between the validation cohort
of VEXAS patients (n = 11) and healthy donors (n = 8). Data are shown with mean values + standard error of the mean
(SEM). p-values with the two-sided unpaired Mann-Whitney test are shown.

(C) Expression of lineage signature genes? or single cell-type specific genes are highlighted in UMAP plots of batch-
corrected single-cell gene expression in BMMNCs of all VEXAS patients and healthy donors: the same UMAP plot in
Figure 2C.

(D) GESA plots of differentially expressed genes of HSPCs in VEXAS patients compared with those in healthy donors,
showing GSEA enrichment plots for represented signaling pathways upregulated in HSPCs in VEXAS patients. GSEA was

based on the Kolmogorov Smirnov test.
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Figure S3. Expressed UBAI mutations in VEXAS detected by scRNA-seq. Related to Figure 3.

(A) Expressed UBA 1 mutations in BMMNC:s (left) and HSPCs (right) in UPNs14-17 detected by scRNA-seq. Sequences
and numbers of wild-type and mutant reads in individual samples are indicated on the left. Figures of mutations using the
Integrative Genomics Viewer (IGV from the Broad Institute) are shown on the right.

(B) UMAP plots of single-cell gene expression in BMMNCs and HSPCs of all healthy donors, colored with UBA!
expression levels.

(C) Violin plots showed UBA1 expression levels in BMMNCs were significantly higher than those in HSPCs in healthy
donors. The two-sided unpaired t-test. p-value < 0.001.

(D) In individual VEXAS patients, gene expression was compared between myeloid BMMNCs with mutant UBA/
(mtUBA1I) and those with wild-type UBA1 (wtUBAI). A Venn diagram shows upregulated pathways of differentially
expressed genes in at least three patients (among UPNs 14-17).

(E) Gene expression of mtUBA HSPCs was compared to that of wtUBA1 HSPCs in individual VEXAS patients. A Venn

diagram shows upregulated pathways of differentially expressed genes in at least three patients (among UPNs 14-17).
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Figure S4. Expressed DNMT3A mutations in VEXAS detected by scRNA-seq. Related to Figure 3.

(A) Knockdown efficiency of UBA! in four cell lines (U937, THP1, Raji, and Jurkat) detected by RNA-seq analysis.

(B) DNMT3A mutations in BMMNCs and HSPCs in UPN6 and UPN13 detected by scRNA-seq analysis, respectively.
Sequences and numbers of wild-type and mutant reads in individual samples are indicated on the left. Figures of mutations
using the Integrative Genomics Viewer (IGV) are shown on the right.

(C) UMAP plots of single-cell gene expression in BMMNCs and HSPCs of all healthy donors, colored by DNMT3A4
expression levels.

(D) Violin plots show DNMT3A expression levels in BMMNCs were higher in HSPCs than in healthy donors. Data were
analyzed with the two-sided unpaired t-test. p-value < 0.001.

(E) UMAP plots of single-cell gene expression in BMMNCs of VEXAS patients, the same t-SNE plot as Figure 1B left.
Cells with expressing mutant DNMT3A (mtDNMT3A) or wild-type DNMT3A (wtDNMT3A) are colored as red or blue dots,
respectively, and all the other cells as grey. Lymphoid precursors are circled on t-SNE plots.

(F) UMAP plots of single-cell gene expression in BMMNCs of VEXAS patients, the same t-SNE plot as Figure 2C. Cells
with expressing mtDNMT3A4 or wtDNMT3A are colored as red or blue dots, respectively, and all the other cells as grey.
(G) A bubble plot showing expression levels of transcription factor genes PAX5, GATA1, and SPI] in HSCs of VEXAS
patients, compared with those in healthy donors.

(H) A bubble plot showing expression levels of transcription factor genes IRF8 and CEBPA in GMP of VEXAS patients,

compared with those in healthy donors.
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Figure SS. A lack of common TCR clonotypes in VEXAS patients. Related to Figure 7.
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A heatmap plot showing the number of common TCR clones in UPNs 14-17, healthy donors (n = 7), and serial samples of

T-LGLL patients (n = 13)* among top 400 TCR clones. Both x- and y-axes represent samples of patients and healthy donors.

Paired samples of the same T-LGLL patient were adjacent. Numbers indicate counts of identical TCR clones shared among

samples. A color scheme ranging from dark orange to dark blue represents the number of shared CDR sequences from high

to low. In general, there was lack of common TCR usage in VEXAs patients (UPNs 14-17), and few common TCR clones

in healthy individuals or T-LGLL patients. There was also a lack of common TCR usage among healthy individuals or

among T-LGLL patients. HD, healthy donor; T-LGLL, T large granular lymphocytic leukemia; UPN, unique patient

number.
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Figure S6. A lack of common BCR clonotypes in VEXAS patients. Related to Figure 7.
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A heatmap plot showing the number of common BCR clones in UPNs 14-17, and duplicated memory B cell and naive B

cell samples from healthy donors (n = 3)°> among top 400 TCR clones. Both x- and y-axes show samples of patients and

healthy donors. Samples of the same healthy individual were adjacent. Numbers indicate counts of identical BCR clones

shared among samples. A color scheme ranging from dark orange to dark blue represents the number of shared IgH

sequences from high to low. In general, there was a lack of common BCR usage in VEXAs patients (UPNs 14-17), and no

common BCR clones in these healthy individuals. There was also a lack of common BCR usage among healthy individuals.

HD, healthy donor; UPN, unique patient number.



BCR clonality and expressed UBA1 mutations in VEXAS
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No. 2 clone size 49 42 6 76
No. 3 clone size 33 5 2 52
No. 4 clone size 28 4 1 33
Medium clone size
(2575 percentike) 12 (6-24) 4(242) 4(1.25-338.3) 21 (3.25-47.25)
mtUBAT single cells 7 1 9 2
Clone size (CDR3) | 12 CARDLRWELGEGGFDPW 186 CARNLLMWFGEFYPW 449 CAKVYSGEMATMFGFDHSHYYGMDVW |31 CATTRLAQETYRVLELNWFDPW
8 CALRRQYDLSENRGSGWFDPW 449 CAKVYSGEMATMFGFDHSHYYGMDVW | 1 CTRTTTVESAVFDYW
5 CVRIYYGNRNFHRFDAFDIW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CSCEELW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CARPATTNAYYYYYYMDVW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
1 CARDRSRGAKAPTAYIDHW 7 CAKRTGGNNGPFDYW
1 CAKDRGPVVGSRGCDFW 1 CARGCSSVPCVW
1 CARDLVRIWNYVGVLDLW
1 CAKGDYDTRINTFQNW
wtUBAT1 single cells 4 35 39 0
Clone size (CDR3) 5 CVRIYYGNRNFHRFDAFDIW 186 CARNLLMWFGEFYPW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
3 CASAPLSDDFWSHYYPGGMDVW | 186 CARNLLMWFGEFYPW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CAKDRANFYGPGIIDFW 186 CARNLLMWFGEFYPW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
1 CAAWGETAVRYHAFDIW 186 CARNLLMWFGEFYPW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
42 CARHDNTGSYCLFYW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CVTSWFYGSGYVYFHQW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CSRHSMRAPEFFDFW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CARRLLYEGGTFDIW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
2 CVTSWFYGSGYVYFHQW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
1 CARERYCVGGIWCYYGMDVW 449 CAKVYSGEMATMFGFDHSHYYGMDVW
1 CAKSRTYYDFWSGYFDYW 6 CARALISVSPCDYW
1 CARHGVGATTDYYFDHW 6 CARALISVSPCDYW
1 CAKDFRESGDYGWYFDLW 6 CARALISVSPCDYW
1 CAYGTTVTTPFDSW 6 CARALISVSPCDYW
1 CAKFDVDCSGGACQSKVLYYFDNW| 2 CARGHNDYPGRWFDPW
1 CARWVRTTTSRTFDYW 2 CARDNGDSDLVLAYW
1 CVSHRAETGPFDYW 2 CATGGEMATIFESFDYW
1 CARLEMGSIRHDAFDIW 1 CVKDIGAWFGETMFDPW
1 CGRDGYFEAIEHW 1 CARDRKWEQLLGYFDYW
1 CALSSDWVWYFDYW 1 CARPPPHVVVLPIVIRDWYFDLW
1 CAKLHGSDYLPRFDPW 1 CARDRWLGW
1 CAKDQFSTGLFVGQLAGDW 1 CARLPVAGNSLYYYGLDVW
1 CARHRSDSSGRKWYFDLW 1 CAKDYIRSTTNFLGLNGMDVW
1 CARDLQGGHWYFDLW 1 CANKLAVAGTYQPFVSGYW
1 CARNAELVVFAMGMRFWLDPW 1 CARVLRRGSSWHSENCFDPW
1 CARDSSAYNYVPYYSYYHGMDVW 1 CARVDVW
1 CAKSPGQRSGKLEDW 1 CTGILPAANWASATSNYW
1 CARSYNTGWNDGAFDFW 1 CARARADTAKIRFDYW
1 CAKEQTLYDNRVNNFDCW 1 CARGSRPGGVYNWFDPW
1 CRGKGGEIDSW 1 CARSSRDHQLVLFVNW
1 CARDVAGVLDYW 1 CARARISSDSTVGYW
1 CAKVLVPTAIFHAFDIW 1 CAKAGDNYGSGSYYFDYW
1 CGRDSQGLGIPGYYVEHW 1 CARGHIAVPGPVPAFDYW
1 CARHGVGATTDYHFDLW 1 CARGAHDFWNGYSVPDYW
1 CARVEYYGSGMVFDNW 1 CVRDRGYQSFDYW
1 CGRVVAGAPLPAHIDFW
1 CARGLRTSRYFDLW
1 CAKDKRMTTTYFHYW
1 CARGPDWFDPW
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Figure S7. BCR clonality and expressed UBAI mutations in VEXAS detected by coupled scRNA-seq and scBCR-seq,

and impaired differentiation and proliferation of hematopoietic progenitor cells in VEXAS. Related to Figure 7.

(A) BCR sequences of single-lineage CD34" HSPCs with either mtUBA or wtUBA 1 are described in UPNs 14-17. A total

cell number with detected BCR expression, top 4 clone sizes (cell number), and medium clone sizes are shown on the top.

The number of detected single mtUBAI and wtUBA 1 HSPCs in each individual, and sizes and sequences of the BCR clones

they belonged to are shown at the bottom, respectively.

(B) Colony forming assays using BMMNCs and enriched CD34"HSPCs in VEXAS patients and healthy donors.

Representative images of colony forming units (CFUs) formed by BMMNCs or HSPCs, colony forming units for

granulocytes and macrophages (CFU-GM), and colony forming units for erythrocytes (CFU-E) in patients and healthy

donors are presented. The numbers of CFUs formed by BMMNC:s (left) and CD34*HSPCs (right) were compared. Data are

presented as mean + SEM. p-values calculated with the two-sided unpaired Mann-Whitney test are shown.
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