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Supplementary Table Legends 

 

Supplementary Table 1: Differentially expressed genes of malignant Seurat clusters (mouse) 

related to Fig. 1 and Extended Data Fig. 1. P value was calculated using non-parametric Wilcoxon 

rank sum test and adjusted p value with Bonferroni correction for multiple testing. 

 

Supplementary Table 2: Functionally enriched terms for top 120-150 sign. overexpressed in 

each Seurat cluster, related to Fig.1c. Significance was assessed using Fisher exact test, two-

tailed p value. 

 

Supplementary Table 3: Functionally enriched gene expression signatures related to Fig.1d, e, 

g and  Extended Data 1,2 .  

     

Supplementary Table 4: Parameters estimated from the fit of the bi-exponential decay to the 

CDF of clone sizes for each sample (see Model fits section of the Supplementary Note, Fig. 2f 

and Extended data Fig. 4b-e). The chase time (t0), total number of clones and number of singlets 

(single cell clones) are shown for each sample, together with the average clone size (considering 

all clones) and measured tumour expansion relative to its volume at the start of the chase period. 

The clone size threshold for finding the long term decay, the fitted values for the large and small 

clone size decays, n̄ and n̄p, and composite parameter p0, are shown. These fits were made by 

first removing single cell clones from the data, to account only for clones rooted in proliferative 

cells, using a least-square method (see Supplementary Note).  

      

Supplementary Table 5: Parameters of the two-compartment stem-progenitor cell model, 

estimated using the fitted values for the large and small clone size decays, n̄ and n̄p, and 
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composite parameter p0 (see Supplementary Table 4), together with the predicter tumour volume. 

The parameters shown here were used in the numerical simulations of the full stochastic model 

(see Supplementary Note and Extended Data Fig. 4g-k).   

        

Supplementary Table 6: Gene list inferred from scRNA seq of Tyr::NRASQ61K/°;Ink4a−/−  allograft 

model and projected to Stereo-Seq technology to spatially resolve pre-EMT and hypoxic cell 

states in respect to Endothelial Cells. Related to Fig. 3c-d and Extended Data Fig. 6d-g. 

 

Supplementary Table 7: Molecular Cartography probes used in this study. The discriminative 

markers were selected based on scRNA seq of Tyr::NRASQ61K/°;Ink4a−/− allograft model to 

spatially resolve cell type and melanoma cell state diversity. Related to Fig. 3e,f and Extended 

Data Fig. 6h,i,k,m. 
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Supplementary Figure 1. Analysis of mCherry dilution in Watermelon melanoma cells upon 

co-culturing with Bend3 cells in vitro. Gating strategy for analyzing low mcherry population. 

mCherry fluorescence was evaluated within mNeon-positive population, allowing to exclude 

Bend3 cells. Watermelon expressing NRASQ61K/°;Ink4a-/- cells non treated with doxycycline were 

used as a negative control (see Reporting Summary). Final gates are presented in Extended Data 

Fig. 8d. The outcome of the analyses is shown in Fig. 3j. Similar gating strategy was applied for 

the experiments with Watermelon-expressing cells upon Notch3 genetic inactivation shown in Fig. 

3n. 
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Supplementary Figure 2. Isolation of tdTom+ cells from Prrx1::CreER-GFP;Tyr-

NRASQ61K/°;Ink4a-/-;ROSA26RLSL-tdTomato/LSL-tdTomato. Gating strategy for the isolation of tdTom+ 

cells from early vs late labeled mice (upon tamoxifen administration). Isolated fractions were 

subsequently subjected to scRNA sequencing using 10x platform. The outcome of the analyses 

is presented in Fig. 4e-g, i and Extended Data Fig. 10a-c, g.  

 

 

 



Supplementary Note

Here, we present in further detail the theoretical framework used to investigate the clonal
dynamics of melanoma growth, and in particular how the experimental observations impose
constraints on the cellular dynamic. In section 1, we describe how clonal information on
tumour cell dynamics is extracted from thick tumour sections. In section 2, we show how the
measured distribution of clone sizes provides evidence for a proliferative hierarchy, which
we formalise mathematically as a two-compartment model. In section 3, we describe the
strategy used to fit the two-component model to the experimental clone size data and extract
the model parameters. Finally, in section 4, we show how short-term clonal labelling and
staining of vasculature provides further support for the hierarchical model. Throughout,
we emphasize the value and strengths of the modelling scheme, as well as discussing its
limitations. Readers who would prefer to focus only on the definition of the two-component
model and its fit to the clonal data may turn to the Model fits section 3 below, where a
summary of the model, its fit parameters and the fitting procedure are presented in full.

The scripts and data used in the clonal analysis are available at https://github.
com/ibordeu/scripts_Karras_et_al_2022_git.

1 Clone reconstruction

As detailed in the main text, we used a multicolour genetic lineage tracing approach based
on the Confetti reporter system to study the dynamics of tumour growth, with approximately
0.5-1% of all cells marked by one of four Confetti colours when samples were collected.
Tumours were collected and imaged once they had expanded to around 10 times their initial
size of around 150 mm3 (see column marked “Tumour expansion” in Supplementary Table 4
for precise values). To avoid challenges in identifying cells marked by membrane-bound
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CFP, and the scarcity of nuclear GFP labelled cells, we focused our quantitative analysis on
cells positive for either YFP or RFP expression.

From a qualitative analysis of tumour sections, we found that cells marked by a common
colour tended to associate spatially into clusters. In some cases, clusters were large and
densely labelled by marked cells (Fig. 2c). In other cases, clusters showed evidence of dis-
persion, with fragments of marked cell clusters separated from other clusters by unlabelled
cells. However, many clusters were spatially isolated and contained just a few cells or less.
Together, these findings were suggestive of a bimodal type of behaviour, with some tumour
cells founding large clones that grow and progressively disperse, while other tumour cells
give rise to a more limited output.

To gain quantitative insight into the tumour cell dynamics, we sought to reconstruct total
clone sizes based on 3D reconstructions from the confocal images of thick sections. Specif-
ically, we first used a fluorescence intensity-based pipeline to identify the position and vol-
ume of clusters of cells marked by a common Confetti colour and in close physical contact.
Then, by computing the spatial correlation function of clusters marked by the same colour
and different colours, we determined that clusters separated by a distance of 100µm or less
(translating to around 6-7 cell diameters) were likely to belong the same clone (Fig. 2d, Ex-
tended Data Fig. 4a and Methods). Based on this assignment, we then performed a visual
inspection of reconstructed clones to check on the consistency of the clustering and to remove
potential artefacts, such a false positive labelling. In doing so, we noticed that there were a
few clones that, based on spatial morphology, were likely to be associated with the chance
merger of large proximate clones. In one dataset (specifically the RFP channel of sample 3,
Extended Data Fig. 4c) we found that an elevated induction efficiency led to a preponderance
of over-sized clones, consistent with a multiplicity of chance of merger events, leading us to
conclude that this dataset was below the threshold at which clonal reconstruction could be
performed reliably (see Extended data Fig. 4c). However, for the rest of the samples and
colour channels, the clonal assignments led to a size distribution that was broadly consistent
across samples and colours (Fig. 2e), both in scale and shape. The total number of recon-
structed clones for each sample and colour channel are shown in Supplementary Table 4.

Once clones were identified, we then inferred their corresponding constituent cell number
by scaling their volume against the estimated average volume of individual cells based on
fluorescence intensity, the latter estimated at around 1,800 µm3, for an average diameter
of 15 µm (see Methods). Notably, based on this calibration, we found that the average
clone size was broadly consistent with the net expansion of the tumour volume, providing
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further support for the integrity of clonal assignments (Supplementary Table 4). Consistent
with the qualitative analysis of the sectional data, the cumulative clone size distributions
based on the 3D reconstructions showed evidence of a bimodal behaviour, with small clone
sizes characterised by a rapid exponential-like decay with a sharp crossover to a slower
exponential-like decay at larger clone sizes (Fig. 2f and Extended Data Fig. 4b-e).

This observation was revealing: Alongside potential intrinsic heterogeneities associated
with the complex organization of the tumour cell hierarchy, divergences in the mutational
landscape together with spatial fluctuations associated with local tumour microenvironments
might be expected to lead to an unstructured clone size distribution. Yet, these findings sug-
gest that the heterogeneity of clone sizes, from the smallest clones containing just a handful
of cells, to the largest clones with hundreds or thousands of cells, can be captured quantita-
tively with just three parameters: The two exponential decay rates and the crossover clone
size. We therefore sought to question what is the minimal model of cell fate that could cap-
ture the observed dynamics, turning later to consider the potential limitations of this scheme.
In the following, we will show that the observed clone size behaviour is characteristic of
a hierarchical proliferative organization with an expanding stem cell-like population giving
rise to a second progenitor cell-like population.

2 Theory

To assess the potential validity of a hierarchical organization, we considered the dynamics of
a two-compartment model comprised of a stem and a progenitor cell population. To simplify
the analysis, we considered a minimal model in which stem cells select stochastically (i.e.,
probabilistically) between cell duplication and loss through differentiation, while progenitor
cells expand through stochastic cell duplication (Fig. 2g),

S
σ−→

{
S + S Pr. r

P Pr. 1− r
P

∆P−→ P + P.

(1)

Here rσ defines the stem cell duplication rate, (1− r)σ denotes the effective differentiation
rate into the progenitor cell compartment, and ∆P denotes the expansion rate of the progeni-
tor cell population. Later, we will consider how generalizations of the model give rise to the
same long-term clone size dependencies.
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Since the two-compartment model does not admit a formal exact analytic solution, we
first questioned its behaviour based on the results of stochastic simulation. Using a Gillespie
algorithm to simulate the model dynamics (see implementation details below), numerical
analysis showed that, over a wide range of parameters, the chance of finding a clone of size
n cells, Tn(t), after a time t showed a bi-exponential type dependence, with

Tn(t) ' 1− c0

n̄1(t)
e−n/n̄1(t) +

c0

n̄2(t)
e−n/n̄2(t), (2)

where, with n̄2(t) � n̄1(t), the first term represents the small clone size dependence and
the latter the large. We therefore used this empirical observation to determine approximate
analytical expressions for the coefficients c0, n̄1(t) and n̄2(t).

As a starting point, we noted that, within the framework of the two-compartment model,
the average size of the stem and progenitor cell populations, S and P , are defined by the rate
equations

Ṡ = ∆SS

Ṗ = ∆PP + (1− r)σS,

where ∆S = σ(2r − 1) denotes the net expansion rate of the stem cell population. With the
initial condition S(0) = 1 and P (0) = 0, these equations have the solution

S(t) = e∆St

P (t) =
(1− r)
2r − 1

∆S

∆S −∆P

(
e∆St − e∆P t

)
.

(3)

With the stem cell dynamics defined by a general birth-death type process, the chance of
finding a clone of size n stem cells after a chase time t is given by [60]

Sn(t) =

{
α n = 0

(1− α)(1− β)βn−1 n > 0
, (4)

defining ω ≡ r/(1−r), α(t) = (S(t)−1)/(ωS(t)−1) and β(t) = ω(S(t)−1)/(ωS(t)−1).

To obtain an approximation for the total clone size distribution, Tn, we separated the clone
size dependence as

Tn(t) = T<n (t) + T>n (t),
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where T<n represents the small clone size contribution derived predominantly from “extinct”
clones, defined as those containing no stem cells, and T>n represents the contribution from
“surviving” (i.e., stem cell-containing) clones. From the results of the stochastic simula-
tion of the hierarchical model, we expect that T>n (t) = c0

n̄(t)
e−n/n̄(t). In the long-time limit,

we reasoned that extinct clones will make a negligible contribution to the average total
clone size since, with r > 1/2, their contribution will become rapidly overwhelmed by
the expanding stem cell-containing clones. Therefore, to leading order, we can approximate
T<n (t) ' T<0 δn,0. With these definitions, we noted the further constraints from the normal-
ization and the average total clone size, which require that

∞∑
n=1

Tn(t) = 1 (5)

∞∑
n=1

nTn(t) = T (t). (6)

From the normalisation condition (5), it follows that c0 = 1 − T<0 . From the second con-
straint (6), it follows that the average total clone size satisfies the relation T (t) = (1 −
T<0 )n̄(t), which translates to the identity n̄(t) = T (t)/(1 − T<0 ). However, from Eq. (4),
it follows that the number of extinct clones is given by T<0 ≡ limt→∞ S0(t) = 1/ω. With
1− T<0 = 1− 1/ω = 2− 1/r = (2r − 1)/r, we thus have that

n̄(t) =
r

2r − 1
T (t) =

r

2r − 1
(S(t) + P (t)).

In summary, to a first approximation, we find that the total clone size distribution takes the
form

Tn(t) ' 1− r
r

δn,0 +
2r − 1

r

1

n̄(t)
e−n/n̄(t).

Although this equation fits well with the empirical long-term large clone size dependence,
it was instructive to develop a more refined approximation that captures the shorter-time
behaviour. If the first stem cell fate decision leads to a transition S 7→ P , the result-
ing progenitor will give rise to an exponential contribution to the clone size distribution,
Pn(t) ' e−n/n̄P (t)/n̄P (t) with n̄P = e∆P t. Alternatively, a stem cell might multiply and ex-
pand before finally becoming extinct, generating multiple progenitor cells over its lifetime.
However, if r ∼ 1, the majority of extinction events will derive from the first decision. (Note
that, for a super-critical birth-death process, r > 1/2, once a clone has expanded beyond
a certain size, its chance of extinction becomes negligible). Therefore, taking the leading
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order contribution from extinction events, we can approximate the small clone size distribu-
tion by the exponential distribution of a progenitor cell-derived clone created at close to the
induction time,

T<n (t) =
1

ω

1

n̄P (t)
e−n/n̄P (t).

Although the revised distribution,

Tn(t) =
1− r
r

1

n̄P (t)
e−n/n̄P (t) +

2r − 1

r

1

n̄(t)
e−n/n̄(t)

is still normalised, since the first term now contributes to the average clone size, we have to
revise n̄(t) accordingly. In this case, going back to the constraint on the average clone size,
we now have the condition

T (t) =
1− r
r

n̄P (t) +
2r − 1

r
n̄(t) (7)

from which follows the relation

n̄(t) =
1

2r − 1
(rT (t)− (1− r)n̄P ) . (8)

In summary, to leading order, the total clone size distribution takes the form

Tn(t) ' 1− r
r

1

nP (t)
e−n/nP (t) +

2r − 1

r

1

n̄(t)
e−n/n̄(t). (9)

Note that this expression becomes accurate in the limit r → 1, but becomes increasingly
unreliable as r → 1/2. In this limit, further contributions to the extinct clone population
will affect the small clone size dependence of the distribution, which in turn effects the net
normalization. Indeed, extrapolating to the next order of approximation, one may show that

Tn(t) ' 1− r
r(1 + r(1− r))

(
1 + r(1− r) n

n̄P

)
e−n/n̄P

n̄P
+

2r − 1

r

e−n/n̄

n̄
.

However, in the following, since the major contribution to the small clone sizes experi-
mentally arises from the direct induction of progenitors, we kept only the leading order of
approximation (9) for simplicity.

Finally, to complete the analysis, we then considered how the contribution of progenitor
cell-derived clones revises the expression for the clone size distribution. If, on induction, a
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fraction fS of induced cells belong to the stem cell compartment, with the remaining 1− fS
belonging to the progenitor compartment, from the results above, it follows that the total
clone size distribution is given by

Tn(t) '
(

1− fS
2r − 1

r

)
1

n̄P (t)
e−n/n̄P (t) + fS

2r − 1

r

1

n̄(t)
e−n/n̄(t). (10)

Note that, as mentioned above, if the stem cell fraction fS is small, then the progenitor cell
contribution dominates the small clone size dependence, mitigating to some extent the need
to include the higher order corrections for r close to 1/2. Lastly, within this framework, the
total tumour size grows as

V (t) = fST (t) + (1− fS)n̄P (t),

the first term arising from the stem cell-derived clones and the second from the progenitor
population. Then, using (7), we obtain the leading approximation

V (t) ' fS
2r − 1

r
n̄(t) +

(
1− 2r − 1

r
fS

)
n̄P (t). (11)

Model generalisations

Before turning to the fit of the model to the clonal data, it is helpful to first revisit how
potential generalisations of the model can be captured within the framework of the same
minimal scheme (1). Starting with the stem cell compartment, previously we considered
a dynamics based on a simple birth-death type process. Such a model would capture, for
example, a situation in which stem cell competence was linked to proximity to a niche site.
As cells move away from the niche, they enter irreversibly into a differentiation programme
that leads to their transition into a progenitor P state. However, if fate were assigned during
division, we might consider a generalised model in which all three fate outcomes contribute,

S
σ−→


S + S Pr. u

S + P Pr. v

P + P Pr. 1− u− v
. (12)

In this case, the kinetic equations for the average cell numbers are given by

Ṡ = ∆SS

14



Ṗ = (2− 2u− v)σP + ∆PP,

where ∆S = (2u + v − 1)σ. With the initial condition S(0) = 1 and P (0) = 0, these
equations have the solution

S(t) = e∆St

P (t) =
(2− 2u− v)

2u+ v − 1

∆S

∆S −∆P

(
e∆St − e∆P t

)
.

At the same time, the distribution of stem cell clone sizes will take the same exponential-like
form as above (4), but with r = u/(1 − v). Therefore, taken together, these results lead to
the same bi-exponential clone size dependence of the distribution, where the effective rate
constants and probabilities are appropriately renormalised.

Similarly, in the model, Eq. (1), we considered a progenitor cell compartment that was
purely duplicative. In practice, it is likely that the progenitor cells can both proliferate and
transition into a more differentiated non-cycling state,

P
λ→

{
P + P Pr. q

D Pr. 1− q
D

γ−→ 0.

However, once again, the dynamics of the progenitor cell population will still be defined by
a birth-death process, giving rise to an exponential distribution of clone sizes, at least for the
progenitor cell compartment. Therefore, provided that the dynamics remains supercritical
q > 1/2, and/or the differentiated cells D are short-lived (i.e., have a high loss rate γ), apart
from a revision of the parameters, such a generalisation would not change the bi-exponential
form of the clone size distribution.

In our minimal modelling scheme, we have considered just one progenitor cell type, P.
By contrast, the scRNA-seq data suggests that tumour cells may be heterogeneous, compris-
ing multiple proliferative cell types, mirroring the developmental trajectories of neural crest
sublineages. In this case, one might wonder whether the stem cell-like population could
transition into a diversity of progenitor sublineages, P1, P2, etc. However, provided that the
dynamics of the progenitor cell population is dominated either by a single sublineage, as
would be expected for a net bias towards exponential growth, or a common progenitor, the
dynamics would still be captured by the minimal model.

Finally, in formulating the model, we have not considered how spatial influences could
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impact on the clonal dynamics. A niche-like organization, such as that imposed by the
vasculature, could limit the clonal expansion of the stem cell compartment along preferred
directions. However, previous studies have shown that such constraints impact only in low
spatial dimension [61]. In the context of the three-dimensional tissue, and the extended ar-
rangement of the vascular niche, these constraints would not be expected to impact, allowing
us to apply the minimal zero-dimensional description above.

While these arguments provide a rationale to explain the integrity of the observed bi-
exponential clone size dependence against potential complexities of tumour cell fate and
heterogeneities of the tumour microenvironment, they also impose some limitations on the
predictive power of the modelling scheme. In particular, while we may hope to retrieve the
parameters of the model - the expansion rates and renewal bias of the stem cell compartment
- individual cell fate behaviours (viz. symmetric vs. asymmetric division probabilities) and
division rates, as well as potential substructures of the progenitor and differentiated cell
compartments are not accessible. For this reason, in fitting the data, we have stayed within
the framework of the minimal model (1).

3 Model fits

In section 2, we defined a stochastic two-compartment model of tumour growth, Eq. (1),
based on a stem-progenitor cell hierarchy. The model has three parameters: the stem cell cy-
cling rate σ, the duplication probability r, and the progenitor cell expansion rate ∆p. How-
ever, these parameters are not accessible directly from fits to the observed bi-exponential
dependence of the clone size distribution, but can be inferred a posteriori. Here, we detail
the strategy used in fitting the predicted bi-exponential dependence to the experimental data
and the resulting inference of the model parameters. Equation (10) has three effective fit-
ting parameters: the average size of stem cell-containing clones n̄(t) and progenitor-only
clones n̄P (t), which translate to the exponential decay rate of the large and small clones size
distribution, respectively. The third parameter

p0 ≡ fS
(2r − 1)

r

is a composite function of the fraction fS of induced cells belonging to the stem cell com-
partment and the probability r that a stem cell divides symmetrically.
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Before proceeding to the model fits to the clonal data, we noted that there was a pre-
ponderance of clones containing just a single cell (see Supplementary Table 4). Moreover,
the fraction of single cell clones was much larger than what would be expected from the
labelling of a purely proliferative population, or by our two-compartment model (1), where
such events would originate from the small fraction of labelled progenitor cells that have yet
to divide during the chase period. The over-abundance of single cell clones could indicate
the existence of a sub-population of long-lived quiescent or non-dividing tumour cells or,
alternatively, may correspond to fragments of larger clones that could not be classified cor-
rectly by the clone segmentation strategy. Therefore, to circumvent this uncertainty, we first
focused attention on the statistical ensemble of clones containing 2 cells or more, which must
have been rooted in a proliferative cell at the time of induction. In this case, the resulting
renormalised clone size distribution takes the form

T ′n>1(t) =
Tn(t)

1− s(t)
, (13)

where Tn(t) is given by Eq. (10) and s(t) = T0(t) + T1(t).

To fit the predicted clone size distribution to the experimental data, we followed a two-step
procedure. We first used the analytical approximation, Eq. (13), to identify the parameter
values, and then used stochastic simulation of the two-compartment model (1) to validate
the predictions. Specifically, we first used the predicted long-term size dependence of the
complementary cumulative distribution function (CDF)

Cn>1(t) = 1−
n∑

m=2

T ′m>1(t)
n�1' fS

1− s(t)
2r − 1

r
e−n/n̄(t) =

p0

1− s(t)
e−n/n̄(t) (14)

to determine the decay parameter n̄(t) and then, from the n = 0 intercept, obtained the ratio
p0/(1− s(t)) (see Supplementary Table 4). Then, to obtain the exponential fit to the smaller
clone size dependence, we subtracted the exponential fit of the large clone size dependence,

C ′n(t) = Cn(t)− p0

1− s(t)
e−n/n̄(t) ∝ exp(−n/n̄P (t)), (15)

from which we could fit the second decay parameter n̄P (see Supplementary Table 4). Note
that, to perform the fit of Eq. (14), we had to identify the clone size threshold at which
the clone sizes were best described by the long-term exponential decay. This threshold was
found for each sample and colour independently through numerical optimisation, by finding
the threshold that minimised the standard error of the fit between the empirical and theoret-
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ical CDFs (see “clone size threshold” column in Supplementary Table 4). The values of the
three fit parameters n̄, n̄P and p0/(1− s(t)) are shown in Supplementary Table 4.

To obtain the model parameters, we needed to extract the parameter p0, which required
an estimate of s(t) = T0(t) + T1(t). In principle, the value of T0, the probability that a clone
was altogether lost during the chase period, is not accessible. However, in the context of the
two-compartment model, Eq. (1), there is no clone loss, from which it follows that T0(t) = 0.
Moreover, as the clone size distribution at small clone sizes is dominated by contributions
from the progenitor cell compartment, we could infer an approximate value of T1(t) as the
n = 1 intersect of the small clone size decay, i.e., C ′1(t), such that 1 − s(t) ' 1 − T1(t) ≈
C ′1(t). From this result, we could estimate the corresponding values of the parameter p0.

Based on the three parameters, n̄, n̄P and p0, we then tried to infer the original parameters
of the two-component model (1). From n̄P , we could estimate the expansion rate of the
progenitor cell population through the relation ∆P = (ln n̄P )/t0, where t0 is the given chase
time (Supplementary Table 4). However, with the remaining model parameters, ∆S , r and
fS , with only two fit parameters, n̄ and p0, there is a degeneracy of fits. This degeneracy
becomes clear in the limit ∆S � ∆P when, using Eq. (8), it follows that

n̄(t) '
(

r

2r − 1

)2

e∆St =

(
fS
p0

)2

e∆St.

We thus have just two relations,

∆S =
1

t0
ln

[(
p0

fS

)2

n̄(t0)

]
and r =

fS
2fS − p0

, (16)

constraining three adjustable parameters, ∆S , r and fS ≥ p0. This translates to a line of
degeneracy, where we can continuously adjust values of ∆S , r and fS along a trajectory in
the parameter space without changing the distribution of clone sizes, e.g., a reduction in r
can be compensated by an increase in ∆S , etc. Even when relaxing the condition ∆S � ∆P ,
a similar degeneracy of fit parameters exists both within the approximation scheme and in
the exact solution of the model.

Therefore, operationally, to estimate roughly the three remaining model parameters, we
made use of the analytical approximation above, setting r = 0.75 to break the degeneracy.
A different choice of r would translate to a different estimate of the parameters ∆S and
fS (see Extended Data Fig. 4f); but the overall scale would be similar. Specifically, from
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Eqs. (16), we could estimate the stem cell expansion rate ∆S . Additionally, from the defini-
tion p0 = fS

(2r−1)
r

, we could estimate labelled stem cell fraction fS (Supplementary Table 5).
In Supplementary Table 5, we summarise the associated fit parameters for each sample and
colour, which show that the inferred stem cell expansion rate ∆S is some 2-3 times that of
progenitors, ∆P . These parameter values result in estimates for the tumour expansion given
by Eq. (11) (using the estimated value of fS as defined above) that are consistent with the em-
pirical measurement (see Supplementary Tables 4 and 5). Estimates of the stem cell fraction,
fS were variable, ranging from 10-32% (with a mean ± SD of 21± 7%), and larger than the
reported size of the pre-EMT NC-like cell population from the scRNA-seq data of 6 ± 3%.
However, we should note that, since progenitor cell-derived clones could, in principle, be
lost if there is cell death, the inferred value of fS may not equate to the true stem cell fraction
at induction. Moreover, the induction of tumour cell types may not be representative of the
respective tissue fractions. Finally, our analysis is insensitive the existence and abundance
of non-dividing tumour cells, which would be included in the scRNA-seq analysis.

Sensitivity to different choices of the duplication probability r

To break the fit degeneracy implied by Eqs. (16), we made an arbitrary choice of the stem
cell duplication, setting r = 0.75. Different choices of r alter the respective estimates of the
effective stem cell cycling rate and expansion rates, σ and ∆S , as well as the stem cell frac-
tion, fS . To assess the sensitivity of these parameters on r, the estimates were recalculated
for a wide range of r values (see Extended Data Fig. 4f). As expected, increasing the value
of r led to higher estimate of ∆S and a lower estimate of both σ and fS , with the variations
becoming more pronounced as r approached the singular value r = 1/2 (at which the stem
cell compartment becomes perfectly renewing). For example, setting r = 0.9 led to an aver-
age variation of ∆S , σ and fS of 16%, 27% and 25%, respectively, relative to the reference
values at r = 0.75. Consistent with the degeneracy of the model, numerical simulations
of the full stochastic model led to equally good fits to the data when considering different
values of r.
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Stochastic simulation

To explore the precise dynamics of the two-component model (1), and validate the analytical
approximation defined above, we turned to stochastic simulations. Specifically, we made
use of a stochastic, Gillespie-type [62], simulation that considers the proliferative dynamic
of individual cells. Given an initial number of stem cells S(t = 0) and progenitors P (t = 0),
at time t = 0, the algorithm operates as follows:

1. Compute the propensity functions ws1 = σrS(t), ws2 = σ(1 − r)S(t) and wp =

∆PP (t), and define the overall effective rate w = ws1 + ws2 + wp.

2. Generate a uniformly distributed random number r1 ∈ (0, 1], and calculate the time of
the next event t+ τ , where τ = − 1

w
ln r1

3. Decide which of the sub-processes takes place in the time interval τ , for which a new
uniformly distributed random number r2 ∈ (0, 1] is generated. Based on the propensity
functions, the number of stem cells S and progenitors P at time t + τ is obtained
according to

[S(t+ τ), P (t+ τ)] =


[S(t) + 1, P (t)] r2 ≤ ws1/w

[S(t)− 1, P (t) + 1] ws1/w < r2 ≤ (ws1 + ws2)/w

[S(t), P (t) + 1] (ws1 + ws2)/w < r2 ≤ 1

4. The previous steps are repeated while t < tmax, where tmax is the chase time of the
clonal assay.

Each individual simulation describes the stochastic evolution of a single clone, where the
total clone size corresponds to P (tmax) + S(tmax) after the chase time tmax. To compare the
predictions of the model with the data and analytical theory, for each dataset, we considered
the statistical distribution from a clonal ensemble of size equal to that analysed in the ex-
perimental condition without considering single cell clones, as discussed in the Model fits
section 3 (see Supplementary Table 4). Then, to obtain estimates for the size of statistical
fluctuations for a given set of parameters, we repeated this procedure over N = 104 such
trials, computing the predicted CDF for each of them. To account for different fractions
of the induced proliferative cell population, we initialise a fraction fS of clones with initial
condition S(0) = 1 and P (0) = 0, and the remaining fraction (1− fS) with initial condition
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S(0) = 0 and P (0) = 1. Finally, to compare the simulation with the experimental data,
we considered the distribution of clones comprised of 2 cells or more, removing clones of
size unity. The results are shown in Extended data Fig. 4g-k, showing the average CDF
and standard deviation from N = 104 trials. A two-sample Kolmogorov-Smirnov (KS) test
was performed to compare the empirical and simulated distributions of clone sizes (see Ex-
tended data Fig. 4g-k). This shows that, with the exception of the YFP+ clone of sample
1 (right panel, Extended data Fig. 4g), the distributions of clone sizes obtained from our
two-compartment model are statistically indistinguishable from the empirical distributions,
validating the analytical approach. The KS-test rejected the null hypothesis that the YFP+

clones of sample 1 belong to the same distribution of sizes as the simulated clones (p-value
< 0.05). However, we note that this dataset had the smallest sample size, with only 35 clones
(ignoring singlets, see Supplementary Table 4), so that random fluctuations may affect the
result of the statistical test.

4 Clonal organisation around the vasculature

To provide further support to the stem-progenitor cell model proposed, we performed short-
term clonal labelling (4- and 10-days chase) and stained thick sections with the vasculature
marker CD31 (Methods). This allowed us to segment both the clones and the vasculature,
and to classify clones according to whether they were attached or detached from the vascu-
lature, using a minimum distance threshold of 20 µm. This revealed that indeed those clones
that are attached to the vasculature (nearest distance < 20 microns) were significantly larger
in size compared to those detached (nearest distance ≥ 20 microns), with the difference
becoming more pronounced at the 10 day time point (see Extended data Fig. 7c-d). This be-
haviour was consistent with a faster expansion of the stem cell-like population localized near
the vasculature and corroborates our interpretation of the bi-exponential distribution of clone
sizes observed in the long-term clone data, where positional information on the proximity to
vasculature was not available.
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