Supporting Information for:

Unknown Metabolite Identification using Machine Learning Collision Cross Section Prediction and Tandem Mass Spectrometry.

Carter K. Asef¹, Markace Rainey¹, Brianna M. Garcia^{2,3}, Goncalo J. Gouveia^{2,4}, Amanda O. Shaver^{2,5}, Franklin E. Leach III^{2,6}, Alison M. Morse⁷, Arthur S. Edison^{2,3,4}, Lauren M. McIntyre⁷, Facundo M. Fernández^{1,8*}

¹School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States ²Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States

³Department of Chemistry, University of Georgia, Athens, GA 30602, United States

⁴Department of Biochemistry, University of Georgia, Athens, GA 30602, United States

⁵Department of Genetics, University of Georgia, Athens, GA 30602, United States

⁶Department of Environment Health Science, University of Georgia, Athens, GA 30602, United States

⁷Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, United States

⁸Petit Institute of Bioengineering and Biotechnology, Georgia Institute of Technology, Atlanta, Georgia, USA.

Table of Contents

Figure S1. Between platform retention time correction curves	
Ranked ANOVA – Additional Details	S4
Figure S2. A visual representation of the data processing steps for identifying significant feature the LC-MS data sets	s within S5
Figure S3. Validation results for machine learning predicted CCS values	S6
Figure S4. Further details for selected features	S7
Table S1. List of internal standards	S8
Table S2. HILIC chromatographic parameters	S8
Table S3. Reverse phase chromatographic parameters	S8
Table S4. Synapt G2-S IM-MS parameters	
Table S5. Parameters for oPLS-DA models	
Table S6. Parameters for genetic algorithm	S10
Table S7. Outcomes for failed investigated features	S10

Figure S1. Minor chromatography differences between the LC-MS and LC-IM-MS platforms used necessitated retention time (RT) correction in order to correctly match features between runs. Shown are the correction curves for all standards as measured in the positive ion polarity, with the RT for both platforms plotted on each axis. A polynomial correction formula was used for the HILIC data and a linear correction formula for reverse-phase data.

Ranked ANOVA-Additional Details

To account for variation in the amplitude in the chromatograms across batches a normalization process is typically applied. The most common is a total ion chromatograph correction. This approach has several well-known issues. Our goal in this first feature selection step is simply to identify features with large and consistent differences between the mutant and control. To this end we elected to use rank transformation with 1,000 bins followed by an ANOVA as illustrated in Figure S2. The ranking approach assigns high values to relatively intense features within a chromatogram and low values to features with low intensity. By fixing the number of bins, small differences in the number of features identified in the chromatogram are minimized. The ANOVA is as a screening procedure that will identify features that are consistently high in one group and consistently low in the other group. Here we are interested in identifying a subset of features for further elucidation, and so we elected to use a nominal p-value of 0.05 to minimize the type II error, as is typical of sequential screening studies. Residuals were examined and behaved according to model assumptions. We compared ranked unbinned to rank binned with several different numbers of bins. Results were nearly identical between the 1,000 bins and the rank transformation alone. The results from 1,000 bins were slightly more conservative than the unbinned ranked data in the number of significant features.

Figure S2: Data processing of LC-MS data acquired via Thermo Orbitrap ID-X began with data deconvolution within Thermo Compound Discoverer 3.1 to produce a list of ion features and their corresponding peak areas (a). These features were ranked from most intense to least intense within each sample, and then binned into 1000 bins, giving each feature a bin number for each sample representative of its relativity intensity in that sample (b). ANOVA was performed between the mutant and control strain sample bins to identify features that were significantly different (p<0.05) (c). Significant features based on ANOVA were retained, autoscaled and used to build oPLS-DA models, yielding VIP scores for each feature (d). Features with the top VIP scores were subject to structural annotation.

Figure S3. Validation results for CCSP 2.0 for $[M-H]^-$ ions (top) and $[M+H]^+$ ions (bottom). Self-calibration shows the errors of the predicted CCS for all entries in the training set. Cross-validation errors results from leaving out 20% of the training data and constructing the model from the remaining 80%. External validation was performed with a separate test set as shown in the validation prediction panel.

Figure S4. Variable Importance in Projection (VIP) scores vs. LV1 oPLS-DA score for feature HN_196 is shown as a green point in (a) demonstrating the high importance for this feature in discriminating mutant strain RB2347 from control strain PD1074. The hierarchy in (b) shows the reduction of all compounds with a matching elemental formula, to those generated from in silico MS/MS prediction, to those MS/MS candidates within the $\pm 3\%$ CCS error range. Top ranked candidate structures from SIRIUS 4 are shown in (c) with their predicted vs. measured CCS error. The MS/MS spectrum for this feature is compared against the MS/MS spectrum acquired from a pure standard of N-Acetylaspartate, the rank 1 MS/MS candidate structure (d). This is repeated for features HN_271 and HN_480 in mutant strain VC1265 in panels (e-h) and (i-l), respectively.

Standard Name	Formula	Fraction
L-Arginine (¹³ C ₆ , 99%)	[13]C ₆ H ₁₄ N ₄ O ₂	Polar
Hippuric Acid (Benzoyl-d ₅ , 98%)	C ₉ H ₄ D ₅ NO ₃	Polar
Hypoxanthine ($^{13}C_5$, 99%)	[13]C ₅ H ₄ N ₄ O	Polar
L-Methionine (1- ¹³ C, 99%; methyl-d ₃ , 98%)	[13]CC ₄ H ₈ D ₃ NO ₂ S	Polar
15:0-18:1(d ₇) PC	$C_{41}H_{73}D_7NO_8P$	Non-polar
18:1(d ₇) Lyso PC	C ₂₆ H ₄₅ D ₇ NO ₇ P	Non-polar
15:0-18:1(d ₇) PE	C ₃₈ H ₆₇ D ₇ NO ₈ P	Non-polar
18:1(d ₇) Lyso PE	C ₂₃ H ₃₉ D ₇ NO ₇ P	Non-polar
15:0-18:1(d ₇) PG	$C_{39}H_{68}D_7O_{10}P_2$	Non-polar
15:0-18:1(d ₇) PI	$C_{42}H_{72}D_7O_{13}P$	Non-polar
15:0-18:1(d ₇) PS	C ₃₉ H ₆₇ D ₇ NO ₁₀ P	Non-polar
15:0-18:1(d ₇)-15:0 TAG	$C_{51}H_{89}D_7O_6$	Non-polar
15:0-18:1(d ₇) DAG	C ₃₆ H ₆₁ D ₇ O	Non-polar
18:1(d ₇) Chol Ester	$C_{45}H_{71}D_7O_2$	Non-polar
d18:1-18:1(d ₉) SM	$C_{41}H_{72}D_9N_2O_6P$	Non-polar
Cholesterol-d ₇	C ₂₇ H ₃₉ D ₇ O	Non-polar

Table S1. Internal standards used for retention time alignment in polar and non-polar extracts.

Table S2. Chromatography gradient for HILIC chromatography. Solvent A was 80:20 water:acetonitrile

with 0.1% formic acid and 10 mM ammonium for	brmate. Solvent B was 0.1% formic acid in H ₂ O.
--	--

Time	Flow (mL/min)	%B
0	0.4	95
0.5	0.4	95
8	0.4	40
9.4	0.4	40
9.5	0.4	95
11	0.4	95
12	0.4	95

Table S3. Chromatography gradient for reverse phase chromatography. Solvent A was 40:60 water:acetonitrile with 0.1% formic acid and 10 mM ammonium formate. Solvent B was 90:10 isopropanol:acetonitrile with 0.1% formic acid and 10 mM ammonium formate.

Time	Flow (mL/min)	%B
0	0.4	20
1	0.4	60
5	0.4	70
5.5	0.4	85
8	0.4	90
8.2	0.4	100
10.5	0.4	100
10.7	0.4	20
12	0.4	20

Tab	Name	Setting	
ES+	Capillary	3.00	
ES+	Sampling cone	30	
ES+	Source offset	40	
ES+	Source temp 80		
ES+	Desolvation temp	250	
ES+	Cone gas flow	50	
ES+	Desolvation gas flow	650	
ES+	Nebulizer gas flow	7.0	
Stepwave	SW1 wave height	5	
Stepwave	SW1 wave velocity	300	
Stepwave	SW2 wave height	5	
Stepwave	SW2 wave velocity	300	
Stepwave	SW2 offset	15	
Stepwave	Stepwave RF	150	
Stepwave	Ion guide RF 200		
Instrument	IMS gas flow	70	
Triwave	IMS wave velocity 600-200 (ramp full c		
Triwave	IMS wave height 22		
Triwave DC	Trap entrance	3	
Triwave DC	Trap bias	30	
Triwave DC	Trap DC -4		
Triwave DC	Trap exit 0		
Triwave DC	IMS entrance 12		
Triwave DC	IMS He cell DC 35		
Triwave DC	IMS He exit -12		
Triwave DC	IMS bias	10	
Triwave DC	IMS exit	0	

Table S4. Full Synapt G2-S instrument parameters. Parameters not listed were left at their automatic values.

Table S5. oPLS-DA parameters within PLS toolbox 8.9.1 (Eigenvector Research, Inc.).

This is a model of type	oPLSDA	
Developed	24-Jun-2021	
X-block	RB2347_HILICneg_sig05_with validation.xlsx 14 by 17	
Included	[1-14] [4 6 17-18 20-21 27-28 31-32 49 57-58 60 62 70 78]	
Preprocessing	Autoscale	
Y-block	y 14 by 2	
Included	[1-14] [1-2]	
Preprocessing	Autoscale	
Num. LVs	2	

Parameter	Setting
Population size	64
Window width	1
% Initial terms	30
Target as % of variables	0-30
Penalty slope	0.01
Max generations	200
% at convergence	50
Mutation rate	0.005
Crossover	Double
Regression choice	PLS
#LVs	14
Cross-validation parameters	Contiguous
# of splits	7
# of iterations	5
Replicate runs	2

Table S6. Parameters for genetic algorithm used for feature selection within oPLS-DA model.

Table S7. Description of challenges observed for features with both CCS and MS/MS data which could not complete the candidate structure filtering workflow.

Fraction	Polarity	RT (min)	Molecular Weight	Challenge
Non-polar	+ive	4.379	745.644	Insufficient training data for adduct
Non-polar	+ive	5.189	773.675	Insufficient training data for adduct
Non-polar	-ive	5.702	1518.204	CCS rollover
Non-polar	-ive	3.341	1447.011	Insufficient training data for adduct
Polar	+ive	8.004	196.046	No candidate structures from MS/MS
Polar	+ive	9.025	395.098	Insufficient training data for adduct
Polar	+ive	7.822	514.135	Insufficient training data for adduct
Polar	+ive	4.190	425.226	Insufficient training data for adduct
Non-Polar	-ive	6.296	641.596	No candidate structures from MS/MS
Non-Polar	-ive	2.971	649.469	Poor arrival time assignment
Non-Polar	-ive	2.965	699.484	Poor arrival time assignment
Non-Polar	-ive	6.781	669.628	Poor arrival time assignment
Polar	+ive	8.298	500.119	Poor arrival time assignment
Polar	-ive	6.560	342.071	Insufficient training data for adduct
Polar	-ive	2.625	215.094	No candidate structures from MS/MS