

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

BMJ Open

Protocol for a multicentre cross-sectional, longitudinal study in rheumatoid arthritis and Parkinson's disease patients analysing the relation between the gut microbiome, fasting and immune status (ExpoBiome)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071380
Article Type:	Protocol
Date Submitted by the Author:	23-Dec-2022
Complete List of Authors:	Hansen, Bérénice; LCSB Laczny, Cédric C.; LCSB Aho, Velma T.E.; LCSB Frachet-Bour, Audrey; LCSB Habier, Janine; LCSB Ostaszewski, Marek; LCSB Michalsen, Andreas; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch, Department of Internal and Integrative Medicine Hanslian, Etienne; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Wannsee Branch Koppold-Liebscher, Daniela; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Hartmann, Anika; Charité Universitätsmedizin Berlin, Institute of Social Medicine, Epidemiology and Health Economics; Charité Universitätsmedizin Berlin, Department of Dermatology, Venereology and Allergology Steckhan, Nico; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; University of Potsdam, Digital Health - Connected Healthcare, Hasso Plattner Institute Mollenhauer, Brit; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH Schade, Sebastian; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH, Roomp, Kirsten; LCSB Schneider, Jochen; LCSB; Saarland University Hospital and Saarland University Faculty of Medicine, Department of Internal Medicine and Psychiatry Wilmes, Paul; LCSB; University of Luxembourg, Department of Life Sciences and Medicine
Keywords:	IMMUNOLOGY, Rheumatology < INTERNAL MEDICINE, MICROBIOLOGY, Parkinson-s disease < NEUROLOGY, NUTRITION & DIETETICS, Clinical trials < THERAPEUTICS

1	
2	
3 4	
5	SCHOLAR ONE [™]
6	Manuacrinta
7	Manuscripts
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
23	
24 25	
26	
27	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54	
55	
56 57	
57	
59	
60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5	1	Protocol for a multicentre cross-sectional, longitudinal study in
6 7	2	rheumatoid arthritis and Parkinson's disease patients analysing the
8 9	3	relation between the gut microbiome, fasting and immune status
10 11 12	4	(ExpoBiome)
13	5	
14	6	Bérénice Hansen ¹ , Cédric C. Laczny ¹ , Velma T.E. Aho ¹ , Audrey Frachet-Bour ¹ , Janine Habier ¹ , Marek
15	7	Ostaszewski ¹ , Andreas Michalsen ^{4,5} , Etienne Hanslian ^{4,5} , Daniela A. Koppold ^{4,5,8} , Anika Hartmann ^{4,10} ,
16	8	Nico Steckhan ^{4,9} , Brit Mollenhauer ^{6,7} , Sebastian Schade ^{6,7} , Kirsten Roomp ¹ , Jochen G. Schneider ^{1,3+} ,
17	9	Paul Wilmes ^{1,2+}
18	10	
19	11	¹ Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts-
20	12	Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
21	13	Fourneaux, L-4502 Escir-sur-Alzette, Euxembourg
22	14	² Department of Life Sciences and Medicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362
23	15	Esch-sur-Alzette, Luxembourg
24	16	Esch-sul-Alzette, Luxembourg
25	17	³ Department of Internal Medicine and Psychiatry, Saarland University Medical Center, D- 66421 Homburg Saar,
26	18	Germany
27	19	
28	20	⁴ Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin,
29	21	corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
30	22	corporate member of there oniversitat bernin, numbolat-oniversitat za bernin, and bernin institute of health
31	23	⁵ Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Germany
32	24	Department of internal and integrative medicine, inimalitier hospital benin, definally
33	25	⁶ Paracelsus-Elena-Klinik, Kassel, Germany
34	26	
35	27	⁷ University Medical Center Göttingen, Germany
36	28	
37	29	⁸ Department of Pediatrics, Division of Oncology and Hematology, Charité – Universitätsmedizin Berlin,
38	30	Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health,
39	31	Berlin, Germany
40	32	
41 42	33	⁹ Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
42 43	34	
43	35	¹⁰ Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate
45	36	Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
46	37	
47	38	*contributed equally
48	39	
49	40	*Correspondence to:
50	41	·
51	42	Jochen Schneider (jochen.schneider@uni.lu)
52	43	Paul Wilmes (paul.wilmes@uni.lu)
53	44	
54	45	Luxembourg Centre for Systems Biomedicine,
55	46	University of Luxembourg, Campus Belval,
56	47	7, avenue des Hauts-Fourneaux,
57	48	L-4362 Esch-sur-Alzette, Luxembourg
58	49	
59	50	Word count: 4143
60		

Abstract

Introduction

Chronic inflammatory diseases such as rheumatoid arthritis (RA) and neurodegenerative disorders like Parkinson's disease (PD) have recently been associated with a decreased diversity in the gut microbiome, emerging as key driver of various diseases. The specific interactions between gut-borne microorganisms and host pathophysiology remain largely unclear so far. The microbiome can be modulated by interventions comprising modulated nutrition and food intake.

- The aim of our clinical study is to examine (1) the effects of prolonged fasting and time-
- restricted eating (TRE) on the outcome parameters and the immunophenotypes of RA and
- PD with (2) special consideration of microbial taxa and molecules associated with the
- changes expected in (1) and (3) to identify factors that impact the disease course and
- treatment by in depth screening of microorganisms and molecules in personalised HuMiX
- gut-on-chip models, ideally to find novel targets for anti-inflammatory therapy.

Methods and Analysis

This trial is an open-label, multicentre, controlled clinical trial consisting of a cross-sectional and a longitudinal study. A total of 180 patients is recruited. For the cross-sectional study, patients with PD, patients with RA and healthy controls are recruited at two different, specialized clinical sites. For the longitudinal part, patients with PD and RA undergo 5-7 days of prolonged fasting (PF) followed by TRE (16:8) for a period of 12 months. One baseline visit takes place before the PF intervention and 10 follow-up visits will follow over a period of 12 months.

Ethics and dissemination

Ethical approval was obtained to plan and conduct the trial from the institutional review board of the Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of the University of Luxembourg (ERP 21-001-A ExpoBiome). The results of this study will be disseminated through peer-reviewed publications and scientific presentations.

Trial registration number at clinicaltrials.gov:

- NCT04847011

Key words: Microbiome, fasting therapy, intermittent fasting, time restricted eating, chronic disease, rheumatoid arthritis, Parkinson's disease, nutrition, chronic diseases, ExpoBiome, inflammation, gut on a chip, HuMiX, immunophenotype

91 Strengths and limitations of the study

- The participants of the longitudinal study will be closely monitored for 12 months and routine blood parameters as well as anthropometric data and questionnaires will be precisely documented
- This study will identify novel microbiome-derived common and disease-associated molecules involved in immune system modulation in two major chronic diseases: RA and PD.
- This study aims at also identifying novel targeted pathways to control chronic inflammatory conditions in the future
- A limitation is the heterogeneity of the cohorts regarding age and sex, which is due to the prevalence of the diseases: RA is more common in women, while PD is more common in men and has a later disease onset.
 - A bias exists in choosing RA and PD as chronic disorders to study immunophenotypes although generalisable results are targeted

106 Introduction (1018)

The human microbiome is emerging as a key driver of various diseases through its complex of distinct yet connected biomolecules (referred to as the "expositome")[1, 2]. The expositome is comprised of a diverse set of nucleic acids, polypeptides and metabolites which, in the gut alone, are present in substantial concentrations[1]. However, the specific interactions between gut-borne microorganisms and host (patho)physiology remain largely unknown. Although host genetics shape the composition of the gut microbiome, the latter is particularly influenced by non-genetic factors such as lifestyle and diet[3, 4]. Therefore, the microbiome is a plausible target to modify health outcomes.

38 116

Individuals suffering from chronic diseases, including autoimmune, metabolic, and neurodegenerative diseases as well as cancer, often present alterations from a gut microbiome composition associated with health. These shifts are typically characterised by an overgrowth of one or several microbial species with likely adverse effects including pathobionts, as well as a decrease in beneficial taxa[5]. Such imbalances are referred to as dysbiosis. Although structural microbiome changes are clearly detectable, the mechanistic or functional consequences of dysbiosis are still largely unknown. They may, however, result in dysregulated interactions with the immune system[6]. Considering the intricacy of the immune system, the question arises whether the observed microbiome changes are cause or consequence of disease. This implies that, in addition to the genetic predisposition of the host, the gut microbiome needs to be considered as a potential pathogenic factor or major driver in disease onset and course[3, 4].

54 129

RA and PD are two specific examples representing dysregulated microbiome-immune system interactions [7, 8]. RA is a multifactorial, chronic and systemic autoimmune disease, primarily affecting the lining of the synovial joints with a higher risk and younger age for disease onset in women and a global prevalence of 1%[9, 10]. The exact disease pathogenesis is still unclear and no cure for RA currently exists. In addition to the common local articular symptoms of

RA, systemic comorbidities can affect the vasculature, metabolism and bones[11]. Besides various environmental risk factors e.g. smoking and a Western diet, the host microbiome is associated with the pathophysiology of the disease[12]. The diversity of the gut microbiome has been reported to be decreased in individuals with RA, compared with the general population, and is correlated with disease duration and autoantibody levels[13]. Studies in murine models also report that autoimmune arthritis is strongly attenuated under germ-free conditions[14]. The introduction of specific bacteria, e.g. segmented filamentous bacteria, into germ-free animals or oral infection with Porphyromonas gingivalis drive autoimmune arthritis through activation of T helper cells[14]. Several different taxa, including Prevotella copri, Lactobacillus spp. and Colinsella spp. are enriched in the gut microbiome of patients with RA and correlate positively with disease markers e.g. immunoglobulins IgA and IgG, while other taxa like Haemophilus spp. and Faecalibacterium spp. are typically found at lower abundances in patients with RA compared to healthy individuals [13, 15, 16]. Alterations of the gut microbiome may therefore have an important impact on RA pathophysiology[12].

PD affects 0.4-2% of the population above 65 years worldwide and is the second most common progressive neurodegenerative disease with men being 1.5 times more likely to be affected than women[17]. The cardinal symptoms are motor deficiencies such as tremor and rigidity, but also include a wide range of non-motor symptoms, such as hyposmia, depression, insomnia or cognitive impairment, severely impacting patients' quality of life[18]. Aggregations of the protein α -synuclein in the dopaminergic substantia nigra represent the main neuropathological manifestations[19]. Recent literature suggests that neuroinflammation plays a key role in early phases of PD-like neurodegeneration, with microglia as the main cellular effectors[20]. Dysbiosis of the gut microbiome has been associated with the characteristic motor deficits and pathophysiologic changes in the enteric and central nervous systems in animal studies. Increased relative abundances of the genera Akkermansia, Bifidobacterium, Lactobacillus, and Methanobrevibacter and decreased abundances in Faecalibacterium and Roseburia have been reported[21, 22]. The PD-associated loss of dopaminergic neurons involves mechanisms of inflammatory and autoimmune responses. The majority of patients with PD suffer from gastrointestinal symptoms, e.g. constipation and irritable bowel syndrome (IBS) -like symptoms[23]. Recently it has been suggested that the gut-brain axis, e.g. by-products produced by the gut microbiome, may contribute to the production of α -synuclein aggregates in the enteric nervous system[24]. In addition, increased intestinal permeability[25] and enteric inflammation occur in PD and substantiate a role of peripheral inflammation in the initiation and the progression of the disease[26].

One factor with known major impact on the gut microbiome and on chronic diseases is diet[7]. Dietary approaches, including fasting, have been used as therapeutic interventions at least since the 5th century BCE[27, 28]. However, the available evidence from robust comparable clinical studies is lacking. While PF of 7–10 days has been associated with improvements in RA[29, 30], the mechanism behind the decrease in inflammatory processes during caloric deprivation remains unclear. The improvements can typically only be maintained for a limited period of time, and the symptoms can reappear after reintroduction of the patients' standard diet. In mouse models of PD, intermittent fasting (IF) has led to several improvements including decreased excitotoxicity, reduced neurodegeneration and protection against autonomic dysfunction, motor and cognitive decline[31].

IF and PF may have potent immunomodulatory effects which are partially mediated by the gut microbiome and the fasting induced alterations of the latter[32]. These microbial shifts include upregulation of Akkermansia muciniphila, Bacteroides fragilis, other Bacteroides spp., Proteobacteria, and butyric acid producing Lachnospiraceae, but also Odoribacter, which is negatively associated with blood pressure[33, 34]. Interestingly, an overall decrease of the Firmicutes/Bacteroidetes ratio could be observed, a high ratio is commonly associated with several pathologies, including RA [35].

To our knowledge no clinical trials have been investigating the connection between IF or PF and PD in humans so far[31]. Our study aims to elucidate the causal relationship between the gut microbiome and the immune system. To do so, we will use analyses of the molecular basis of human-microbiome interactions enabled by high throughput methodologies such as the combination of metagenomics, metatranscriptomics and metaproteomics. Moreover, we are aiming at identifying new genes, proteins, metabolites and host pathways facilitating the development of novel diagnostic and therapeutic tools[36, 37].

Methods and Analysis (2256)

Study objectives

The first objective of the study is to define specific gut microbiome-derived molecules in RA and PD, compared to healthy individuals, and relate this information to the immunophenotypes of the individuals. The second objective is to identify and track common and disease-specific molecular signatures to predict the outcome of a gut microbiome-targeted therapeutic intervention, here fasting, on inflammation-driven symptoms in RA and PD. The third objective of the study is to identify and validate microbiome-derived effector molecules which downregulate pro-inflammatory innate and adaptive immune pathways.

Study design

The ExpoBiome cohort consists of 180 adult individuals, meeting the exclusion and inclusion criteria (Table 1), for the cross-sectional study (objectives 1 and 3) and 60 adult individuals for the longitudinal study (objectives 2 and 3). There are five different arms in total: (1) RA – cross-sectional arm [60 patients], (2) PD – cross-sectional arm [60 patients], and (3) healthy controls – cross-sectional arm [60 patients], (4) RA – longitudinal arm [30 patients], (5) PD – longitudinal arm [30 patients] (Error! Reference source not found.).

- At the first visit (T0), patients answer several questionnaires, and blood, urine, saliva and stool samples are obtained (Table 2).
- The longitudinal arms (1) and (2) undergo a 5–7-day PF with a dietary energy supply of max. 350-400 kcal per day with vegetable or grain broths as well as fresh vegetable juices[28, 33]. After the PF, the longitudinal arms follow a dietary regimen including the concept of TRE for a period of 12 months following the 16:8 pattern[38]. This means that food intake is allowed ad libitum for 8 h, followed by 16 h of fasting where no food should be consumed. The intake of non-caloric beverages, e.g. water, unsweetened tea or coffee is, however, allowed. The

participants attend one follow-up visit (T2) during the PF and 9 follow-up visits during the 12
months of TRE (Error! Reference source not found.).

7 228 Patient and Public Involvement

Feedback of patients during former clinical trials at the study centre in Berlin was integrated
 in the planning and design of the fasting intervention of this study. Patients are not involved
 in the conduct, reporting, or dissemination plans of this research.

13 232

¹⁴ 233 **Recruitment and randomisation**

Patients are recruited by the specialised sites via different sources, e.g. by direct referral from either a physician at the Immanuel Hospital Berlin and the outpatient department of the Institute of Social Medicine, Epidemiology and Health Economics at Charité-Universitätsmedizin Berlin, or the Paracelsus-Elena Clinic in Kassel, or by non-personal advertising strategies (e.g. flyers or social media).

Participants meeting all the inclusion and no exclusion criteria (Table 1) are assigned to their respective groups (RA, PD or healthy control) (Error! Reference source not found.) for the cross-sectional study after written informed consent. Half of the patients from the RA group and half of the patients from the PD group is selected to take part in the longitudinal part of the study, including the fasting intervention according to their availability for all 11 visits and their willingness to follow TRE over 12 months. This study is an open-label trial, as blinding is not feasible in fasting interventions.

³⁰ 31 246

Table 1: Inclusion and exclusion criteria

2		· · · · · · · · · · · · · · · · · · ·	
3 4		consent to specimen collection and	start of novel therapy with disease-
5		specimen use	modifying anti-rheumatic drugs
6			pregnancy or breastfeeding women
7		•	contraindication for additional blood
8			
9			draws (e.g. haemoglobin <10)
10			BMI < 18.5
11		•	Psychiatric illness that limits
12			understanding of the examination
13 14			protocol (unable to consent)
15	248		
16 17	249	Fasting dietary counselling	
18	250	The fasting group is closely monitored by nutritionist	s trained in fasting therapy, backed up
19	251	by physicians experienced in fasting, from the Charit	
20	252	Paracelsus-Elena Clinic to ensure a uniform implement	tation of the fasting guidelines and the
21	253	well-being of the study participants. The monitoring of	
22 23	254	meetings which held individually or in group settings.	•
23 24	255	T2 during the fasting week as well as a group meeting	
25	256	to the TRE phase take place. Group sessions are stand	_
26			
27	257	be discussed during the group meetings with only min	
28	258	the PD and RA groups. All longitudinal participant	s receive a study-specific script with
29	259	information on fasting procedures.	
30 31	260		
32	200		
33	261	Medication	
34	262	The medical treatments of the patients are monitored	and documented with every clinical
35	263	visit. The fasting intervention might necessitate temp	
36	264	medications e.g. anti-diabetic and anti-hypertensive c	
37	265	medications e.g. anti-diabetic and anti-hypertensive c	irugs [20].
38 39	205		
40	266	Data collection	
41	267	Sample and data collection is performed at the two clir	nical sites, Charité – Universitätsmedizin
42	268	Berlin and Paracelsus-Elena Clinic (Table 2).	
43 44	269		
45	270	Table 2: Sampling procedures.	
46			
47		a) Biochemical samples and p	rocedures
48		Blood (123 mL at T0, 23 mL at T2-	T11)
49 50		Stool collection (2 mL at T0 and T3	
51		Saliva collection (3.5 mL at T0-T11	·
52 53		· · · · · · · · · · · · · · · · · · ·	·
54	274	Midstream urine (50 mL at T0 -T11)
55	271		
56 57		b) Questionnaires	
58 50		Disease specific	
59 60		PD:	

2		
3 4		Disease Activity Score (DAS-28) [39]
5		 Parkinson's Disease Sleep Scale-2 (PDSS-2)
6 7		[40]
8		 Parkinson's Disease Questionnaire-39 (PDQ-
9 10		39)[41]
11		Simplified Disease Index Score (SDAI) [42]
12 13		 Funktionsfragebogen Hannover (FFbH-R) [43]
14		 Movement Disorder Society Unified PD Rating
15 16		
17		Scale (MDS-UPDRS)[44]
18 19		Non-Motor Symptoms Questionnaire
20		(NMSQ)[45]
21 22		Non-Motor Symptoms Scale (NMSS)[46]
23		RA:
24 25		Disease Activity Score (DAS-28) [42]
26 27		 Non-Motor Symptoms Questionnaire (NMSQ)
27 28		[45]
29 30		 Funktionsfragebogen Hannover (FFbH-R) [43]
31		Dietary behaviour and lifestyle
32 33		 Fasting experience, expectation, and
34		intervention
35 36		Lifestyle
37		24H-Food-recall
38 39		 Food Frequency Questionnaire (FFQ)
40		General health and well-being
41 42		Health Assessment Questionnaire (HAQ)[47]
43		Bristol Stool Scale[48]
44 45		 Quality of Life guestionnaire (WHO-5)[49]
46		 Guality of Life question maile (WHO-5)[49] Hospital Anxiety and Depression Scale
47 48		
49		(HADS)[50]
50 51		Profile of Mood States[51]
52	272	
53 54	273	
55 56	274	Anthropometric data and questionnaires
56 57	275 276	The electronic data capture system REDCap[52], a secure web-based application, is use
58 59	276 277	record all individual specific data. All data is stored on a secure server infrastructure at host institution in Luxembourg. Weight, height, body mass index (BMI), heart rate and b
59 60	278	pressure in sitting and standing position as well as waist-hip-ratio is determined at every

Dietary behaviour, sociodemographic measurements (age, sex, education level, employment status, marital status), family history, current and previous illness and co-morbidities, and current medications, as well as disease-specific data, questionnaires about the well-being of the patients and data on the behavioural factors are collected at baseline, T6 (week 3), T9 (month 6) and T11 (month 12) (Table 2). Questionnaires (24h-Food Recall, Bristol Stool Scale) are answered at all visits by the study participants. Data storage, analysis and exchange are done only in pseudonymised fashion. The nutritional data is analysed using the Nutrilog 3.20 software (Nutrilog SAS, Marans).

1415 288 Blood samples and parameters

Blood samples are collected at each visit, and immediately used for peripheral blood mononuclear cell (PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at -80°C (T0-T11). A clinical standard laboratory report is generated after every visit for each study participant (Table 3). In addition to the routine blood parameters, anti-citrullinated protein antibody (ACPA), zonulin, fatty-acid binding protein 2 (FABP2), and calprotectin are measured. Aliquots are securely stored to account for novel observations qnd testing of hypotheses.

297 Table 3: Routine blood parameters measured at each timepoint (T0 for cross-sectional study, T0-T11 for longitudinal study)

Haematology - EDTA-	Clinical Chemistry - Serum
blood	
Basophils, %	Albumin
Basophils, abs.	ALT, 37°C
Eosinophils, %	Alkaline Phosphatase, 37°C
Eosinophils, abs.	AST, 37°C
Erythrocytes	Bilirubin, total
Haematocrit	Cholinesterase
Haemoglobin	Cholesterol
HbA1c	Creatinine
Leucocytes	hs-CRP
Lymphocytes, %	Glucose, serum
Lymphocytes, abs.	Gamma-GT, 37°C
МСН	HDL-Cholesterol
MCHC	LDL-Cholesterol
MCV	Potassium
Monocytes, %	Sodium
Monocytes, abs.	Total Protein
Neutrophils, %	Triglycerides

1 2							
3 4			Neutrophils, abs.	Uric Acid	-		
5			Platelets	Urea/BUN	-		
6 7			RDW	Proteins - Serum			
8 9			Reticulocytes	Rheumatoid factor H 35.9			
10			Reticulocytes	Hormones - Serum			
11 12			Reticulocytes, abs.	Insulin	•		
13 14				TSH (basal)	-		
15	298				-		
16 17	299	·	l saliva samples				
18 19	300	•		t each visit, except for stool sam			
20	301 302			at -80°C. Stool characteristics an present the main sample type			
21 22	303			the gut. Also, as the gut micro	-		
23	304	diurnal fluctuation	ons, the stool samples are,	as far as possible, collected in t	he morning.		
24 25	305						
26 27	306	Methods appli	ed to samples				
28	307						
29 30	308	Biomolecular extractions					
31	309 310	The collected stool samples undergo a biomolecular extraction procedure to allow isolation of concomitant DNA, RNA, proteins, peptides and metabolites from single, unique faecal					
32 33	311			overed following centrifugation			
34 35	312	•		oid cell lysis. Nucleic acids are	• •		
36	313 314			solated by silica-column-based rm, ensuring a higher level of st			
37 38	315	reproducibility[2	•	rin, ensuring a nighter lever of st			
39	316						
40 41	317	Coupled metag	enomic and metatranscri	iptomic analyses			
42 43	318		• • • •	internal standards are intro			
44	319 320	•		ontamination-free metagenor d, processed and analysed usi			
45 46	321			incorporates pre-processing,			
47	322	•		otide polymorphism calling, dat			
48 49	323 324	•	•	and function in a fully repro 17 data is specifically screened			
50 51	324 325			nic properties[56]. The extracel			
52	326	are linked to spec	cific microbial populations l	based on the intracellular metag	genomic data [57].		
53 54	327			d against genomes of food con			
55	328 329	•		al population sizes to determin in stool to the extracellular			
56 57	330	complements[59	• •		2 0.00 1000		
58 59	331						
60							

Metaproteomics

For the metaproteomic analyses, filtration is used to separate extracellular peptides from the obtained (poly)peptides. The resulting smaller fractions are then desalted and analysed without proteolytic digestion via liquid chromatography (LC) and mass spectrometry (MS) on an EasyNano-LC coupled online to a QExactive-Plus mass spectrometer (ThermoScientific, USA). The identification of ribosomal peptides is done with an integrated catalogue of MG and MT data, while the non-ribosomal peptides are identified using different tools, i.e., MyriMatch, DirecTag as well as CycloBranch[36, 60, 61]. The metaproteomic data also allows identification of extracellular (poly)peptides with possible pathogenic functions including protein misfolding and molecular mimicry[62, 63].

Metabolomics

Metabolomic data is analysed using a combination of targeted and untargeted approaches [54, 58, 64]. This highlights the major metabolite classes produced by the gut microbiome with an effect on human physiology including organic acids, short-chain fatty acids, lipids, branched-chain fatty acids, branched-chain amino acids, vitamins, bile acids and neurotransmitters. Besides external compound calibration series for quantification and quality control samples to ensure data normalisation and data acquisition quality assessment, the metabolite extraction fluid is fortified with multiple internal standards to improve method precision and accuracy[65, 66]. The data is compared to in-house databases and public mass spectral libraries to identify known metabolites. The metabolomic data complements the metagenomic and metatranscriptomic data and thus allows further establishments of conclusive links to metabolic properties in the gut.

Deep immune profiling

Deep immune profiling is done using a recently established and optimised panel of metal-labelled antibodies together with cytometry coupled to mass spectrometry (MS), the Maxpar Direct Immune Profiling System (MDIPA). This approach allows the simultaneous quantification of 38 parameters on single cells. Whole blood is stained with the MDIPA kit and stabilised with Proteomic stabiliser Prot-1 (501351694, Smart Tube Inc., Las Vegas) before storage at -80°C. The quantified immune cells included in the MDIPA panel are CD3+, CD4+, CD8+, monocytes, dendritic cells, granulocytes, MAIT, T cells, NK and B cells[67]. Cytokine expression profiles is analysed on blood plasma using the Human Luminex performance Cytokine Panel (R&D Systems Europe, Abingdon), measuring CCL3, CCL4, CCL5, GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-18, IL-21, IL-27, IL-33, IFN-β, Galectin-1, IFN- γ and TNF- α [56].

Gut-on-a-chip models

PBMCs isolated from T0 blood samples are co-cultured with gut-derived microbes under physiologically representative conditions using the gut-on-a-chip model HuMiX[68]. This model of the human gastrointestinal interface allows the investigation of the interactions between immune, epithelial and bacterial cells and specifically the response to fasting in personalised in vitro models.

Page 13 of 27		BMJ Open
1 2 3 4 5	375	The Funchieres Man
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	376 377 378 379 380 381 382 383 384 385	The Expobiome Map The Expobiome Map (https://expobiome.lcsb.uni.lu) illustrates the diverse complex of microbial immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this "expobiome" and human immune pathways are encoded in the context of chronic diseases[1]. The ExpoBiome Map is visualised using the MINERVA Platform[69]. Clicking on different elements on the map reveals factors they affect and are affected by, allowing an easier navigation through the complex relationships between individual microbiome components in relation to human disease. The multi-omics data generated in the present study will be integrated with the Map.
	386 387 388 389 390 391 392	Exploratory analysis of novel host-microbiome interactions Unknown non-ribosomal peptides or metabolite features are associated through correlation with transcripts, proteins and metabolites. Extracellular DNA fragments, as well as transcripts, proteins and ribosomal peptides are linked to their genomic context by using IMP[36]. The data generated by the project will be connected and collated to existing, publicly available datasets.
	393	Outcome parameters
	394 395 396 397 398	Primary Outcome The primary endpoint of the study is the characterisation of the gut microbiome. The evaluation includes both between-group and within-group differences in the longitudinal study arms with the fasting intervention.
36 37 38 39 40 41 42 43	399 400 401 402 403 404	Secondary Outcome Measures Secondary outcomes include the identification of common and disease-specific molecular signatures and the characterisation of microbiome-derived effector molecules impacting the innate and adaptive immune pathways. Furthermore, several additional parameters mentioned in <i>Anthropometric data and questionnaires</i> are assessed over a period of 12 months.

45 Sample size and power calculation 406 46

47 407 A power calculation using pilot metatranscriptomic data based on faecal extracellular RNA 48 408 samples was performed to determine the number of subjects to be recruited for the 49 409 ExpoBiome project. The obtained relative abundances of genera were used for the calculation 50 410 of the required sample size per group. The power calculation was based on the algorithm as 51 52 411 described by Tusher, Tibshirani, and Chu[70]. To achieve a power of 90% (at α = 0.05), a total 53 412 of 50 individuals per group (RA, PD, healthy controls) must be analysed. Considering any 54 possible dropouts, 20% additional subjects are recruited, resulting in a total number of 180 413 55 414 individuals, i.e., 60 per group. 56

57 58 415

59

44

405

Adverse events

There are no major risks expected for participants. Minor common adverse effects of PF might include headaches, nausea, insomnia, back pain, dyspepsia and fatigue[71]. Any occurring adverse events are recorded at each visit in REDCap[52]. Serious adverse events are communicated to the study coordinator and principal investigator within 24 h of their report.

Data management, monitoring, analysis and evaluation of data

The study participants receive a study ID (pseudonym) which is used for all collected data. Self-administered questionnaires are directly recorded in REDCap. Participant files are kept for at least 10 years at the respective clinical sites.

Weekly meetings between the study team, the different clinical partners and the principal investigator, ensure a close monitoring of the data. Any occurring adverse events or other issues are thus handled immediately.

Different statistical tests are performed according to the nature of the data. A premature termination of the study is not envisaged; therefore, no interim analysis is done. Different correlation measures are applied, including Spearman correlation, mutual information on discretised data, distance correlation, maximum information criterion, local similarity analysis and the bioenv approach. Comparison across all omic levels allows identification of common and disease-specific signatures. Multivariate machine learning is used to link different data features to observed patterns.

The longitudinal part of the study continues for a period of 12 months. After finalisation of this period, there is no follow-up of the participants. Interesting findings will be further validated using the existing sample set and analyses may be performed on additionally collected samples.

Discussion (869)

- The impact and importance of the gut microbiome on human physiology and its potential
- modifications by nutrition and dietary patterns, have been underestimated for
- centuries[72].

More recently, physical as well as mental well-being has been related to the gut microbiome composition and new associations to human health are emerging almost every day. The gut microbiome is responsible for the fermentation of indigestible food components, the synthesis of numerous metabolites including vitamins, the removal of toxic compounds and pathogens, the maintenance and strengthening of the intestinal barrier and immune system function amongst others[21].

Globally we observe a gradual shift to a Western diet, typically low in micronutrients, mono-and polyunsaturated fats and linoleic acid but high in saturated fat, refined carbohydrates, salt and processed food. This shift is associated with an emergence of non-communicable diseases (NCDs) such as obesity, cardiovascular diseases, type 2 diabetes mellitus, cancer, liver and gastrointestinal diseases, bone and joint diseases, and degenerative diseases of the brain[73]. Not surprisingly, obesity and diabetes were some of the first diseases to be linked to the gut microbiome composition [74]. Psychological disorders like anxiety and depression have also been associated with the gut microbiome[75], emphasizing the importance of the bacterial community in various facets of health.

Fasting has been used as an intervention to promote health or to heal diseases since the beginning of civilisations and has spread independently among different regions, cultures and religions worldwide[76]. It is believed to have already been established as a treatment method by Hippocrates in the 5th century BCE and has been used ever since by numerous medical schools to treat acute and chronic diseases[27, 77]. Various practices of caloric restriction through fasting have repeatedly shown remarkable health benefits[78, 79]. Maifeld et al. for instance found that a 5-day fast followed by a modified Dietary Approach to Stop Hypertension (DASH), with additional emphasis on plant-based and Mediterranean diets, reduced systolic blood pressure, BMI, and the need for antihypertensive medications at three months post intervention compared to DASH alone. Bacterial taxa and genes associated with short-chain fatty acid production were altered in the gut, e.g. many Clostridial Firmicutes shifted significantly in abundance, with an initial decrease in butyrate producers such as Faecalibacterium prausnitzii [34].

Furthermore, Choi et al. demonstrated that cycles of a fasting-mimicking diet suppress autoimmunity and stimulate remyelination via oligodendrocyte regeneration in a murine experimental autoimmune encephalomyelitis (EAE) model[80]. Jordan et al. described a reduction in monocyte metabolic and inflammatory activity after a short-term fast and conclude that fasting attenuates chronic inflammatory diseases without compromising monocyte capacity for mobilisation during acute infectious inflammation and tissue repair[81].

Diet as a tool to prevent disease, considering both the quantity and the quality of food, remains underappreciated in routine clinical practice as well as in research. Reasons may include missing standardised therapeutic protocols, the interindividual variability in the response to fasting, lack of knowledge about possible adverse effects, and difficulties in the interpretation of underlying mechanisms seen in clinical trials, but also in the comparably low potential for achieving economic revenue or scientific impact[8].

Modern experimental approaches and computational integration allow a multi-layer analysis of digestive processes in low caloric settings including the gut microbiome[58]. These technological developments also permit a closer investigation of the link between the immune system and severe caloric restriction.

Fasting-induced changes in the gut microbiome are associated with host energy metabolism[33], with a shift in the gut microbiome after as little as 24h[72]. Although the changes in gut microbiome composition induced by a 10-day PF of healthy individuals return to baseline after 3 months, the resilience of the initial gut microbiome composition might not be the same in unhealthy individuals[33]. Currently available knowledge is insufficient to define a healthy gut microbiome due to high interindividual variability. However, several characteristics such as increased diversity in microbial taxa and their gene richness, a high amount of butyrate producers and resilience of the microbial community are often considered as beneficial [82]. Thus, a dysbiotic gut microbiome is likely to be less resilient and therefore more susceptible to dietary interventions, enabling a possible reversion to a healthy status[72].

BMJ Open

A potential mechanism underlying the observed beneficial effects induced by dietary interventions might be a direct gut microbiome-immune system interaction by pattern recognition. The microbiome can regulate the intestinal innate immune system by modulating toll-like receptor (TLR) expression on immunosensor cell surface through microbe-associated molecular patterns (MAMPs), which can consequently trigger cytokine production and up-regulation of molecules on antigen presenting cells, leading to activation of T cells[83]. Therefore, a change in gut microbiome composition can lead to different outcomes in immune signaling pathways and either favor or suppress inflammation and autoimmunity.

The current evidence highlights the immensely important connection between the environment and health, including dietary habits, microbiome and the immune system. Combining the newly generated data of this study with knowledge from disciplines such as nutrigenomics could potentially lead to more extended and deepened utilisation of personalised nutrition. Taking the gut microbiome into account as a key factor in disease for nutritional recommendations might revolutionise the current guidelines and allow substantially more efficient proposals. These approaches might eventually be broadly applicable and constitute an efficient antidote against the multiple burden of malnutrition and over-alimentation and the prominent NCDs.

Trial status

The recruitment for the ExpoBiome study started in April 2021 and is currently ongoing. All study participants should be recruited by the end of 2022.

Acknowledgements

We thank Dr. Catharina Delebinski, Melanie Dell'Oro, Grit Langhans, Ursula Reuß, Maik Schröder and Nadine Sylvester for their support during the study.

Author contributions:

- Study design and protocol: Bérénice Hansen, Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes
- Interventional concept: Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Brit -Mollenhauer, Sebastian Schade, Jochen G. Schneider, Paul Wilmes
- **Procured funding: Paul Wilmes**
 - Statistical planning, sample size calculation and randomisation: Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes
 - Initial draft of the manuscript and coordinated the editing process: Bérénice Hansen -
 - Contributed equally with edits, comments and feedback, read and approved the final -manuscript: all authors

Funding statement: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 863664).

2				
3 4	547	Cor	mpeting interests statement	
5				
6	548	None declared.		
7 8		-		
9	549	Sup	oplements	
10	550	We u	sed the SPIRIT checklist when writing our report[84].	
11 12				
13	551	Ref	erences	
14				
15 16	552 553	1.	Wilmes, P., et al., The gut microbiome molecular complex in human health and	
17	555 554	1.	disease. Cell Host Microbe, 2022. 30 (9): p. 1201-1206.	
18	555	2.	De Saedeleer, B., et al., Systematic characterization of human gut microbiome-	
19	556	۷.	secreted molecules by integrated multi-omics. ISME Communications, 2021. 1 (1): p.	
20 21	557		82.	
22	558	3.	Greenhalgh, K., et al., The human gut microbiome in health: establishment and	
23	559		<i>resilience of microbiota over a lifetime.</i> Environ Microbiol, 2016. 18 (7): p. 2103-16.	
24	560	4.	Hall, A.B., A.C. Tolonen, and R.J. Xavier, Human genetic variation and the gut	
25 26	561		microbiome in disease. Nature Reviews Genetics, 2017. 18(11): p. 690-699.	
27	562	5.	Baldini, F., et al., Parkinson's disease-associated alterations of the gut microbiome	
28	563		predict disease-relevant changes in metabolic functions. BMC Biol, 2020. 18 (1): p. 62.	
29	564	6.	Yoo, J.Y., et al., Gut Microbiota and Immune System Interactions. Microorganisms,	
30 31	565		2020. 8(10).	
32	566	7.	Sonnenburg, J.L. and F. Bäckhed, Diet-microbiota interactions as moderators of	
33	567		<i>human metabolism</i> . Nature, 2016. 535 (7610): p. 56-64.	
34 35	568	8.	Zmora, N., J. Suez, and E. Elinav, You are what you eat: diet, health and the gut	
36	569		<i>microbiota.</i> Nat Rev Gastroenterol Hepatol, 2019. 16 (1): p. 35-56.	
37	570	9.	Guo, Q., et al., Rheumatoid arthritis: pathological mechanisms and modern	
38	571		pharmacologic therapies. Bone Res, 2018. 6: p. 15.	
39 40	572	10.	Healthline, V.L. <i>Rheumatoid Arthritis by the Numbers: Facts, Statistics, and You</i> .	
41	573			
42	574	11.	Scherer, H.U., T. Häupl, and G.R. Burmester, <i>The etiology of rheumatoid arthritis.</i>	
43	575	10	Journal of Autoimmunity, 2020. 110 : p. 102400.	
44 45	576	12.	Bodkhe, R., B. Balakrishnan, and V. Taneja, <i>The role of microbiome in rheumatoid</i>	
46	577 578	13.	<i>arthritis treatment.</i> Ther Adv Musculoskelet Dis, 2019. 11 : p. 1759720x19844632. Chen, J., et al., <i>An expansion of rare lineage intestinal microbes characterizes</i>	
47	578 579	15.	<i>rheumatoid arthritis.</i> Genome Medicine, 2016. 8 (1): p. 43.	
48 49	580	14.	Wu, H.J., et al., <i>Gut-residing segmented filamentous bacteria drive autoimmune</i>	
49 50	581	14.	arthritis via T helper 17 cells. Immunity, 2010. 32 (6): p. 815-27.	
51	582	15.	Scher, J.U., et al., Expansion of intestinal Prevotella copri correlates with enhanced	
52	583	19.	susceptibility to arthritis. eLife, 2013. 2 : p. e01202.	
53 54	584	16.	Zhang, X., et al., The oral and gut microbiomes are perturbed in rheumatoid arthritis	
55	585	_0.	and partly normalized after treatment. Nature Medicine, 2015. 21 (8): p. 895-905.	
56	586	17.	Lubomski, M., et al., Parkinson's disease and the gastrointestinal microbiome. J	
57	587	-	Neurol, 2020. 267 (9): p. 2507-2523.	
58 59	588	18.	Opara, J., et al., <i>Motor assessment in Parkinson</i> 's disease. Ann Agric Environ Med,	
60	589		2017. 24 (3): p. 411-415.	

1 2			
3	590	19.	Types O.B. and A. Storetoin, Enidemialogy of Parkinson's disease, I. Noural Transm
4	590 591	19.	Tysnes, O.B. and A. Storstein, <i>Epidemiology of Parkinson's disease</i> . J Neural Transm (Vienna), 2017. 124 (8): p. 901-905.
5	592	20.	Garcia, P., et al., <i>Neurodegeneration and neuroinflammation are linked, but</i>
6 7	592 593	20.	independent of alpha-synuclein inclusions, in a seeding/spreading mouse model of
8	595 594		Parkinson's disease. Glia, 2022. 70 (5): p. 935-960.
9	594 595	21.	Heintz-Buschart, A. and P. Wilmes, Human Gut Microbiome: Function Matters.
10	595 596	21.	Trends Microbiol, 2018. 26 (7): p. 563-574.
11	590 597	22.	Romano, S., et al., Meta-analysis of the Parkinson's disease gut microbiome suggests
12 13	597 598	22.	
14	598		<i>alterations linked to intestinal inflammation.</i> npj Parkinson's Disease, 2021. 7 (1): p. 27.
15	600	23.	Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's
16	600 601	25.	disease and their connection to gut microbiota. European journal of neurology, 2017.
17 18	601 602		24 (11): p. 1375-1383.
19	602 603	24	
20	603 604	24.	Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in</i>
21		25	Parkinson's Disease. Cell Mol Neurobiol, 2022. 42 (2): p. 315-332.
22	605 606	25.	Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa
23 24	606 607		alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6 (12): p. e28032.
25	607 608	26.	Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i> . Neurobiol Dis, 2013.
26	608 609	20.	
27		27.	50: p. 42-8.
28 29	610 611	27.	Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,,
29 30	612	28.	Accessed 3 October 2022. <u>https://www.britannica.com/topic/fasting</u> .
31	612	20.	Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised
32	613 614		controlled clinical trial. BMJ Open, 2021. 11 (8): p. e047758.
33	615	29.	Hartmann, A.M., et al., To eat or not to eat—an exploratory randomized controlled
34 35	616	29.	trial on fasting and plant-based diet in rheumatoid arthritis (NutriFast-Study).
36	617		Frontiers in Nutrition, 2022. 9 .
37	618	30.	Sköldstam, L., Fasting and vegan diet in rheumatoid arthritis. Scand J Rheumatol,
38	619	30.	1986. 15 (2): p. 219-21.
39 40	620	31.	Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front
40	620 621	51.	Neurol, 2021. 12 : p. 682184.
42	622	32.	Cignarella, F., et al., Intermittent Fasting Confers Protection in CNS Autoimmunity by
43	623	52.	Altering the Gut Microbiota. Cell Metab, 2018. 27 (6): p. 1222-1235.e6.
44 45	624	33.	Mesnage, R., et al., Changes in human gut microbiota composition are linked to the
46	625	55.	energy metabolic switch during 10 d of Buchinger fasting. J Nutr Sci, 2019. 8: p. e36.
47	626	34.	Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and
48	627	51.	body weight in metabolic syndrome patients. Nature Communications, 2021. 12 (1):
49 50	628		p. 1970.
50 51	629	35.	Magne, F., et al., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut
52	630	001	Dysbiosis in Obese Patients? Nutrients, 2020. 12 (5).
53	631	36.	Narayanasamy, S., et al., <i>IMP: a pipeline for reproducible reference-independent</i>
54	632		integrated metagenomic and metatranscriptomic analyses. Genome Biology, 2016.
55 56	633		17 (1): p. 260.
57	634	37.	Wilmes, P., A. Heintz-Buschart, and P.L. Bond, A decade of metaproteomics: where
58	635		we stand and what the future holds. Proteomics, 2015. 15 (20): p. 3409-17.
59			
60			

1			
2 3	626	20	Cabal K at al. Effects of Q hour time restricted feeding on had unight and
4	636 637	38.	Gabel, K., et al., Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging,
5 6	638		2018. 4 (4): p. 345-353.
6 7	639	39.	Wells G, B.J., Teng J, et al, Validation of the 28-joint Disease Activity Score (DAS28)
8	640	001	and European League Against Rheumatism response criteria based on C-reactive
9	641		protein against disease progression in patients with rheumatoid arthritis, and
10 11	642		comparison with the DAS28 based on erythrocyte sedimentation rate. Annals of the
12	643		Rheumatic Diseases 2009. 68 : p. 954-960.
13	644	40.	Trenkwalder, C., et al., Parkinson's disease sleep scalevalidation of the revised
14 15	645		<i>version PDSS-2.</i> Mov Disord, 2011. 26 (4): p. 644-52.
15 16	646	41.	Bushnell, D.M. and M.L. Martin, Quality of life and Parkinson's disease: translation
17	647		and validation of the US Parkinson's Disease Questionnaire (PDQ-39). Qual Life Res,
18	648		1999. 8 (4): p. 345-50.
19 20	649	42.	Smolen, J.S., et al., A simplified disease activity index for rheumatoid arthritis for use
20	650		in clinical practice. Rheumatology (Oxford), 2003. 42(2): p. 244-57.
22	651	43.	Raspe, H.H., Hagedorn, U., Kohlmann, T., & Mattussek, S., Der Funktionsfragebogen
23	652		Hannover (FFbH): Ein Instrument zur Funktionsdiagnostik bei polyartikulären
24 25	653		Gelenkerkrankungen, in Ergebnisse sozialwissenschaftlicher Evaluation eines
26	654		Modellversuchs (pp. 164-182). 1990, Schattauer Verlag.
27	655	44.	Goetz, C.G., et al., Movement Disorder Society-sponsored revision of the Unified
28	656		Parkinson's Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric
29 30	657 (59	4 5	testing plan. Mov Disord, 2007. 22 (1): p. 41-7.
31	658 650	45.	Chaudhuri, K.R., et al., International multicenter pilot study of the first
32	659 660		comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's disease; the NMSQuest study, May Disord, 2006, 21 (7); p. 016–22
33	661	46.	<i>disease: the NMSQuest study.</i> Mov Disord, 2006. 21 (7): p. 916-23. Chaudhuri, K.R., et al., <i>The metric properties of a novel non-motor symptoms scale</i>
34 35	662	40.	for Parkinson's disease: Results from an international pilot study. Mov Disord, 2007.
36	663		22 (13): p. 1901-11.
37	664	47.	Wolfe, F., A brief clinical health assessment instrument clinhag. Arthritis and
38 39	665	47.	Rheumatism, 1989. 32 (4 Suppl): p. S99-S99.
39 40	666	48.	Lewis, S.J. and K.W. Heaton, <i>Stool form scale as a useful guide to intestinal transit</i>
41	667		<i>time.</i> Scand J Gastroenterol, 1997. 32 (9): p. 920-4.
42	668	49.	Topp, C.W., et al., The WHO-5 Well-Being Index: a systematic review of the literature.
43 44	669		Psychother Psychosom, 2015. 84 (3): p. 167-76.
44	670	50.	Zigmond, A.S. and R.P. Snaith, The hospital anxiety and depression scale. Acta
46	671		Psychiatr Scand, 1983. 67(6): p. 361-70.
47	672	51.	McNair DM, L.M., Droppleman LF, Edits Manual for the Profile of Mood States
48 49	673		(Poms). Rev ed San Diego: Educational and Industrial Testing Service, 1992.
50	674	52.	Harris, P.A., et al., Research electronic data capture (REDCap)a metadata-driven
51	675		methodology and workflow process for providing translational research informatics
52	676		<i>support.</i> J Biomed Inform, 2009. 42 (2): p. 377-81.
53 54	677	53.	Wilmes, P., Roume, H., Hiller, K. & Cordes, T., Method and kit for the isolation of
55	678		genomic DNA, RNA, proteins and metabolites from a single biological sample., in
56	679		World Intellectual Property Organization, C.D.R.PG.L. Université Du Luxembourg,
57	680		Editor. 2014: Switzerland.
58 59	681	54.	Roume, H., et al., A biomolecular isolation framework for eco-systems biology. The
60	682		ISME Journal, 2013. 7 (1): p. 110-121.

2			
3	683	55.	Locati, M.D., et al., Improving small RNA-seq by using a synthetic spike-in set for size-
4	684		range quality control together with a set for data normalization. Nucleic Acids Res,
5 6	685		2015. 43 (14): p. e89.
7	686	56.	Wampach, L., et al., Birth mode is associated with earliest strain-conferred gut
8	687	50.	microbiome functions and immunostimulatory potential. Nature Communications,
9	688		2018. 9 (1): p. 5091.
10	689	57.	Albanese, D. and C. Donati, Strain profiling and epidemiology of bacterial species
11 12	690	57.	from metagenomic sequencing. Nature Communications, 2017. 8(1): p. 2260.
12	691	58.	Heintz-Buschart, A., et al., Integrated multi-omics of the human gut microbiome in a
14	692	56.	case study of familial type 1 diabetes. Nature Microbiology, 2016. 2 (1): p. 16180.
15	693	FO	Vandeputte, D., et al., <i>Quantitative microbiome profiling links gut community</i>
16		59.	
17	694	60	variation to microbial load. Nature, 2017. 551 (7681): p. 507-511.
18 19	695	60.	Tang, H., S. Li, and Y. Ye, A Graph-Centric Approach for Metagenome-Guided Peptide
20	696		and Protein Identification in Metaproteomics. PLoS Comput Biol, 2016. 12 (12): p.
21	697		e1005224.
22	698	61.	Tabb, D.L., C.G. Fernando, and M.C. Chambers, MyriMatch: highly accurate tandem
23	699		mass spectral peptide identification by multivariate hypergeometric analysis. J
24 25	700		Proteome Res, 2007. 6(2): p. 654-61.
25 26	701	62.	Heintz-Buschart, A., et al., The nasal and gut microbiome in Parkinson's disease and
27	702		idiopathic rapid eye movement sleep behavior disorder. Mov Disord, 2018. 33 (1): p.
28	703		88-98.
29	704	63.	Chen, S.G., et al., Exposure to the Functional Bacterial Amyloid Protein Curli Enhances
30	705		Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans.
31 32	706		Scientific Reports, 2016. 6 (1): p. 34477.
33	707	64.	Wilmes, P., et al., Metabolome-proteome differentiation coupled to microbial
34	708		<i>divergence.</i> mBio, 2010. 1 (5).
35	709	65.	Kim, D.H., et al., LC-MS-based absolute metabolite quantification: application to
36	710		metabolic flux measurement in trypanosomes. Metabolomics, 2015. 11(6): p. 1721-
37 38	711		1732.
39	712	66.	Lei, Z., D.V. Huhman, and L.W. Sumner, Mass spectrometry strategies in
40	713		<i>metabolomics.</i> J Biol Chem, 2011. 286 (29): p. 25435-42.
41	714	67.	Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective
42	715		longitudinal study. Sci Immunol, 2021. 6 (62).
43 44	716	68.	Shah, P., et al., A microfluidics-based in vitro model of the gastrointestinal human-
45	717		microbe interface. Nature Communications, 2016. 7(1): p. 11535.
46	718	69.	Aho, V.T.E., et al., <i>SnapShot: The Expobiome Map</i> . Cell Host Microbe, 2022. 30 (9): p.
47	719		1340-1340.e1.
48	720	70.	Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to
49 50	721		the ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98 (9): p. 5116-21.
50	722	71.	Finnell, J.S., et al., Is fasting safe? A chart review of adverse events during medically
52	723	/	supervised, water-only fasting. BMC Complementary and Alternative Medicine,
53	724		2018. 18 (1): p. 67.
54	725	72.	Leeming, E.R., et al., Effect of Diet on the Gut Microbiota: Rethinking Intervention
55 56	726	,	Duration. Nutrients, 2019. 11 (12): p. 2862.
56 57	720	73.	Isaza, A., R. Singh, and S. Watanabe, <i>Functional Foods and Nutraceuticals in</i>
58	728	75.	Metabolic and Non-communicable Diseases. 2021.
59	120		אוכנטסוור עווע אטוו-נטוווועווונעטוב טוזבעזבז. 2021.
60			

1									
2									
3 4	729	74.	Duranti, S., et al., Obesity and microbiota: an example of an intricate relationship.						
5	730		Genes Nutr, 2017. 12 : p. 18.						
6	731	75.	Simpson, C.A., et al., The gut microbiota in anxiety and depression - A systematic						
7	732		<i>review.</i> Clin Psychol Rev, 2021. 83 : p. 101943.						
8 9	733	76.	Kerndt, P.R., et al., Fasting: the history, pathophysiology and complications. West J						
10	734		Med, 1982. 137 (5): p. 379-99.						
11	735	77.	Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain						
12	736		syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep,						
13 14	737		2010. 14 (2): p. 80-7.						
14	738	78.	Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health						
16	739		parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349-						
17	740	_	2359.						
18	741	79.	Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus						
19 20	742		monkeys. Nature Communications, 2017. 8(1): p. 14063.						
21	743	80.	Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces						
22	744		Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-						
23	745		2146.						
24 25	746	81.	Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte						
26	747		<i>Pool.</i> Cell, 2019. 178 (5): p. 1102-1114.e17.						
27	748	82.	Dogra, S.K., J. Doré, and S. Damak, Gut Microbiota Resilience: Definition, Link to						
28	749		<i>Health and Strategies for Intervention.</i> Front Microbiol, 2020. 11 : p. 572921.						
29	750	83.	Purchiaroni, F., et al., <i>The role of intestinal microbiota and the immune system</i> . Eur						
30 31	751	~ ~	Rev Med Pharmacol Sci, 2013. 17 (3): p. 323-33.						
32	752	84.	Chan, AW., et al., SPIRIT 2013 explanation and elaboration: guidance for protocols						
33	753		of clinical trials. BMJ : British Medical Journal, 2013. 346 : p. e7586.						
34	754								
35 36									
37	755	Figu	ure Legends						
38		•							
39	756	Figur	e 1. Study design. This figure illustrates the study design with five different arms in						
40 41	757	total,	two of which continue with the longitudinal part of the study. Visits take place at the						
42	758	clinic	clinical sites at each timepoint and include the collection of the displayed samples. This						
43	759	image	e was generated using Biorender software (http://www.biorender.com). T, timepoint;						
44	760	W, w	eek; D, day; M, month.						
45 46									
40 47									

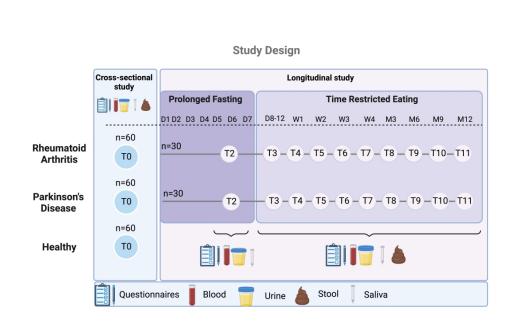


Figure 1. Study design. This figure illustrates the study design with five different arms in total, two of which continue with the longitudinal part of the study. Visits take place at the clinical sites at each timepoint and include the collection of the displayed samples. This image was generated using Biorender software (http://www.biorender.com). T, timepoint; W, week; D, day; M, month.

279x177mm (300 x 300 DPI)

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SPIRITreporting guidelines, and cite them as:

Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 Explanation and Elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586

			Page
		Reporting Item	Number
Administrative information		°Z	
Title	<u>#1</u>	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	<u>#2a</u>	Trial identifier and registry name. If not yet registered, name of intended registry	2
Trial registration: data set	<u>#2b</u>	All items from the World Health Organization Trial Registration Data Set	n/a
Protocol version	<u>#3</u>	Date and version identifier	n/a
Funding	<u>#4</u>	Sources and types of financial, material, and other support	14
Roles and responsibilities: contributorship	<u>#5a</u>	Names, affiliations, and roles of protocol contributors	1
Fo	or peer re	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2 3	Roles and responsibilities:	<u>#5b</u>	Name and contact information for the trial sponsor	1
4 5 6 7	sponsor contact information			
8 9 10 11 12 13 14 15	Roles and responsibilities: sponsor and funder	<u>#5c</u>	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	1, 14
16 17 18 19 20 21 22 23	Roles and responsibilities: committees	<u>#5d</u>	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	1, 14
24 25	Introduction			
26 27 28 29 30 31	Background and rationale	<u>#6a</u>	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	3
32 33 34	Background and rationale: choice of	<u>#6b</u>	Explanation for choice of comparators	2
35 36	comparators			
37 38	Objectives	<u>#7</u>	Specific objectives or hypotheses	5
 39 40 41 42 43 44 45 	Trial design	<u>#8</u>	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, non-inferiority, exploratory)	5
46 47	Methods:			
48 49	Participants,			
50	interventions, and			
51 52	outcomes			
53 54 55 56 57 58	Study setting	<u>#9</u>	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	6
59 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml			

BMJ Open

1 2 3 4 5	Eligibility criteria	<u>#10</u>	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6
6 7	Interventions:	<u>#11a</u>	Interventions for each group with sufficient detail to allow	5
, 8 9	description		replication, including how and when they will be administered	
10 11 12 13	Interventions: modifications	<u>#11b</u>	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to	5
14			harms, participant request, or improving / worsening disease)	
15 16	Interventions:	<u>#11c</u>	Strategies to improve adherence to intervention protocols, and	7
17 18 19	adherance		any procedures for monitoring adherence (eg, drug tablet return; laboratory tests)	
20 21	Interventions:	<u>#11d</u>	Relevant concomitant care and interventions that are permitted or	7
22 23 24	concomitant care		prohibited during the trial	
24 25 26 27 28 29 30 31 32 33	Outcomes	<u>#12</u>	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	8
34 35 36 37 38	Participant timeline	<u>#13</u>	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5
 39 40 41 42 43 44 	Sample size	<u>#14</u>	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	11
45 46 47	Recruitment	<u>#15</u>	Strategies for achieving adequate participant enrolment to reach target sample size	5
48 49	Methods: Assignment			
50 51	of interventions (for			
52 53	controlled trials)			
54	Allocation: sequence	#16a	Method of generating the allocation sequence (eg, computer-	n/a
55 56 57 58	generation		generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence,	
59 60	Fc	or peer re	details of any planned restriction (eg, blocking) should be view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3			provided in a separate document that is unavailable to those who enrol participants or assign interventions	
4 5 6 7 8 9	Allocation concealment mechanism	<u>#16b</u>	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	n/a
10 11 12 13	Allocation: implementation	<u>#16c</u>	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	n/a
14 15 16 17 18	Blinding (masking)	<u>#17a</u>	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	n/a
19 20 21 22 23 24	Blinding (masking): emergency unblinding	<u>#17b</u>	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	n/a
25 26 27	Methods: Data collection,			
28 29 30 31	management, and analysis			
32 33 34 35 36 37 38 39 40 41 42	Data collection plan	<u>#18a</u>	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	8
43 44 45 46 47	Data collection plan: retention	<u>#18b</u>	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	9
48 49 50 51 52 53 54	Data management	<u>#19</u>	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12
55 56 57 58 59 60	Statistics: outcomes	<u>#20a</u>	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	12

BMJ Open

Statistics: additional analyses	<u>#20b</u>	Methods for any additional analyses (eg, subgroup and adjusted analyses)	12
Statistics: analysis population and missing data	<u>#20c</u>	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	12
Methods: Monitoring			
Data monitoring: formal committee	<u>#21a</u>	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	12
Data monitoring: interim analysis	<u>#21b</u>	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	n/a
Harms	<u>#22</u>	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	12
Auditing	<u>#23</u>	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	n/a
Ethics and			
dissemination			
Research ethics approval	<u>#24</u>	Plans for seeking research ethics committee / institutional review board (REC / IRB) approval	2
Protocol amendments	<u>#25</u>	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC / IRBs, trial participants, trial registries, journals, regulators)	2
Consent or assent	<u>#26a</u>	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	6
Fo	or peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 28 of 27

BMJ Open

1 2 3 4 5	Consent or assent: ancillary studies	<u>#26b</u>	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	6	
6 7 8 9 10	Confidentiality	<u>#27</u>	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	12	
11 12 13 14	Declaration of interests	<u>#28</u>	Financial and other competing interests for principal investigators for the overall trial and each study site	14	
15 16 17 18 19	Data access	<u>#29</u>	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	12	
20 21 22 23	Ancillary and post trial care	<u>#30</u>	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	n/a	
24 25 26 27 28 29 30 31	Dissemination policy: trial results	<u>#31a</u>	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	2	
32 33 34 35	Dissemination policy: authorship	<u>#31b</u>	Authorship eligibility guidelines and any intended use of professional writers	14	
36 37 38 39	Dissemination policy: reproducible research	<u>#31c</u>	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	n/a	
40 41 42	Appendices				
42 43 44 45	Informed consent materials	<u>#32</u>	Model consent form and other related documentation given to participants and authorised surrogatess	6	
46 47 48 49 50 51	Biological specimens	<u>#33</u>	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	7	
⁵² The SPIRIT Explanation and Elaboration paper is distributed under the terms of the Creative Commons					
53 54	Attribution License CC-I	BY-NC.	This checklist was completed on 07. November 2022 using		
55 56 57 58	https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai				
59 60	Fo	or peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

BMJ Open

BMJ Open

Protocol for a multicentre cross-sectional, longitudinal clinical trial in rheumatoid arthritis and Parkinson's disease patients analysing the relation between the gut microbiome, fasting and immune status (ExpoBiome)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071380.R1
Article Type:	Protocol
Date Submitted by the Author:	31-May-2023
Complete List of Authors:	Hansen, Bérénice; LCSB Laczny, Cédric C.; LCSB Aho, Velma T.E.; LCSB Frachet-Bour, Audrey; LCSB Habier, Janine; LCSB Ostaszewski, Marek; LCSB Michalsen, Andreas; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch, Department of Internal and Integrative Medicine Hanslian, Etienne; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Vannsee Branch Koppold-Liebscher, Daniela; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Hartmann, Anika; Charité Universitätsmedizin Berlin, Institute of Social Medicine, Epidemiology and Health Economics; Charité Universitätsmedizin Berlin, Department of Dermatology, Venereology and Allergology Steckhan, Nico; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; University of Potsdam, Digital Health - Connected Healthcare, Hasso Plattner Institute Mollenhauer, Brit; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH Schade, Sebastian; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH, Roomp, Kirsten; LCSB Schneider, Jochen; LCSB; Saarland University Hospital and Saarland University Faculty of Medicine, Department of Internal Medicine and Psychiatry Wilmes, Paul; LCSB; University of Luxembourg, Department of Life Sciences and Medicine
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Immunology (including allergy), Rheumatology, Pharmacology and therapeutics, Neurology, Evidence based practice

		IMMUNOLOGY, Rheumatology < INTERNAL MEDICINE, MICROBIOLOGY
	Keywords:	Parkinson-s disease < NEUROLOGY, NUTRITION & DIETETICS, Clinical trials < THERAPEUTICS
		1
		SCHOLARONE [™] Manuscripts
		inditusen pes
Fo	or peer review	/ only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\1\\3\\1\\4\\1\\5\\1\\6\\7\\8\\9\\0\\1\\1\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\4\\2\\3\\4\\4\\5\\6\\7\\8\\9\\0\\1\\2\\5\\5\\6\\7\\8\\5\\6\\7\\8\\9\\0\\1\\2\\3\\3\\4\\5\\6\\7\\8\\9\\0\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\2\\3\\4\\5\\6\\7\\8\\8\\9\\0\\1\\2\\3\\4\\5\\6\\7\\8\\8\\6\\6\\7\\8\\8\\9\\0\\1\\2\\3\\8\\6\\6\\7\\8\\8\\9\\0\\1\\2\\3\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\7\\8\\8\\6\\6\\8\\8\\8\\6\\6\\8\\8\\8\\6\\8\\8\\8\\8$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
56 57 58 59 60	4 4 5

1	Protocol for a multicentre cross-sectional, longitudinal clinical trial in
2	rheumatoid arthritis and Parkinson's disease patients analysing the
3	relation between the gut microbiome, fasting and immune status
4	(ExpoBiome)
5 6 7 8 9	Bérénice Hansen ¹ , Cédric C. Laczny ¹ , Velma T.E. Aho ¹ , Audrey Frachet-Bour ¹ , Janine Habier ¹ , Marek Ostaszewski ¹ , Andreas Michalsen ^{4,5} , Etienne Hanslian ^{4,5} , Daniela A. Koppold ^{4,5,8} , Anika Hartmann ^{4,10} , Nico Steckhan ^{4,9} , Brit Mollenhauer ^{6,7} , Sebastian Schade ^{6,7} , Kirsten Roomp ¹ , Jochen G. Schneider ^{1,3+} , Paul Wilmes ^{1,2+}
1 2	¹ Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts- Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
13 14 15 16	² Department of Life Sciences and Medicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
.7 .8 .9	³ Department of Internal Medicine and Psychiatry, Saarland University Medical Center, D- 66421 Homburg Saar, Germany
20 21 22	⁴ Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
23 24	⁵ Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Germany
25 26	⁶ Paracelsus-Elena-Klinik, Kassel, Germany
27 28	⁷ University Medical Center Göttingen, Germany
29 80 81 82	⁸ Department of Pediatrics, Division of Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
33 34	⁹ Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
85 86 87	¹⁰ Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
88 89	*contributed equally
40 11	*Correspondence to:
2 3 4	Jochen Schneider (jochen.schneider@uni.lu) Paul Wilmes (paul.wilmes@uni.lu)
15 16 17	Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux,
18 19	L-4362 Esch-sur-Alzette, Luxembourg
50	Word count: 3646

Abstract

Introduction

Chronic inflammatory diseases like rheumatoid arthritis (RA) and neurodegenerative disorders like Parkinson's disease (PD) have recently been associated with a decreased diversity in the gut microbiome, emerging as key driver of various diseases. The specific interactions between gut-borne microorganisms and host pathophysiology remain largely unclear. The microbiome can be modulated by interventions comprising nutrition.

The aim of our clinical study is to (1) examine effects of prolonged fasting and time-

restricted eating (TRE) on the outcome parameters and the immunophenotypes of RA and

PD with (2) special consideration of microbial taxa and molecules associated with changes

expected in (1) and (3) identify factors impacting the disease course and treatment by in

depth screening of microorganisms and molecules in personalised HuMiX gut-on-chip

models, to find novel targets for anti-inflammatory therapy.

Methods and Analysis

This trial is an open-label, multicentre, controlled clinical trial consisting of a cross-sectional and a longitudinal study. A total of 180 patients is recruited. For the cross-sectional study, 60 patients with PD, 60 patients with RA and 60 healthy controls are recruited at two different, specialized clinical sites. For the longitudinal part, 30 patients with PD and 30 patients with RA undergo 5-7 days of prolonged fasting (PF) followed by TRE (16:8) for a period of 12 months. One baseline visit takes place before the PF intervention and 10 follow-up visits will follow over a period of 12 months (April 2021 to November 2023).

Ethics and dissemination

Ethical approval was obtained to plan and conduct the trial from the institutional review board of the Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of the University of Luxembourg (ERP 21-001-A ExpoBiome). The results of this study will be disseminated through peer-reviewed publications and scientific presentations.

Trial registration number at clinicaltrials.gov:

NCT04847011

Key words: Microbiome, fasting therapy, intermittent fasting, time restricted eating, chronic disease, rheumatoid arthritis, Parkinson's disease, nutrition, chronic diseases, ExpoBiome, inflammation, gut on a chip, HuMiX, immunophenotype, metagenomics, metatranscriptomics, metaproteomics, metabolomics

Strengths and limitations of the study

The participants of the longitudinal study will be closely monitored for 12 months and routine blood parameters as well as anthropometric data and questionnaires will be precisely documented.

- This study will identify novel microbiome-derived common and disease-associated
 molecules involved in immune system modulation in two major chronic diseases: RA
 and PD.
 - This study aims at also identifying novel targeted pathways to control chronic inflammatory conditions in the future.
 - A limitation is the heterogeneity of the cohorts regarding age and sex, which is due to the prevalence of the diseases: RA is more common in women, while PD is more common in men and has a later disease onset.
 - A bias exists in choosing RA and PD as chronic disorders to study immunophenotypes although generalisable results are targeted.

105 Introduction (1339)

107 T

The human microbiome is emerging as a key driver of various diseases through its complex of distinct yet connected biomolecules (referred to as the "*expobiome*")[1, 2]. The expobiome comprises a diverse set of nucleic acids, polypeptides and metabolites which, in the gut alone, are present in substantial concentrations[1]. However, the specific interactions between gut-borne microorganisms and host (patho)physiology remain largely unknown. Although host genetics shape the composition of the gut microbiome, the latter is particularly influenced by non-genetic factors such as lifestyle and diet[3, 4]. Therefore, the microbiome is a plausible target to modify health outcomes.

Individuals suffering from chronic diseases, including autoimmune, metabolic, and neurodegenerative diseases as well as cancer, often present alterations in their gut microbiome composition. These shifts are typically characterised by an overgrowth of one or several microbial species with likely adverse effects as well as a decrease in beneficial taxa[5]. Such imbalances are referred to as dysbiosis. Although structural microbiome changes are clearly detectable, the mechanistic or functional consequences of dysbiosis are still largely unknown. However, they may result in dysregulated interactions with the immune system[6]. Considering the intricacy of the immune system, the question arises whether the observed microbiome changes are cause or consequence of disease. This implies that, in addition to the genetic predisposition of the host, the gut microbiome needs to be considered a potential pathogenic factor or major driver of disease onset and course[3, 4].

RA and PD are two specific examples representing dysregulated microbiome-immune system interactions [7, 8]. RA is a multifactorial, chronic and systemic autoimmune disease, primarily affecting the lining of the synovial joints with a higher risk and younger age for disease onset in women and a global prevalence of 1%[9, 10]. The exact disease pathogenesis is still unclear and no cure for RA currently exists. In addition to the common local articular symptoms of RA, systemic comorbidities can affect the vasculature, metabolism and bones[11]. Besides various environmental risk factors e.g. smoking and a Western diet, the host microbiome is associated with the pathophysiology of the disease[12]. The diversity of the gut microbiome has been reported to be decreased in individuals with RA, compared with the general population, and is correlated with disease duration, activity and autoantibody levels [13, 14]. Studies in murine models also report that autoimmune arthritis is strongly attenuated under germ-free conditions[15]. The introduction of specific bacteria, e.g. segmented filamentous bacteria, into germ-free animals or oral infection with Porphyromonas gingivalis drive autoimmune arthritis through activation of T helper cells[15]. Several different taxa, including Prevotella copri, Lactobacillus spp. and Colinsella spp. are enriched in the gut microbiome of patients with RA and correlate positively with disease markers e.g. immunoglobulins IgA and IgG , while other taxa like Haemophilus spp. and Faecalibacterium spp. are typically found at lower abundances in

2
3
4
5
6
7
~

patients with RA compared to healthy individuals[13, 16, 17]. Alterations of the gut microbiome may
therefore have an important impact on RA pathophysiology[12].

- PD affects 0.4-2% of the population over 65 years worldwide and is the second most common progressive neurodegenerative disease with men being 1.5 times more likely to be affected than women[18]. Cardinal symptoms are motor deficiencies such as tremor and rigidity, but also include a wide range of non-motor symptoms, such as hyposmia, depression, insomnia or cognitive impairment, severely impacting patients' quality of life[19]. Aggregations of the protein α -synuclein in the dopaminergic substantia nigra represent the main neuropathological manifestations[20]. PD-associated loss of dopaminergic neurons involves mechanisms of inflammatory and autoimmune responses with microglial activity as a major driver [21]. Dysbiosis of the gut microbiome has been associated with the characteristic motor deficits and pathophysiological changes in the enteric and central nervous systems in animal studies. Increased relative abundances of the genera Akkermansia, Bifidobacterium, Lactobacillus, and *Methanobrevibacter* and decreased abundances in Faecalibacterium and Roseburia have been reported[22, 23]. Two recently published clinical-trials with prebiotic supplementation in PD observed a shift in gut microbiome composition, an increase in short-chain fatty acids (SCFA) and a reduction in non-motor-symptoms [24, 25]. Most patients with PD suffer from gastrointestinal symptoms such as constipation and irritable bowel syndrome (IBS) -like symptoms[26]. The gut-brain axis, e.g. by-products produced by the gut microbiome, may contribute to the production of α -synuclein aggregates in the enteric nervous system [27]. In addition, increased intestinal permeability[28] as driver for enteric inflammation occur in PD and substantiate a role of peripheral inflammation in the initiation and the progression of the disease[29].
- One factor with known major impact on the gut microbiome and on chronic diseases is diet[7]. Dietary approaches as fasting have already been used by Hippocrates in the the 5th century BCE and have been applied ever since by numerous medical schools to treat acute and chronic diseases [30-32]. Various practices of caloric restriction through fasting have repeatedly shown remarkable health benefits[33, 34]. Maifeld et al. found that a 5-day fast followed by a modified Dietary Approach to Stop Hypertension (DASH), with additional emphasis on plant-based and Mediterranean diets, reduced systolic blood pressure, BMI, and the need for antihypertensive medications at three months post intervention compared with DASH alone [35].
- Furthermore, Choi et al. demonstrated that cycles of a fasting-mimicking diet suppress autoimmunity and stimulate remyelination via oligodendrocyte regeneration in a murine experimental autoimmune encephalomyelitis (EAE) model[36]. Jordan et al. described a reduction in monocyte metabolic and inflammatory activity after a short-term fast and conclude that fasting attenuates chronic inflammatory diseases without compromising monocyte capacity for mobilisation during acute infectious inflammation and tissue repair[37].
- These improvements can, however, typically only be maintained for a limited period of time, and the symptoms can reappear after reintroduction of the patients' standard diet. Hence, protocols to sustain these beneficial effects are of utmost importance. In mouse models of PD, intermittent fasting (IF) has led to several improvements including decreased excitotoxicity, reduced neurodegeneration and protection against autonomic dysfunction, motor and cognitive decline[38].
- IF and PF may have potent immunomodulatory effects which may partially be mediated by the gut microbiome and the fasting induced alterations of the latter[39]. These microbial shifts include upregulation of Akkermansia muciniphila, Bacteroides fragilis, other Bacteroides spp., Proteobacteria, and butyric acid producing Lachnospiraceae, but also Odoribacter, which is negatively associated with blood pressure[35, 40]. Interestingly, an overall decrease of the Firmicutes/Bacteroidetes ratio could be observed, a high ratio is commonly associated with several pathologies, including RA [41].

A potential mechanism underlying the observed beneficial effects induced by dietary interventions might be a direct gut microbiome-immune system interaction by pattern recognition. The microbiome can regulate the intestinal innate immune system by modulating toll-like receptor (TLR) expression on immunosensor cell surface through microbe-associated molecular patterns (MAMPs), which can consequently trigger cytokine production and up-regulation of molecules on antigen presenting cells, leading to activation of T cells[42]. Therefore, a change in gut microbiome composition can lead to different outcomes in immune signalling pathways and either favour or suppress inflammation and autoimmunity.

The impact and importance of the gut microbiome on human physiology and its potential modifications by nutrition and dietary patterns, have been underestimated for centuries[43]. Reasons may include missing standardised therapeutic protocols, the interindividual variability in the response to fasting, lack of knowledge about possible adverse effects, and difficulties in the interpretation of underlying mechanisms seen in clinical trials, but also in the comparably low potential for achieving economic revenue or scientific impact[8].

Modern experimental approaches and computational integration allow a multi-layer analysis of digestive processes in low caloric settings including the gut microbiome[44]. These technological developments also permit a closer investigation of the link between the immune system and severe caloric restriction.

To our knowledge no clinical trials have been investigating the connection between IF or PF and PD in humans so far[38]. Our study aims to elucidate the causal relationship between the gut microbiome and the immune system. To do so, we will use analyses of the molecular basis of human-microbiome interactions enabled by high throughput methodologies such as the combination of metagenomics, metatranscriptomics and metaproteomics. Moreover, we are aiming at identifying new genes, proteins, metabolites, and host pathways facilitating the development of novel diagnostic and therapeutic tools[45, 46].

Study objectives

Methods and Analysis (2317)

The first objective of the study is to define specific gut microbiome-derived molecules in RA and PD, compared to healthy individuals, and relate this information to the immunophenotypes of the individuals. The second objective is to identify and track common and disease-specific molecular signatures to predict the outcome of a gut microbiome-targeted therapeutic intervention, here fasting, on inflammation-driven symptoms in RA and PD. The third objective of the study is to identify and validate microbiome-derived effector molecules which downregulate pro-inflammatory innate and adaptive immune pathways.

Study design

The ExpoBiome cohort consists of 180 adult individuals, meeting the exclusion and inclusion criteria (Table 1), for the cross-sectional study (objectives 1 and 3) and 60 adult individuals for the longitudinal study (objectives 2 and 3). There are five different arms in total: (1) RA - cross-sectional arm [60 patients], (2) PD – cross-sectional arm [60 patients], and (3) healthy controls – cross-sectional arm [60 patients], (4) RA – longitudinal arm [30 patients], (5) PD – longitudinal arm [30 patients] (Figure 1).

241 At the first visit (T0), patients answer several questionnaires, and blood, urine, saliva and stool

242 samples are obtained (Table 2).

The longitudinal arms (4) and (5) undergo a 5–7-day PF with a dietary energy supply of max. 350-400
kcal per day with vegetable or grain broths as well as fresh vegetable juices[31, 40]. After the PF, the
longitudinal arms follow a dietary regimen including the concept of TRE for a period of 12 months
following the 16:8 pattern[47]. This means that food intake is allowed ad libitum for 8 h, followed by
16 h of fasting where no food should be consumed. The intake of non-caloric beverages, e.g. water,
unsweetened tea or coffee is, however, allowed. The participants attend one follow-up visit (T2)
during the PF and 9 follow-up visits during the 12 months of TRE (Figure 1).

5 251 Patient and Public Involvement

Feedback of patients during former clinical trials at the study centre in Berlin was integrated in the
planning and design of the fasting intervention of this study. Patients are not involved in the conduct,
reporting, or dissemination plans of this research.

21 256 **Recruitment and randomisation**

Patients are recruited by the specialised sites via different sources, e.g. by direct referral from either a physician at the Immanuel Hospital Berlin and the outpatient department of the Institute of Social Medicine, Epidemiology and Health Economics at Charité-Universitätsmedizin Berlin, or the Paracelsus-Elena Clinic in Kassel, or by non-personal advertising strategies (e.g. flyers or social media). Participants meeting all the inclusion and no exclusion criteria (Table 1) are assigned to their respective groups (RA, PD, or healthy control) (Figure 1) for the cross-sectional study after written informed consent. Half of the patients from the RA group and half of the patients from the PD group is selected to take part in the longitudinal part of the study, including the fasting intervention according to their availability for all 11 visits and their willingness to follow TRE over 12 months. This study is an open-label trial, as blinding is not feasible in fasting interventions.

Table 1: Inclusion and exclusion criteria

nclusion criteria	Exclusion criteria		
 Age 18-79 One of the following diagnoses: rheumatoid arthritis (first diagnosis >6 weeks ago), Parkinson's disease OR healthy volunteer Control ("healthy") individuals must be without any evidence of active known or treated RA, without any evidence of active, known or treated central nervous system disease, and without a known family history of idiopathic PD Control individuals should match the RA or PD individuals as closely as possible (sex, age, education) Present written declaration of consent 	 Gout or proven bacterial arthritis Participation in another study Existing/current eating disorder (bulimia nervosa, anorexia nervosa) within the past 5 years Severe internal disease (e.g. kidney deficiency with creatinine > 2mg/dl) Existing vegan diet or fasting during the last six months Presence or suspicion of atypical PD (e.g. early dementia, early autonomous dysfunction) Diagnosis of chronic inflammatory bowel diseases, celiac disease or colorectal cancer according to the guidelines of the German Society of Gastroenterology Use of anti-psychotic drugs 		

• Ability to understand the patient	• Antibiotic use during the previous 12
information and willingness to sign	months
the consent form	• Start of novel therapy with disease-
• Consent to specimen collection and	modifying anti-rheumatic drugs
specimen use	Pregnancy or breastfeeding women
	Contraindication for additional blood
	draws (e.g. haemoglobin <10)
	• BMI < 18.5
	 Psychiatric illness that limits
	understanding of the examination
	protocol (unable to consent)

270 Fasting dietary counselling

The fasting group is closely monitored by nutritionists trained in fasting therapy, backed up by physicians experienced in fasting, from the Charité – Universitätsmedizin Berlin and the Paracelsus-Elena Clinic to ensure a uniform implementation of the fasting guidelines and the well-being of the study participants. The monitoring consists of several in person and virtual meetings which held individually or in group settings. Five meetings including the visits T0 and T2 during the fasting week as well as a group meeting after PF to ensure a well-managed start to the TRE phase take place. Group sessions are standardised using a pre-set deck of slides to be discussed during the group meetings with only minor disease-related differences between the PD and RA groups. All longitudinal participants receive a study-specific script with information on fasting procedures.

33 281 Medication

The medical treatments of the patients are monitored and documented with every clinical visit. The
 fasting intervention might necessitate temporary adjustments of several medications e.g. anti diabetic and anti-hypertensive drugs as insulin levels and hypertension will be reduced due to lack of
 food intake [31].

287 Data collection

Sample and data collection is performed at the two clinical sites, Charité – Universitätsmedizin Berlin
 and Paracelsus-Elena Clinic (Table 2).

Table 2: Sampling procedures.

46	231	Tuole 2. Sumpting procedures.
47		a) Biochemical samples and procedures
48		a) Diochemical samples and procedures
49		Blood (123 mL at T0, 23 mL at T2-T11)
50		
51		Stool collection (2 mL at T0 and T3-T11)
52		Saliva collection (3.5 mL at T0-T11)
53		
54		Midstream urine (50 mL at T0 -T11)
55	292	
56	292	
57		b) Questionnaires
58		
59		Disease specific
60		

PD	:
	Disease Activity Score (DAS-28) [48]
	Parkinson's Disease Sleep Scale-2
	(PDSS-2) [49]
	 Parkinson's Disease Questionnaire-39
	(PDQ-39)[50]
	Simplified Disease Index Score (SDAI) [51]
	 Funktionsfragebogen Hannover (FFbH-R)
	[52]
	 Movement Disorder Society Unified PD
	Rating Scale (MDS-UPDRS)[53]
	Non-Motor Symptoms Questionnaire
	(NMSQ)[54]
	Non-Motor Symptoms Scale (NMSS)[55]
RA	
101	 Disease Activity Score (DAS-28) [51]
	Non-Motor Symptoms Questionnaire
	(NMSQ) [54]
	Funktionsfragebogen Hannover (FFbH-R)
	[52]
Die	tary behaviour and lifestyle
	 Fasting experience, expectation, and
	intervention
	Lifestyle
	24H-Food-recall
	 Food Frequency Questionnaire (FFQ)
Ger	neral health and well-being
	Health Assessment Questionnaire
	(HAQ)[56]
	Bristol Stool Scale[57]
	Quality of Life questionnaire (WHO-5)[58]
	 Quality of Life questionnaire (WHO-5)[58] Hospital Anxiety and Depression Scale

• Profile of Mood States[60]

295 Anthropometric data and guestionnaires

The electronic data capture system REDCap[61], a secure web-based application, is used to record all individual specific data. All data is stored on a secure server infrastructure at the host institution in Luxembourg. Weight, height, body mass index (BMI), heart rate and blood pressure in sitting and standing position as well as waist-hip-ratio is determined at every visit. Dietary behaviour, sociodemographic measurements (age, sex, education level, employment status, marital status), family history, current and previous illness and co-morbidities, and current medications, as well as disease-specific data, questionnaires about the well-being of the patients and data on the behavioural factors are collected at baseline, T6 (week 3), T9 (month 6) and T11 (month 12) (Table 2). Questionnaires (24h-Food Recall, Bristol Stool Scale) are answered at all visits by the study participants. Data storage, analysis and exchange are done only in pseudonymised fashion. The nutritional data is analysed using the Nutrilog 3.20 software (Nutrilog SAS, Marans).

24 308 Blood samples and parameters

Blood samples are collected at each visit, and immediately used for peripheral blood mononuclear cell (PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at -80°C (T0-T11). A clinical standard laboratory report is generated after every visit for each study participant (Table 3). In addition to routine blood parameters, anti-citrullinated protein antibody (ACPA), zonulin, fatty-acid binding protein 2 (FABP2), and calprotectin levels are measured. Aliquots are securely stored to account for novel observations and testing of hypotheses.

Table 3: Routine blood parameters measured at each timepoint (T0 for cross-sectional study, T0-T11 for longitudinal study)

Haematology – EDTA-	Clinical Chemistry –		
blood	Serum		
Basophils, %	Albumin		
Basophils, abs.	ALT, 37°C		
Eosinophils, %	Alkaline Phosphatase,		
	37°C		
Eosinophils, abs.	AST, 37°C		
Erythrocytes	Bilirubin, total		
Haematocrit	Cholinesterase		
Haemoglobin	Cholesterol		
HbA1c	Creatinine		
Leucocytes	hs-CRP		
Lymphocytes, %	Glucose, serum		
Lymphocytes, abs.	Gamma-GT, 37°C		
MCH	HDL-Cholesterol		
MCHC	LDL-Cholesterol		

1 2				
3 4		MCV	Potassium	
5		Monocytes, %	Sodium	
6 7		Monocytes, abs.	Total Protein	
8 9		Neutrophils, %	Triglycerides	
9 10		Neutrophils, abs.	Uric Acid	
11 12		Platelets	Urea/BUN	
13		RDW	Proteins – Serum	
14 15		Reticulocytes	Rheumatoid factor H 35.9	I
16 17		Reticulocytes	Hormones – Serum	
18		Reticulocytes, abs.	Insulin	I
19 20		0	TSH (basal)	
21	317			
22 23	318	Stool, urine and saliva samples		
24	319	The samples listed in Table 2 are collected	at each visit, except for stool samples of	on T2 (fasting week)
25 26	320	and immediately frozen and stored at -8		
27	321	sampling. Faecal samples represent the m		•
28	322	by microbiome in the gut. Also, as the g		ctuations, the stool
29 30	323 324	samples are collected in the morning, as f	ar as possible.	
30	524			
32	325	Methods applied to samples		
33	326			
34 35	327	Biomolecular extractions		
36	328	The collected stool samples undergo a	biomolecular extraction procedure to	allow isolation of
37	329	concomitant DNA, RNA, proteins, peptide	s and metabolites from single, unique fa	ecal water samples;
38 39	330	this process involves cryo-milling the sa		-
40	331	membrane and cell wall components in		
41	332	lastly proteins and RNA extraction by a me	· · · ·	-
42	333 334	is recovered following centrifugation and cell lysis. Nucleic acids are preserved by t	· · · · · · · · · · · · · · · · · · ·	•
43 44	335	column-based techniques. This protocol ir		•
45	336	of standardisation and reproducibility[2].	workes the use of a robotic platform, en	
46	337	, ,,,,		
47 48	338	Coupled metagenomic and metatra	inscriptomic analyses	
49	339	Prior to sequencing library preparation,		obtain quantitative
50	340	sequencing data[64]. Contamination-free		
51 52	341	generated, processed and analysed usi		
52 53	342	incorporates pre-processing, assembly,	gene annotation, mapping of reads,	, single nucleotide
54	343	polymorphism calling, data normalisation		
55	344	a fully reproducible software framewor		
56 57	345	screened for enrichments in genes and		
57 58	346 347	extracellular biomolecules are linked to metagenomic data [66]. In addition, th		
59	347 348	components[44]. The quantitative data is		-
60	0.10			

contribution of the resolved microbial populations in stool to the extracellular DNA and RNA complements[67].

Metaproteomics

For the metaproteomic analyses, filtration is used to separate extracellular peptides from the obtained (poly)peptides. The resulting smaller fractions are then desalted and analysed without proteolytic digestion via liquid chromatography (LC) and mass spectrometry (MS) on an EasyNano-LC coupled online to a QExactive-Plus mass spectrometer (ThermoScientific, Waltham, USA). The identification of ribosomal peptides is done with an integrated catalogue of MG and MT data, while the non-ribosomal peptides are identified using different tools, i.e., MyriMatch, DirecTag as well as CycloBranch[45, 68, 69]. The metaproteomic data also allows identification of extracellular (poly)peptides with possible pathogenic functions including protein misfolding and molecular mimicry[70, 71].

Metabolomics

Metabolomic data is analysed using a combination of targeted and untargeted approaches [44, 63, 72]. This highlights the major metabolite classes produced by the gut microbiome with an effect on human physiology including organic acids, SCFA, lipids, branched-chain fatty acids, branched-chain amino acids, vitamins, bile acids and neurotransmitters. Besides external compound calibration series for quantification and quality control samples to ensure data normalisation and data acquisition quality assessment, the metabolite extraction fluid is fortified with multiple internal standards to improve method precision and accuracy [73, 74]. The data is compared to in-house databases and public mass spectral libraries to identify known metabolites. The metabolomic data complements the metagenomic and metatranscriptomic data and thus allows further establishments of conclusive links to metabolic properties in the gut.

Deep immune profiling

Deep immune profiling is done using a recently established and optimised panel of metal-labelled antibodies together with cytometry coupled to mass spectrometry (MS), the Maxpar Direct Immune Profiling System (MDIPA). This approach allows the simultaneous quantification of 38 parameters on single cells. Whole blood is stained with the MDIPA kit and stabilised with Proteomic stabiliser Prot-1 (501351694, Smart Tube Inc., Las Vegas) before storage at -80°C. The quantified immune cells included in the MDIPA panel are CD3+, CD4+, CD8+, monocytes, dendritic cells, granulocytes, MAIT, T cells, NK and B cells[75]. Cytokine expression profiles is analysed on blood plasma using the Human Luminex performance Cytokine Panel (R&D Systems Europe, Abingdon), measuring CCL3, CCL4, CCL5, GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-18, IL-21, IL-27, IL-33, IFN-β, Galectin-1, IFN- γ and TNF- α [65].

Gut-on-a-chip models

PBMCs isolated from TO blood samples are co-cultured with gut-derived microbes under physiologically representative conditions using the gut-on-a-chip model HuMiX[76]. This model of the human gastrointestinal interface allows the investigation of the interactions between immune, epithelial and bacterial cells and specifically the response to fasting in personalised in vitro models.

The Expobiome Map

The Expobiome Map (https://expobiome.lcsb.uni.lu) illustrates the diverse complex of microbial immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this "expobiome" and human immune pathways are encoded

1 2 3	396	in the context of chronic diseases[1]. The ExpoBiome Map is visualised using the MINERVA
4 5 6 7 8 9	397 398 399 400 401	Platform[77]. Clicking on different elements on the map reveals factors they affect and are affected by, allowing an easier navigation through the complex relationships between individual microbiome components in relation to human disease. The multi-omics data generated in the present study will be integrated with the Map.
10 11	402	Exploratory analysis of novel host-microbiome interactions
11 12 13 14 15 16 17	403 404 405 406 407	Unknown non-ribosomal peptides or metabolite features are associated through correlation with transcripts, proteins and metabolites. Extracellular DNA fragments, as well as transcripts, proteins and ribosomal peptides are linked to their genomic context by using IMP[45]. The data generated by the project will be connected and collated to existing, publicly available datasets.
18 19	408	Outcome parameters
20	409	Primary Outcome
21 22 23 24 25	410 411 412 413	The primary endpoint of the study is the characterisation of the gut microbiome. The evaluation includes both between-group and within-group differences in the longitudinal study arms with the fasting intervention.
26 27	414	Secondary Outcome Measures
27 28 29 30 31 32	415 416 417 418 419	Secondary outcomes include the identification of common and disease-specific molecular signatures and the characterisation of microbiome-derived effector molecules impacting the innate and adaptive immune pathways. Furthermore, several additional parameters mentioned in <i>Anthropometric data and questionnaires</i> are assessed over a period of 12 months.
33 34	420	Sample size and power calculation
35 36 37 38 39 40 41 42 43	421 422 423 424 425 426 427 428	A power calculation using pilot metatranscriptomic data based on faecal extracellular RNA samples was performed to determine the number of subjects to be recruited for the ExpoBiome project. The obtained relative abundances of genera were used for the calculation of the required sample size per group. The power calculation was based on the algorithm as described by Tusher, Tibshirani, and Chu[78]. To achieve a power of 90% (at α = 0.05), a total of 50 individuals per group (RA, PD, healthy controls) must be analysed. Considering any possible dropouts, 20% additional subjects are recruited, resulting in a total number of 180 individuals, i.e., 60 per group.
44 45	429	Adverse events
46 47 48 49 50 51	430 431 432 433 434	There are no major risks expected for participants. Minor common adverse effects of PF might include headaches, nausea, insomnia, back pain, dyspepsia and fatigue[79]. Any occurring adverse events are recorded at each visit in REDCap[61]. Serious adverse events are communicated to the study coordinator and principal investigator within 24 h of their report.
52 53	435	Data management, monitoring, analysis and evaluation of data
53 54 55 56 57 58 59 60	436 437 438 439 440 441	The study participants receive a study ID (pseudonym) which is used for all collected data. Self- administered questionnaires are directly recorded in REDCap. Participant files are kept for at least 10 years at the respective clinical sites. Weekly meetings between the study team, the different clinical partners and the principal investigator, ensure a close monitoring of the data. Any occurring adverse events or other issues are thus handled immediately.

Different statistical tests are performed according to the nature of the data. A premature termination of the study is not envisaged; therefore, no interim analysis is done. Different correlation measures are applied, including Spearman correlation, mutual information on discretised data, distance correlation, maximum information criterion, local similarity analysis and the bioenv approach. Comparison across all omic levels allows identification of common and disease-specific signatures. Multivariate machine learning is used to link different data features to observed patterns.

The longitudinal part of the study continues for a period of 12 months. After finalisation of this period, there is no follow-up of the participants. Interesting findings will be further validated using the existing sample set and analyses may be performed on additionally collected samples.

The SPIRIT - checklist (Standard Protocol Items: Recommendations for Interventional Trials) was used to write this protocol [80].

Trial status

The recruitment for the ExpoBiome study started in April 2021 and is currently ongoing. All study participants should be recruited by the end of 2022. The sample collection will take place from April 2021 to November 2023.

Acknowledgements

We thank Dr. Catharina Delebinski, Melanie Dell'Oro, Grit Langhans, Ursula Reuß, Maik Schröder and Nadine Sylvester for their support during the study.

Author contributions:

Study design and protocol were done by Bérénice Hansen, Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes; the interventional concept was drawn by Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Anika Hartmann, Brit Mollenhauer, Sebastian Schade, Nico Steckhan, Jochen G. Schneider, Paul Wilmes; the clinical trial was designed and is conducted by Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Anika Hartmann, Brit Mollenhauer, Sebastian Schade; the procured funding was provided by Paul Wilmes; the planning of high-throughput applications, statistical planning, sample size calculation and randomisation were defined by Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes, Kirsten Roomp; the initial draft of the manuscript and coordination of the editing process were performed by Bérénice Hansen; the protocol preparation has been done by Bérénice Hansen, Audrey Frachet-Bour, Janine Habier; the planning of the data analysis was done by Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes, Kirsten Roomp, Velma T.E. Aho, Marek Ostaszewski; all authors contributed equally with edits, comments and feedback, read and approved the final manuscript.

 Funding statement: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 863664).

Competing interests statement

None declared.

2				
3 4	402	Sur	plomonte	
5	483	Supplements		
6	484	The S	PIRIT checklist was used to write our report[80].	
7				
8 9	485	Ref	erences	
10	486			
11	487	1.	Wilmes, P., et al., The gut microbiome molecular complex in human health and	
12 13	488		<i>disease.</i> Cell Host Microbe, 2022. 30 (9): p. 1201-1206.	
14	489	2.	De Saedeleer, B., et al., Systematic characterization of human gut microbiome-	
15	490		secreted molecules by integrated multi-omics. ISME Communications, 2021. 1(1): p.	
16	491		82.	
17 18	492	3.	Greenhalgh, K., et al., The human gut microbiome in health: establishment and	
19	493		resilience of microbiota over a lifetime. Environ Microbiol, 2016. 18 (7): p. 2103-16.	
20	494	4.	Hall, A.B., A.C. Tolonen, and R.J. Xavier, <i>Human genetic variation and the gut</i>	
21	495		microbiome in disease. Nature Reviews Genetics, 2017. 18(11): p. 690-699.	
22 23	496	5.	Baldini, F., et al., Parkinson's disease-associated alterations of the gut microbiome	
23 24	497		predict disease-relevant changes in metabolic functions. BMC Biol, 2020. 18 (1): p. 62.	
25	498	6.	Yoo, J.Y., et al., Gut Microbiota and Immune System Interactions. Microorganisms,	
26	499		2020. 8(10).	
27 28	500	7.	Sonnenburg, J.L. and F. Bäckhed, Diet-microbiota interactions as moderators of	
20	501	_	<i>human metabolism.</i> Nature, 2016. 535 (7610): p. 56-64.	
30	502	8.	Zmora, N., J. Suez, and E. Elinav, You are what you eat: diet, health and the gut	
31	503	_	microbiota. Nat Rev Gastroenterol Hepatol, 2019. 16(1): p. 35-56.	
32	504	9.	Guo, Q., et al., Rheumatoid arthritis: pathological mechanisms and modern	
33 34	505		pharmacologic therapies. Bone Res, 2018. 6: p. 15.	
35	506	10.	Healthline, V.L. <i>Rheumatoid Arthritis by the Numbers: Facts, Statistics, and You</i> .	
36	507		2021.	
37	508	11.	Scherer, H.U., T. Häupl, and G.R. Burmester, <i>The etiology of rheumatoid arthritis</i> .	
38 39	509	10	Journal of Autoimmunity, 2020. 110 : p. 102400.	
40	510	12.	Bodkhe, R., B. Balakrishnan, and V. Taneja, <i>The role of microbiome in rheumatoid</i>	
41	511	10	arthritis treatment. Ther Adv Musculoskelet Dis, 2019. 11 : p. 1759720x19844632.	
42	512	13.	Chen, J., et al., An expansion of rare lineage intestinal microbes characterizes	
43 44	513	11	rheumatoid arthritis. Genome Medicine, 2016. 8(1): p. 43.	
45	514 515	14.	Kitamura, K., et al., Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J	
46	515		Immunol Res, 2022. 2022 : p. 6839356.	
47	510	15.	Wu, H.J., et al., <i>Gut-residing segmented filamentous bacteria drive autoimmune</i>	
48 49	518	15.	arthritis via T helper 17 cells. Immunity, 2010. 32 (6): p. 815-27.	
50	518	16.	Scher, J.U., et al., Expansion of intestinal Prevotella copri correlates with enhanced	
51	520	10.	susceptibility to arthritis. eLife, 2013. 2 : p. e01202.	
52	520	17.	Zhang, X., et al., The oral and gut microbiomes are perturbed in rheumatoid arthritis	
53 54	521	±7.	and partly normalized after treatment. Nature Medicine, 2015. 21 (8): p. 895-905.	
55	523	18.	Lubomski, M., et al., Parkinson's disease and the gastrointestinal microbiome. J	
56	524	10.	Neurol, 2020. 267 (9): p. 2507-2523.	
57	525	19.	Opara, J., et al., <i>Motor assessment in Parkinson`s disease.</i> Ann Agric Environ Med,	
58 59	526		2017. 24 (3): p. 411-415.	
60				

2			
3 4	527	20.	Tysnes, O.B. and A. Storstein, Epidemiology of Parkinson's disease. J Neural Transm
4 5	528		(Vienna) <i>,</i> 2017. 124 (8): p. 901-905.
6	529	21.	Garcia, P., et al., Neurodegeneration and neuroinflammation are linked, but
7	530		independent of alpha-synuclein inclusions, in a seeding/spreading mouse model of
8	531		Parkinson's disease. Glia, 2022. 70 (5): p. 935-960.
9	532	22.	Heintz-Buschart, A. and P. Wilmes, Human Gut Microbiome: Function Matters.
10 11	533		Trends Microbiol, 2018. 26 (7): p. 563-574.
12	534	23.	Romano, S., et al., Meta-analysis of the Parkinson's disease gut microbiome suggests
13	535		alterations linked to intestinal inflammation. npj Parkinson's Disease, 2021. 7(1): p.
14	536		27.
15	537	24.	Becker, A., et al., Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut
16 17	538	2	Microbiota in Parkinson's Disease - The RESISTA-PD Trial. Genomics Proteomics
17	539		Bioinformatics, 2022. 20 (2): p. 274-287.
19	535 540	25.	Hall, D.A., et al., An open label, non-randomized study assessing a prebiotic fiber
20	540 541	25.	intervention in a small cohort of Parkinson's disease participants. Nat Commun,
21	541 542		2023. 14 (1): p. 926.
22		26.	
23 24	543	20.	Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's
25	544		<i>disease and their connection to gut microbiota.</i> European journal of neurology, 2017.
26	545	27	24 (11): p. 1375-1383.
27	546	27.	Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in</i>
28	547	•	Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332.
29	548	28.	Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa
30 31	549		alpha-synuclein staining and endotoxin exposure markers in early Parkinson's
32	550		<i>disease.</i> PLoS One, 2011. 6(12): p. e28032.
33	551	29.	Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i> . Neurobiol Dis, 2013.
34	552		50 : p. 42-8.
35 36	553	30.	Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,,
37	554		Accessed 3 October 2022. https://www.britannica.com/topic/fasting.
38	555	31.	Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in
39	556		patients with rheumatoid arthritis (NutriFast): study protocol for a randomised
40	557		<i>controlled clinical trial.</i> BMJ Open, 2021. 11 (8): p. e047758.
41	558	32.	Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain
42 43	559		syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep,
44	560		2010. 14 (2): p. 80-7.
45	561	33.	Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health
46	562		parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121 (8): p. 2349-
47	563		2359.
48 49	564	34.	Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus
50	565		monkeys. Nature Communications, 2017. 8(1): p. 14063.
51	566	35.	Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and
52	567		body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1):
53	568		p. 1970.
54 55	569	36.	Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces
55 56	570		Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15 (10): p. 2136-
57	571		2146.
58	572	37.	Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte
59	573		<i>Pool.</i> Cell, 2019. 178 (5): p. 1102-1114.e17.
60			/ ··· · · · · · · · · · · · · · ·

1			
2 3		20	
4	574	38.	Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front
5	575 576	39.	Neurol, 2021. 12 : p. 682184. Cignarella, F., et al., <i>Intermittent Fasting Confers Protection in CNS Autoimmunity by</i>
6 7	576 577	59.	Altering the Gut Microbiota. Cell Metab, 2018. 27 (6): p. 1222-1235.e6.
8	578	40.	Mesnage, R., et al., <i>Changes in human gut microbiota composition are linked to the</i>
9	579	40.	energy metabolic switch during 10 d of Buchinger fasting. J Nutr Sci, 2019. 8: p. e36.
10	580	41.	Magne, F., et al., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut
11 12	581		Dysbiosis in Obese Patients? Nutrients, 2020. 12 (5).
13	582	42.	Purchiaroni, F., et al., The role of intestinal microbiota and the immune system. Eur
14	583		Rev Med Pharmacol Sci, 2013. 17 (3): p. 323-33.
15 16	584	43.	Leeming, E.R., et al., Effect of Diet on the Gut Microbiota: Rethinking Intervention
17	585		<i>Duration</i> . Nutrients, 2019. 11 (12): p. 2862.
18	586	44.	Heintz-Buschart, A., et al., Integrated multi-omics of the human gut microbiome in a
19	587		case study of familial type 1 diabetes. Nature Microbiology, 2016. 2(1): p. 16180.
20 21	588	45.	Narayanasamy, S., et al., IMP: a pipeline for reproducible reference-independent
22	589		integrated metagenomic and metatranscriptomic analyses. Genome Biology, 2016.
23	590		17 (1): p. 260.
24 25	591	46.	Wilmes, P., A. Heintz-Buschart, and P.L. Bond, A decade of metaproteomics: where
25 26	592		we stand and what the future holds. Proteomics, 2015. 15 (20): p. 3409-17.
27	593	47.	Gabel, K., et al., Effects of 8-hour time restricted feeding on body weight and
28	594		metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging,
29 30	595		2018. 4 (4): p. 345-353.
31	596	48.	Wells G, B.J., Teng J, et al, Validation of the 28-joint Disease Activity Score (DAS28)
32	597		and European League Against Rheumatism response criteria based on C-reactive
33	598		protein against disease progression in patients with rheumatoid arthritis, and
34 35	599 600		<i>comparison with the DAS28 based on erythrocyte sedimentation rate.</i> Annals of the Rheumatic Diseases 2009. 68 : p. 954-960.
36	600 601	49.	Trenkwalder, C., et al., Parkinson's disease sleep scalevalidation of the revised
37	601	49.	version PDSS-2. Mov Disord, 2011. 26 (4): p. 644-52.
38	603	50.	Bushnell, D.M. and M.L. Martin, <i>Quality of life and Parkinson's disease: translation</i>
39 40	604	50.	and validation of the US Parkinson's Disease Questionnaire (PDQ-39). Qual Life Res,
41	605		1999. 8 (4): p. 345-50.
42	606	51.	Smolen, J.S., et al., A simplified disease activity index for rheumatoid arthritis for use
43	607	0	<i>in clinical practice.</i> Rheumatology (Oxford), 2003. 42 (2): p. 244-57.
44 45	608	52.	Raspe, H.H., Hagedorn, U., Kohlmann, T., & Mattussek, S., <i>Der Funktionsfragebogen</i>
46	609		Hannover (FFbH): Ein Instrument zur Funktionsdiagnostik bei polyartikulären
47	610		Gelenkerkrankungen, in Ergebnisse sozialwissenschaftlicher Evaluation eines
48 40	611		Modellversuchs (pp. 164-182). 1990, Schattauer Verlag.
49 50	612	53.	Goetz, C.G., et al., Movement Disorder Society-sponsored revision of the Unified
51	613		Parkinson's Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric
52	614		<i>testing plan.</i> Mov Disord, 2007. 22 (1): p. 41-7.
53 54	615	54.	Chaudhuri, K.R., et al., International multicenter pilot study of the first
55	616		comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's
56	617		disease: the NMSQuest study. Mov Disord, 2006. 21 (7): p. 916-23.
57	618	55.	Chaudhuri, K.R., et al., The metric properties of a novel non-motor symptoms scale
58 59	619		for Parkinson's disease: Results from an international pilot study. Mov Disord, 2007.
60	620		22 (13): p. 1901-11.

1 ว			
2 3	621	E G	Malta E. A brief clinical bealth according to the strument cliphag. Arthritic and
4	621 622	56.	Wolfe, F., A brief clinical health assessment instrument clinhaq. Arthritis and Rheumatism, 1989. 32 (4 Suppl): p. S99-S99.
5	622 623	57.	Lewis, S.J. and K.W. Heaton, Stool form scale as a useful guide to intestinal transit
6 7	623 624	57.	<i>time.</i> Scand J Gastroenterol, 1997. 32 (9): p. 920-4.
8	625	58.	Topp, C.W., et al., The WHO-5 Well-Being Index: a systematic review of the literature.
9		56.	Psychother Psychosom, 2015. 84 (3): p. 167-76.
10	626	FO	
11	627 628	59.	Zigmond, A.S. and R.P. Snaith, <i>The hospital anxiety and depression scale</i> . Acta
12 13	628	60	Psychiatr Scand, 1983. 67 (6): p. 361-70.
14	629 620	60.	McNair DM, L.M., Droppleman LF, Edits Manual for the Profile of Mood States
15	630	C1	(Poms). Rev ed San Diego: Educational and Industrial Testing Service, 1992.
16	631	61.	Harris, P.A., et al., Research electronic data capture (REDCap)a metadata-driven
17	632		methodology and workflow process for providing translational research informatics
18 19	633	62	support. J Biomed Inform, 2009. 42 (2): p. 377-81.
20	634	62.	Wilmes, P., Roume, H., Hiller, K. & Cordes, T., <i>Method and kit for the isolation of</i>
21	635		genomic DNA, RNA, proteins and metabolites from a single biological sample., in
22	636		World Intellectual Property Organization, C.D.R.PG.L. Université Du Luxembourg,
23	637	62	Editor. 2014: Switzerland.
24 25	638	63.	Roume, H., et al., A biomolecular isolation framework for eco-systems biology. The
26	639	~ •	ISME Journal, 2013. 7(1): p. 110-121.
27	640	64.	Locati, M.D., et al., Improving small RNA-seq by using a synthetic spike-in set for size-
28	641		range quality control together with a set for data normalization. Nucleic Acids Res,
29 30	642	~ =	2015. 43 (14): p. e89.
30 31	643	65.	Wampach, L., et al., Birth mode is associated with earliest strain-conferred gut
32	644		microbiome functions and immunostimulatory potential. Nature Communications,
33	645		2018. 9 (1): p. 5091.
34	646	66.	Albanese, D. and C. Donati, Strain profiling and epidemiology of bacterial species
35 36	647	_	from metagenomic sequencing. Nature Communications, 2017. 8(1): p. 2260.
37	648	67.	Vandeputte, D., et al., Quantitative microbiome profiling links gut community
38	649		variation to microbial load. Nature, 2017. 551 (7681): p. 507-511.
39	650	68.	Tang, H., S. Li, and Y. Ye, A Graph-Centric Approach for Metagenome-Guided Peptide
40	651		and Protein Identification in Metaproteomics. PLoS Comput Biol, 2016. 12 (12): p.
41 42	652		e1005224.
43	653	69.	Tabb, D.L., C.G. Fernando, and M.C. Chambers, MyriMatch: highly accurate tandem
44	654		mass spectral peptide identification by multivariate hypergeometric analysis. J
45	655		Proteome Res, 2007. 6 (2): p. 654-61.
46	656	70.	Heintz-Buschart, A., et al., The nasal and gut microbiome in Parkinson's disease and
47 48	657		<i>idiopathic rapid eye movement sleep behavior disorder</i> . Mov Disord, 2018. 33 (1): p.
49	658		88-98.
50	659	71.	Chen, S.G., et al., Exposure to the Functional Bacterial Amyloid Protein Curli Enhances
51	660		Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans.
52	661		Scientific Reports, 2016. 6 (1): p. 34477.
53 54	662	72.	Wilmes, P., et al., Metabolome-proteome differentiation coupled to microbial
55	663		<i>divergence.</i> mBio, 2010. 1 (5).
56	664	73.	Kim, D.H., et al., LC-MS-based absolute metabolite quantification: application to
57	665		metabolic flux measurement in trypanosomes. Metabolomics, 2015. 11(6): p. 1721-
58 59	666		1732.
60			

1			
1 2			
3	667	74.	Lei, Z., D.V. Huhman, and L.W. Sumner, Mass spectrometry strategies in
4	668	,	<i>metabolomics</i> . J Biol Chem, 2011. 286 (29): p. 25435-42.
5 6	669	75.	Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective
7	670	73.	longitudinal study. Sci Immunol, 2021. 6 (62).
8	671	76.	Shah, P., et al., A microfluidics-based in vitro model of the gastrointestinal human–
9	672	/ 01	microbe interface. Nature Communications, 2016. 7(1): p. 11535.
10	673	77.	Aho, V.T.E., et al., <i>SnapShot: The Expobiome Map.</i> Cell Host Microbe, 2022. 30 (9): p.
11 12	674		1340-1340.e1.
13	675	78.	Tusher, V.G., R. Tibshirani, and G. Chu, <i>Significance analysis of microarrays applied to</i>
14	676		the ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98 (9): p. 5116-21.
15	677	79.	Finnell, J.S., et al., Is fasting safe? A chart review of adverse events during medically
16 17	678		supervised, water-only fasting. BMC Complementary and Alternative Medicine,
18	679		2018. 18 (1): p. 67.
19	680	80.	Chan, AW., et al., SPIRIT 2013 explanation and elaboration: guidance for protocols
20	681		of clinical trials. BMJ : British Medical Journal, 2013. 346 : p. e7586.
21 22	682		
22			
24	602	Fig	
25	683	Figi	ure Legends
26			
27 28	684	-	e 1. Study design. This figure illustrates the study design with five different arms in
29	685		, two of which continue with the longitudinal part of the study. Visits take place at the
30	686		al sites at each timepoint and include the collection of the displayed samples. This
31	687	-	e was generated using Biorender software (http://www.biorender.com). T, timepoint;
32 33	688	vv, w	eek; D, day; M, month.
34			
35			
36			
37 38			
39			
40			
41			
42			
43 44			
45			
46			
47			
48 49			
50			
51			
52			
53 54			
54 55			
56			
57			
58 59			
59 60			
00			

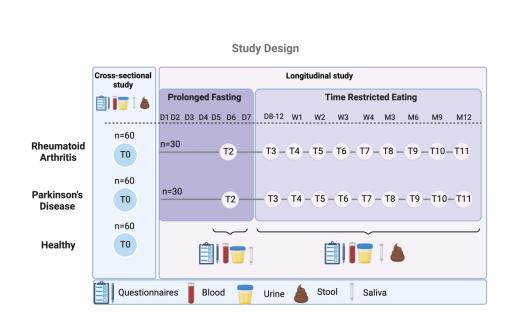


Figure 1. Study design. This figure illustrates the study design with five different arms in total, two of which continue with the longitudinal part of the study. Visits take place at the clinical sites at each timepoint and include the collection of the displayed samples. This image was generated using Biorender software (http://www.biorender.com). T, timepoint; W, week; D, day; M, month.

279x177mm (600 x 600 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SPIRITreporting guidelines, and cite them as:

Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 Explanation and Elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586

			Page
		Reporting Item	Number
Administrative information		°Z	
Title	<u>#1</u>	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	<u>#2a</u>	Trial identifier and registry name. If not yet registered, name of intended registry	2
Trial registration: data set	<u>#2b</u>	All items from the World Health Organization Trial Registration Data Set	n/a
Protocol version	<u>#3</u>	Date and version identifier	n/a
Funding	<u>#4</u>	Sources and types of financial, material, and other support	12
Roles and responsibilities: contributorship	<u>#5a</u>	Names, affiliations, and roles of protocol contributors	1
Fo	or peer re	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2 3	Roles and responsibilities:	<u>#5b</u>	Name and contact information for the trial sponsor	1
4 5 6	sponsor contact information			
7 8 9 10 11 12 13 14 15	Roles and responsibilities: sponsor and funder	<u>#5c</u>	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	1, 12
16 17 18 19 20 21 22 23	Roles and responsibilities: committees	<u>#5d</u>	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	1, 12
24 25	Introduction			
26 27 28 29 30 31	Background and rationale	<u>#6a</u>	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	5
32 33 34 35 36	Background and rationale: choice of comparators	<u>#6b</u>	Explanation for choice of comparators	5
37 38	Objectives	<u>#7</u>	Specific objectives or hypotheses	5
 39 40 41 42 43 44 45 	Trial design	<u>#8</u>	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, non-inferiority, exploratory)	5
46 47	Methods:			
48 49	Participants,			
50 51 52	interventions, and outcomes			
53 54 55 56 57 58 59	Study setting	<u>#9</u>	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	6
60		⊦or peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

1 2 3 4 5	Eligibility criteria	<u>#10</u>	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6
6 7 8 9	Interventions: description	<u>#11a</u>	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	5,7
10 11 12 13 14	Interventions: modifications	<u>#11b</u>	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving / worsening disease)	5,7
15 16 17 18 19	Interventions: adherance	<u>#11c</u>	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return; laboratory tests)	7
20 21 22 23	Interventions: concomitant care	<u>#11d</u>	Relevant concomitant care and interventions that are permitted or prohibited during the trial	6
24 25 26 27 28 29 30 31 32 33	Outcomes	<u>#12</u>	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	11
34 35 36 37 38	Participant timeline	<u>#13</u>	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5
39 40 41 42 43	Sample size	<u>#14</u>	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	11
44 45 46 47	Recruitment	<u>#15</u>	Strategies for achieving adequate participant enrolment to reach target sample size	5
48 49	Methods: Assignment			
50 51	of interventions (for			
52 53	controlled trials)			
53 54 55 56 57 58 59 60	Allocation: sequence generation	<u>#16a</u>	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

1 2			provided in a separate document that is unavailable to those who enrol participants or assign interventions	
3 4 5 6 7 8 9	Allocation concealment mechanism	<u>#16b</u>	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	n/a
10 11 12 13	Allocation: implementation	<u>#16c</u>	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	n/a
14 15 16 17 18	Blinding (masking)	<u>#17a</u>	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	n/a
19 20 21 22 23 24	Blinding (masking): emergency unblinding	<u>#17b</u>	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	n/a
25 26	Methods: Data			
27 28	collection,			
29 30 31	management, and analysis			
32 33 34 35 36 37 38 39 40 41 42	Data collection plan	<u>#18a</u>	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	12
43 44 45 46 47	Data collection plan: retention	<u>#18b</u>	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	12
48 49 50 51 52 53 54	Data management	<u>#19</u>	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12
55 56 57 58 59 60	Statistics: outcomes	<u>#20a</u> or peer re	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	12

BMJ Open

1 2 3	Statistics: additional analyses	<u>#20b</u>	Methods for any additional analyses (eg, subgroup and adjusted analyses)	12
1 5 7 3 9	Statistics: analysis population and missing data	<u>#20c</u>	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	12
10 11	Methods: Monitoring			
12 13 14 15 16 17 18 19 20 21	Data monitoring: formal committee	<u>#21a</u>	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	12
22 23 24 25 26	Data monitoring: interim analysis	<u>#21b</u>	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	n/a
27 28 29 30 31 32	Harms	<u>#22</u>	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	12
33 34 35 36 37	Auditing	<u>#23</u>	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	n/a
38 39	Ethics and			
10 11	dissemination			
12 13 14	Research ethics approval	<u>#24</u>	Plans for seeking research ethics committee / institutional review board (REC / IRB) approval	2
45 46 47 48 49 50 51	Protocol amendments	<u>#25</u>	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC / IRBs, trial participants, trial registries, journals, regulators)	2
52 53 54 55 56 57 58	Consent or assent	<u>#26a</u>	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	6
59 60	Fo	r peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Page 26 of 25

BMJ Open

1 2 3 4 5	Consent or assent: ancillary studies	<u>#26b</u>	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	6
6 7 8 9 10	Confidentiality	<u>#27</u>	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	12
11 12 13 14	Declaration of interests	<u>#28</u>	Financial and other competing interests for principal investigators for the overall trial and each study site	14
15 16 17 18 19	Data access	<u>#29</u>	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	12
20 21 22 23	Ancillary and post trial care	<u>#30</u>	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	n/a
24 25 26 27 28 29 30 31	Dissemination policy: trial results	<u>#31a</u>	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	2
32 33 34 35	Dissemination policy: authorship	<u>#31b</u>	Authorship eligibility guidelines and any intended use of professional writers	14
36 37 38 39 40	Dissemination policy: reproducible research	<u>#31c</u>	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	n/a
41	Appendices			
42 43 44 45	Informed consent materials	<u>#32</u>	Model consent form and other related documentation given to participants and authorised surrogatess	6
46 47 48 49 50 51	Biological specimens	<u>#33</u>	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	7
52	The SPIRIT Explanation	and Ela	boration paper is distributed under the terms of the Creative Commons	
53 54	Attribution License CC-I	BY-NC.	This checklist was completed on 07. November 2022 using	
55 56 57 58	https://www.goodreports	<u>.org/</u> , a 1	tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>	
59 60	Fo	or peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

BMJ Open

BMJ Open

Protocol for a multicentre cross-sectional, longitudinal ambulatory clinical trial in rheumatoid arthritis and Parkinson's disease patients analysing the relation between the gut microbiome, fasting and immune status (ExpoBiome)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071380.R2
Article Type:	Protocol
Date Submitted by the Author:	12-Jul-2023
Complete List of Authors:	Hansen, Bérénice; LCSB Laczny, Cédric C.; LCSB Aho, Velma T.E.; LCSB Frachet-Bour, Audrey; LCSB Habier, Janine; LCSB Ostaszewski, Marek; LCSB Michalsen, Andreas; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch, Department of Internal and Integrative Medicine Hanslian, Etienne; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Vannsee Branch Koppold-Liebscher, Daniela; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Hartmann, Anika; Charité Universitätsmedizin Berlin, Institute of Social Medicine, Epidemiology and Health Economics; Charité Universitätsmedizin Berlin, Department of Dermatology, Venereology and Allergology Steckhan, Nico; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; University of Potsdam, Digital Health - Connected Healthcare, Hasso Plattner Institute Mollenhauer, Brit; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH Schade, Sebastian; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH, Roomp, Kirsten; LCSB Schneider, Jochen; LCSB; Saarland University Hospital and Saarland University Faculty of Medicine, Department of Internal Medicine and Psychiatry Wilmes, Paul; LCSB; University of Luxembourg, Department of Life Sciences and Medicine
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Immunology (including allergy), Rheumatology, Pharmacology and

trials < THERAPEUTICS

Keywords:

therapeutics, Neurology, Evidence based practice

SCHOLARONE[™] Manuscripts

IMMUNOLOGY, Rheumatology < INTERNAL MEDICINE, MICROBIOLOGY, Parkinson-s disease < NEUROLOGY, NUTRITION & DIETETICS, Clinical

1	
2	
3 4	
4 5	
5 6	
7	
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
25 24	
25	
26	
27	
20 21 22 23 24 25 26 27 28 29	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53	
54	
55 56	
56 57	
58	

59

3 4 5	1	Protocol for a multicentre cross-sectional, longitudinal ambulatory
5 6 7	2	clinical trial in rheumatoid arthritis and Parkinson's disease patients
8 9	3	analysing the relation between the gut microbiome, fasting and
10 11 12	4	immune status (ExpoBiome)
13	5	
14	6	Bérénice Hansen ¹ , Cédric C. Laczny ¹ , Velma T.E. Aho ¹ , Audrey Frachet-Bour ¹ , Janine Habier ¹ , Marek
15	7	Ostaszewski ¹ , Andreas Michalsen ^{4,5} , Etienne Hanslian ^{4,5} , Daniela A. Koppold ^{4,5,8} , Anika Hartmann ^{4,10} ,
16	8	Nico Steckhan ^{4,9} , Brit Mollenhauer ^{6,7} , Sebastian Schade ^{6,7} , Kirsten Roomp ¹ , Jochen G. Schneider ^{1,3+} ,
17	9	Paul Wilmes ^{1,2+}
18	10	r ddi winnes
19	10	¹ Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts-
20	12	Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
21	13	Fourneaux, L-4502 Esch-sul-Alzette, Luxembourg
22	13	² Department of Life Sciences and Medicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362
23	14	Esch-sur-Alzette, Luxembourg
24	16	Esch-sul-Alzette, Luxembourg
25	10	³ Department of Internal Medicine and Psychiatry, Saarland University Medical Center, D- 66421 Homburg Saar,
26	18	Germany
27	19	
28	20	⁴ Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin,
29	20	corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
30	22	corporate member of thele oniversitat bernit, numbolateoniversitat za bernit, and bernit institute of meatin
31	23	⁵ Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Germany
32	24	Department of internal and integrative inculance, initiander hospital bernit, dermany
33	25	⁶ Paracelsus-Elena-Klinik, Kassel, Germany
34	26	
35	27	⁷ University Medical Center Göttingen, Germany
36	28	enversity meaned center countigen, century
37	29	⁸ Department of Pediatrics, Division of Oncology and Hematology, Charité – Universitätsmedizin Berlin,
38	30	Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health,
39	31	Berlin, Germany
40	32	
41	33	⁹ Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
42	34	
43	35	¹⁰ Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate
44 45	36	Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
45 46	37	
40 47	38	⁺ contributed equally
48	39	
49	40	*Correspondence to:
50	41	•
51	42	Jochen Schneider (jochen.schneider@uni.lu)
52	43	Paul Wilmes (paul.wilmes@uni.lu)
53	44	
54	45	Luxembourg Centre for Systems Biomedicine,
55	46	University of Luxembourg, Campus Belval,
56	47	7, avenue des Hauts-Fourneaux,
57	48	L-4362 Esch-sur-Alzette, Luxembourg
58	49	
59	50	Word count: 4461
60		

51 Abstract

53 Introduction

54 Chronic inflammatory diseases like rheumatoid arthritis (RA) and neurodegenerative 55 disorders like Parkinson's disease (PD) have recently been associated with a decreased 56 diversity in the gut microbiome, emerging as key driver of various diseases. The specific 57 interactions between gut-borne microorganisms and host pathophysiology remain largely 58 unclear. The microbiome can be modulated by interventions comprising nutrition.

The aim of our clinical study is to (1) examine effects of prolonged fasting and time-restricted eating (TRE) on the outcome parameters and the immunophenotypes of RA and PD with (2) special consideration of microbial taxa and molecules associated with changes expected in (1), and (3) identify factors impacting the disease course and treatment by in-depth screening of microorganisms and molecules in personalised HuMiX gut-on-chip models, to identify novel targets for anti-inflammatory therapy.

23 65

66 Methods and Analysis

This trial is an open-label, multicentre, controlled clinical trial consisting of a cross-sectional and a
longitudinal study. A total of 180 patients is recruited. For the cross-sectional study, 60 patients with
PD, 60 patients with RA and 60 healthy controls are recruited at two different, specialized clinical sites.
For the longitudinal part, 30 patients with PD and 30 patients with RA undergo 5-7 days of prolonged
fasting (PF) followed by TRE (16:8) for a period of 12 months. One baseline visit takes place before the
PF intervention and 10 follow-up visits will follow over a period of 12 months (April 2021 to November
2023).

33 73 34 74

36 75 Ethics and dissemination

Ethical approval was obtained to plan and conduct the trial from the institutional review board of the
Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical
association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of
the University of Luxembourg (ERP 21-001-A ExpoBiome). The results of this study will be
disseminated through peer-reviewed publications, scientific presentations and social media.

82 Trial registration number at clinicaltrials.gov:

83 NCT04847011

Key words: Microbiome, fasting therapy, intermittent fasting, time restricted eating, chronic
disease, rheumatoid arthritis, Parkinson's disease, nutrition, chronic diseases, ExpoBiome,
inflammation, gut on a chip, HuMiX, immunophenotype, metagenomics, metatranscriptomics,
metaproteomics, metabolomics

90 Strengths and limitations of the study

• The participants of the longitudinal study will be closely monitored for 12 months and routine blood parameters as well as anthropometric data and questionnaires will be precisely documented.

- This study will identify novel microbiome-derived common and disease-associated molecules involved in immune system modulation in two major chronic diseases: RA and PD.
 - This study aims at also identifying novel targeted pathways to control chronic • inflammatory conditions in the future.
 - A limitation is the heterogeneity of the cohorts regarding age and sex, which is due to the prevalence of the diseases: RA is more common in women, while PD is more common in men and has a later disease onset.
 - A bias exists in choosing RA and PD as chronic disorders to study immunophenotypes although generalisable results are targeted.

Introduction (1339)

The human microbiome is emerging as a key driver of various diseases through its complex of distinct

yet connected biomolecules (referred to as the "expobiome")[1, 2]. The expobiome comprises a diverse set of nucleic acids, polypeptides and metabolites which, in the gut alone, are present in substantial concentrations[1]. However, the specific interactions between gut-borne microorganisms and host (patho)physiology remain largely unknown. Although host genetics shape the composition of the gut microbiome, the latter is particularly influenced by non-genetic factors such as lifestyle and diet[3, 4]. Therefore, the microbiome is a plausible target to modify health outcomes.

Individuals suffering from chronic diseases, including autoimmune, metabolic, and neurodegenerative diseases as well as cancer, often present alterations in their gut microbiome composition. These shifts are typically characterised by an overgrowth of one or several microbial species with likely adverse effects as well as a decrease in beneficial taxa[5]. Such imbalances are referred to as dysbiosis. Although structural microbiome changes are clearly detectable, the mechanistic or functional consequences of dysbiosis are still largely unknown. However, they may result in dysregulated interactions with the immune system[6]. Considering the intricacy of the immune system, the question arises whether the observed microbiome changes are cause or consequence of disease. This implies that, in addition to the genetic predisposition of the host, the gut microbiome needs to be considered a potential pathogenic factor or major driver of disease onset and course[3, 4].

RA and PD are two specific examples representing dysregulated microbiome-immune system interactions [7, 8]. RA is a multifactorial, chronic, and systemic autoimmune disease, primarily affecting the lining of the synovial joints with a higher risk and younger age for disease onset in women and a global prevalence of 1%[9, 10]. The exact disease pathogenesis is still unclear and no cure for RA currently exists. In addition to the common local articular symptoms of RA, systemic comorbidities can affect the vasculature, metabolism and bones[11]. Besides various environmental risk factors e.g. smoking and a Western diet, the host microbiome is associated with the pathophysiology of the disease[12]. The diversity of the gut microbiome has been reported to be decreased in individuals with RA, compared with the general population, and is correlated with disease duration, activity, and autoantibody levels [13, 14]. Studies in murine models also report that autoimmune arthritis is strongly attenuated under germ-free conditions[15]. The introduction of specific bacteria, e.g. segmented filamentous bacteria, into germ-free animals or oral infection with Porphyromonas gingivalis drive autoimmune arthritis through activation of T helper cells[15]. Several different taxa, including Prevotella copri, Lactobacillus spp. and Colinsella spp. are enriched in the gut microbiome of patients with RA and correlate positively with disease markers e.g. immunoglobulins IgA and IgG , while other taxa like Haemophilus spp. and Faecalibacterium spp. are typically found at lower abundances in

patients with RA compared to healthy individuals[13, 16, 17]. Alterations of the gut microbiome may
therefore have an important impact on RA pathophysiology[12].

- PD affects 0.4-2% of the population over 65 years worldwide and is the second most common progressive neurodegenerative disease with men being 1.5 times more likely to be affected than R women[18]. Cardinal symptoms are motor deficiencies such as tremor and rigidity, but also include a wide range of non-motor symptoms, such as hyposmia, depression, insomnia or cognitive impairment, severely impacting patients' quality of life[19]. Aggregations of the protein α -synuclein in the dopaminergic substantia nigra represent the main neuropathological manifestations[20]. PD-associated loss of dopaminergic neurons involves mechanisms of inflammatory and autoimmune responses with microglial activity as a major driver [21]. Dysbiosis of the gut microbiome has been associated with the characteristic motor deficits and pathophysiological changes in the enteric and central nervous systems in animal studies. Increased relative abundances of the genera Akkermansia, Bifidobacterium, Lactobacillus, and *Methanobrevibacter* and decreased abundances in Faecalibacterium and Roseburia have been reported[22, 23]. Two recently published clinical-trials with prebiotic supplementation in PD observed a shift in gut microbiome composition, an increase in short-chain fatty acids (SCFA) and a reduction in non-motor-symptoms [24, 25]. Most patients with PD suffer from gastrointestinal symptoms such as constipation and irritable bowel syndrome (IBS) -like symptoms[26]. The gut-brain axis, e.g. by-products produced by the gut microbiome, may contribute to the production of α -synuclein aggregates in the enteric nervous system[27]. In addition, increased intestinal permeability[28] as driver for enteric inflammation occur in PD and substantiate a role of peripheral inflammation in the initiation and the progression of the disease[29].
- One factor with known major impact on the gut microbiome and on chronic diseases is diet[7]. Dietary approaches as fasting have already been used by Hippocrates in the 5th century BCE and have been applied ever since by numerous medical schools to treat acute and chronic diseases [30-32]. Various practices of caloric restriction through fasting have repeatedly shown remarkable health benefits[33, 34]. Maifeld et al. found that a 5-day fast followed by a modified Dietary Approach to Stop Hypertension (DASH), with additional emphasis on plant-based and Mediterranean diets, reduced systolic blood pressure, BMI, and the need for antihypertensive medications at three months post intervention compared with DASH alone [35].
- Furthermore, Choi et al. demonstrated that cycles of a fasting-mimicking diet suppress autoimmunity and stimulate remyelination via oligodendrocyte regeneration in a murine experimental autoimmune encephalomyelitis (EAE) model[36]. Jordan et al. described a reduction in monocyte metabolic and inflammatory activity after a short-term fast and conclude that fasting attenuates chronic inflammatory diseases without compromising monocyte capacity for mobilisation during acute infectious inflammation and tissue repair[37].
- These improvements can, however, typically only be maintained for a limited period of time, and the symptoms can reappear after reintroduction of the patients' standard diet. Hence, protocols to sustain these beneficial effects are of utmost importance. In mouse models of PD, intermittent fasting (IF) has led to several improvements including decreased excitotoxicity, reduced neurodegeneration and protection against autonomic dysfunction, motor and cognitive decline[38].
- IF and PF may have potent immunomodulatory effects which may partially be mediated by the gut microbiome and the fasting induced alterations of the latter[39]. These microbial shifts include upregulation of Akkermansia muciniphila, Bacteroides fragilis, other Bacteroides spp., Proteobacteria, and butyric acid producing Lachnospiraceae, but also Odoribacter, which is negatively associated with blood pressure[35, 40]. Interestingly, an overall decrease of the Firmicutes/Bacteroidetes ratio could be observed, a high ratio is commonly associated with several pathologies, including RA [41].

A potential mechanism underlying the observed beneficial effects induced by dietary interventions might be a direct gut microbiome-immune system interaction by pattern recognition. The microbiome can regulate the intestinal innate immune system by modulating toll-like receptor (TLR) expression on immunosensor cell surface through microbe-associated molecular patterns (MAMPs), which can consequently trigger cytokine production and up-regulation of molecules on antigen presenting cells, leading to activation of T cells[42]. Therefore, a change in gut microbiome composition can lead to different outcomes in immune signalling pathways and either favour or suppress inflammation and autoimmunity.

The impact and importance of the gut microbiome on human physiology and its potential modifications by nutrition and dietary patterns, have been underestimated for centuries[43]. Reasons may include missing standardised therapeutic protocols, the interindividual variability in the response to fasting, lack of knowledge about possible adverse effects, and difficulties in the interpretation of underlying mechanisms seen in clinical trials, but also in the comparably low potential for achieving economic revenue or scientific impact[8].

Modern experimental approaches and computational integration allow a multi-layer analysis of digestive processes in low caloric settings including the gut microbiome[44]. These technological developments also permit a closer investigation of the link between the immune system and severe caloric restriction.

To our knowledge no clinical trials have been investigating the connection between IF or PF and PD in humans so far[38]. Our study aims to elucidate the causal relationship between the gut microbiome and the immune system. To do so, we will use analyses of the molecular basis of human-microbiome interactions enabled by high throughput methodologies such as the combination of metagenomics, metatranscriptomics and metaproteomics. Moreover, we are aiming at identifying new genes, proteins, metabolites, and host pathways facilitating the development of novel diagnostic and therapeutic tools[45, 46].

Study objectives

Methods and Analysis (3122)

The first objective of the study is to define specific gut microbiome-derived molecules in RA and PD, compared to healthy individuals, and relate this information to the immunophenotypes of the individuals. The second objective is to identify and track common and disease-specific molecular signatures to predict the outcome of a gut microbiome-targeted therapeutic intervention, here fasting, on inflammation-driven symptoms in RA and PD. The third objective of the study is to identify and validate microbiome-derived effector molecules which downregulate pro-inflammatory innate and adaptive immune pathways.

Study design

The ExpoBiome cohort consists of 180 adult individuals, meeting the exclusion and inclusion criteria (Table 1), for the cross-sectional study (objectives 1 and 3) and 60 adult individuals for the longitudinal study (objectives 2 and 3). There are five different arms in total: (1) RA - cross-sectional arm [60 patients], (2) PD – cross-sectional arm [60 patients], and (3) healthy controls – cross-sectional arm [60 patients], (4) RA – longitudinal arm [30 patients], (5) PD – longitudinal arm [30 patients] (Figure 1).

At the first visit (T0), patients answer several questionnaires, and blood, urine, saliva, and stool samples are obtained (Table 2). The longitudinal arms (4) and (5) undergo a 5–7-day PF with a dietary energy supply of max. 350-400 kcal per day with vegetable or grain broths as well as fresh vegetable juices[31, 40]. After the PF, the longitudinal arms follow a dietary regimen including the concept of TRE for a period of 12 months following the 16:8 pattern[47]. This means that food intake is allowed ad libitum for 8 h, followed by 16 h of fasting where no food should be consumed. The intake of non-caloric beverages, e.g., water, unsweetened tea or coffee is, however, allowed. The participants attend one follow-up visit (T2) during the PF and 9 follow-up visits during the 12 months of TRE (Figure 1).

5 251 Patient and Public Involvement

Feedback of patients during former clinical trials at the study centre in Berlin was integrated in the planning and design of the fasting intervention of this study. Patients are not involved in the conduct, reporting, or dissemination plans of this research.

20 255

Recruitment and randomisation

Patients are recruited by the specialised sites via different sources, e.g., by direct referral from either a physician at the Immanuel Hospital Berlin and the outpatient department of the Institute of Social Medicine, Epidemiology and Health Economics at Charité-Universitätsmedizin Berlin, or the Paracelsus-Elena Clinic in Kassel, or by non-personal advertising strategies (e.g. flyers or social media). For PD, the patients are screened by an experienced movement disorders specialist for featuring at least two of resting tremor, bradykinesia, and rigidity according to the United Kingdom Parkinson's Disease Society Brain Bank criteria[48]. Additionally, patients must show evidence of a dopaminergic deficit, either with DaTScan imaging or with a clear response to dopaminergic drugs. Motor and non-motor symptoms are assessed with the MDS-UPDRS (part I – IV) including the Hoehn and Yahr (severity) scale[49]. Additional PD-specific scales as Parkinson's Disease Sleep Scale-2, Parkinson's Disease Questionnaire-39, Non-Motor Symptoms Questionnaire and Non-Motor Symptoms Scale are used.

For patients with RA, the diagnosis has been made prior to the study by an experienced rheumatologist according to the European League Against Rheumatism (EULAR) criteria[50]. All clinical stages of RA will be included. We excluded patients with a BMI <18.5, as this indicates underweight, and fasting is not recommended. We did, however, not include an upper limit as fasting might be especially beneficial for patients with a BMI >24.9 and more than 60% of patients with RA are classified as overweight or obese[51]. For comorbidities we excluded mainly diseases which are known to interfere with the gut microbiome and might be potential confounders.

The chosen exclusion criteria will optimize the pairing process of healthy controls and patients with either RA or PD. However, as we have two diseases with different anthropometric characteristics (including age, gender, BMI) and only one control group, adding additional inclusion and exclusion criteria in the recruitment process would compromise on optimized matching. Furthermore, for the longitudinal part of the study, each patient will serve as his/her own control over time. Participants meeting all the inclusion and no exclusion criteria (Table 1) are assigned to their respective groups (RA, PD, or healthy control) (Figure 1) for the cross-sectional study after written informed consent.

Half of the patients from the RA group and half of the patients from the PD group is selected to take
 part in the longitudinal part of the study, including the fasting intervention according to their
 availability for all 11 visits and their willingness to follow TRE over 12 months. This study is an open label trial, as blinding is not feasible in fasting interventions.

Table 1: Inclusion and exclusion criteria

Inclusion criteria	Exclusion criteria
--------------------	--------------------

• Age 18-79	 Gout or proven bacterial arthritis
• One of the following diagnoses:	 Participation in another study
rheumatoid arthritis (first diagnosis	 Existing/current eating disorder
>6 weeks ago), Parkinson's disease	(bulimia nervosa, anorexia nervosa)
OR healthy volunteer	within the past 5 years
 Control ("healthy") individuals must 	• Severe internal disease (e.g. kidney
be without any evidence of active	deficiency with creatinine > 2mg/dl)
known or treated RA, without any	Existing vegan diet or fasting during
evidence of active, known or treated	the last six months
central nervous system disease, and	• Presence or suspicion of atypical PD
without a known family history of	(e.g. early dementia, early
idiopathic PD	autonomous dysfunction)
Control individuals should match the	Diagnosis of chronic inflammatory
RA or PD individuals as closely as	bowel diseases, celiac disease or
possible (sex, age, education)	colorectal cancer according to the
Present written declaration of	guidelines of the German Society of
consent	Gastroenterology
Ability to understand the patient	 Use of anti-psychotic drugs
information and willingness to sign the consent form	Antibiotic use during the previous 12 months
 Consent to specimen collection and 	• Start of novel therapy with disease-
specimen use	modifying anti-rheumatic drugs
	• Pregnancy or breastfeeding women
	Contraindication for additional blood
	draws (e.g. haemoglobin <10)
	• BMI < 18.5
	Psychiatric illness that limits
	understanding of the examination
	protocol (unable to consent)

Fasting dietary counselling

The fasting group is closely monitored by nutritionists trained in fasting therapy, backed up by physicians experienced in fasting, from the Charité – Universitätsmedizin Berlin and the Paracelsus-Elena Clinic to ensure a uniform implementation of the fasting guidelines and the well-being of the study participants. The monitoring consists of several in person and virtual meetings which held individually or in group settings. Five meetings including the visits T0 and T2 during the fasting week as well as a group meeting after PF to ensure a well-managed start to the TRE phase take place. Group sessions are standardised using a pre-set deck of slides to be discussed during the group meetings with only minor disease-related differences between the PD and RA groups. All longitudinal participants receive a study-specific script with information on fasting procedures. Although the adherence of the patients cannot be profoundly controlled in the ambulatory setting, the blood samples will allow us to have additional insight into the nutritional habits as well as the fasting state of the patients on the day of the visit (blood glucose levels).

1		
2 3		
4 5	303	
6	304	Medication
7 8	305 306	The medical treatments of the patients are monitored and documented with every clinical visit. The fasting intervention might necessitate temporary adjustments of several medications e.g., anti-
9	307	diabetic and anti-hypertensive drugs as insulin levels and hypertension will be reduced due to lack of
10 11	308	food intake [31].
12 13	309	
14	310	Data collection
15 16	311 312	Sample and data collection is performed at the two clinical sites, Charité – Universitätsmedizin Berlin and Paracelsus-Elena Clinic (Table 2).
17	313	
18 19	314	Table 2: Sampling procedures.
20 21		a) Biochemical samples and procedures
22		Blood (123 mL at T0, 23 mL at T2-T11)
23 24		Stool collection (2 mL at T0 and T3-T11)
25 26		Saliva collection (3.5 mL at T0-T11)
27		Midstream urine (50 mL at T0 -T11)
28 29	315	
30		b) Questionnaires
31 32		Disease specific
33 34		PD:
35		 Disease Activity Score (DAS-28) [52]
36 37		 Parkinson's Disease Sleep Scale-2
38 39		(PDSS-2) [53]
40		 Parkinson's Disease Questionnaire-39
41 42		(PDQ-39)[54]
43		Simplified Disease Index Score (SDAI) [55]
44 45		 Funktionsfragebogen Hannover (FFbH-R)
46 47		[56]
48		
49 50		Movement Disorder Society Unified PD
51		Rating Scale (MDS-UPDRS)[57]
52 53		Non-Motor Symptoms Questionnaire
54 55		(NMSQ)[58]
56		 Non-Motor Symptoms Scale (NMSS)[59]
57 58		RA:
		• Disease Activity Score (DAS-28) [55]

1 2		
3 4		Non-Motor Symptoms Questionnaire
5 6		(NMSQ) [58]
7		 Funktionsfragebogen Hannover (FFbH-R)
8 9		[56]
10		Dietary behaviour and lifestyle
11 12		
13		 Fasting experience, expectation, and
14 15		intervention
16		Lifestyle
17 18		24H-Food-recall
19 20		 Food Frequency Questionnaire (FFQ)
21		General health and well-being
22 23		 Health Assessment Questionnaire
24 25		(HAQ)[60]
26		Bristol Stool Scale[61]
27 28		 Quality of Life questionnaire (WHO-5)[62]
29		 Hospital Anxiety and Depression Scale
30 31		(HADS)[63]
32 33		
34		Profile of Mood States[64]
35 36	316 317	
37		
38 39	318 319	Anthropometric data and questionnaires The electronic data capture system REDCap[65], a secure web-based application, is used to record all
40 41	320	individual specific data. All data is stored on a secure server infrastructure at the host institution in
41	321	Luxembourg. Weight, height, body mass index (BMI), heart rate and blood pressure in sitting and
43 44	322 323	standing position as well as waist-hip-ratio is determined at every visit. Dietary behaviour, sociodemographic measurements (age, sex, education level, employment status, marital status),
44 45	324	family history, current and previous illness and co-morbidities, and current medications, as well as
46 47	325	disease-specific data, questionnaires about the well-being of the patients and data on the behavioural
47 48	326 327	factors are collected at baseline, T6 (week 3), T9 (month 6) and T11 (month 12) (Table 2). Questionnaires (24h-Food Recall, Bristol Stool Scale) are answered at all visits by the study
49 50	328	participants. Data storage, analysis and exchange are done only in pseudonymised fashion. The
51	329	nutritional data is analysed using the Nutrilog 3.20 software (Nutrilog SAS, Marans).
52 53	330 331	Blood samples and parameters
54	221	
55	332	Blood samples are collected at each visit, and immediately used for peripheral blood mononuclear cell
55 56	333	(PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at
56 57	333 334	(PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at -80°C (T0-T11). A clinical standard laboratory report is generated after every visit for each study
56	333	(PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at

3	336	(ACPA), zonulin, fatty-acid binding protein 2 (FABP2), and calprotectin levels are measured. Aliquots
4	337	are securely stored to account for novel observations and testing of hypotheses.
5	220	

6	338	
0	339	<i>Table 3: Routine blood parameters measured at each timepoint (T0 for cross-sectional study, T0-T11 for longitudinal study)</i>
7		= = = = = = = = = = = = = = = = = = =

Haemat	ology – EDTA-	Clinical Chemistry –
blood		Serum
Basophi	ls, %	Albumin
Basophi	ls, abs.	ALT, 37°C
Eosinop	hils, %	Alkaline Phosphatase,
		37°C
Eosinop	hils, abs.	AST, 37°C
Erythroo	cytes	Bilirubin, total
Haemat	ocrit	Cholinesterase
Haemog	globin	Cholesterol
HbA1c	R	Creatinine
Leucocy	/tes	hs-CRP
Lympho	cytes, %	Glucose, serum
Lympho	cytes, abs.	Gamma-GT, 37°C
MCH		HDL-Cholesterol
MCHC		LDL-Cholesterol
MCV		Potassium
Monocy	tes, %	Sodium
Monocy	tes, abs.	Total Protein
Neutrop	hils, %	Triglycerides
Neutrop	hils, abs.	Uric Acid
Platelets	6	Urea/BUN
RDW		Proteins – Serum
Reticulo	cytes	Rheumatoid factor H 35.9
Reticulo	cytes	Hormones – Serum
Reticulo	cytes, abs.	Insulin
		TSH (basal)

53 340

⁵⁴ 341 Stool, urine and saliva samples

The samples listed in Table 2 are collected at each visit, except for stool samples on T2 (fasting week) and immediately frozen and stored at -80°C. Stool characteristics are recorded at the time of the sampling. Faecal samples represent the main sample type for resolving the dynamic processes driven by microbiome in the gut. Also, as the gut microbiome is prone to diurnal fluctuations, the stool samples are collected in the morning, as far as possible.

Methods applied to samples

Biomolecular extractions

The collected stool samples undergo a biomolecular extraction procedure to allow isolation of concomitant DNA, RNA, proteins, peptides and metabolites from single, unique faecal water samples; this process involves cryo-milling the samples in liquid nitrogen, disassociating metabolites from membrane and cell wall components in a solvent mixture of methanol, chloroform and water and lastly proteins and RNA extraction by a methanol/chloroform and phenol buffer [66, 67]. Faecal water is recovered following centrifugation and filtration, at low-speed or low-flow, respectively, to avoid cell lysis. Nucleic acids are preserved by the addition of ribonuclease inhibitors and isolated by silica-column-based techniques. This protocol involves the use of a robotic platform, ensuring a higher level of standardisation and reproducibility[2].

Coupled metagenomic and metatranscriptomic analyses

Prior to sequencing library preparation, internal standards are introduced to obtain quantitative sequencing data[68]. Contamination-free metagenomic (MG) and metatranscriptomic (MT) data is generated, processed and analysed using the Integrated Meta-omics Pipeline (IMP)[45], which incorporates pre-processing, assembly, gene annotation, mapping of reads, single nucleotide polymorphism calling, data normalisation as well as analyses of community structure and function in a fully reproducible software framework based on Docker. The MG and MT data is specifically screened for enrichments in genes and pathways with known immunogenic properties[69]. The extracellular biomolecules are linked to specific microbial populations based on the intracellular metagenomic data [70]. In addition, the sequencing data is mapped against genomes of food components[44]. The quantitative data is also related to microbial population sizes to determine the contribution of the resolved microbial populations in stool to the extracellular DNA and RNA complements[71].

Metaproteomics

For the metaproteomic analyses, filtration is used to separate extracellular peptides from the obtained (poly)peptides. The resulting smaller fractions are then desalted and analysed without proteolytic digestion via liquid chromatography (LC) and mass spectrometry (MS) on an EasyNano-LC coupled online to a QExactive-Plus mass spectrometer (ThermoScientific, Waltham, USA). The identification of ribosomal peptides is done with an integrated catalogue of MG and MT data, while the non-ribosomal peptides are identified using different tools, i.e., MyriMatch, DirecTag as well as CycloBranch[45, 72, 73]. The metaproteomic data also allows identification of extracellular (poly)peptides with possible pathogenic functions including protein misfolding and molecular mimicry[74, 75].

Metabolomics

Metabolomic data is analysed using a combination of targeted and untargeted approaches [44, 67, 76]. This highlights the major metabolite classes produced by the gut microbiome with an effect on human physiology including organic acids, SCFA, lipids, branched-chain fatty acids, branched-chain amino acids, vitamins, bile acids and neurotransmitters. Besides external compound calibration series for quantification and quality control samples to ensure data normalisation and data acquisition quality assessment, the metabolite extraction fluid is fortified with multiple internal standards to improve method precision and accuracy[77, 78]. The data is compared to in-house databases and public mass spectral libraries to identify known metabolites. The metabolomic data complements the

394 metagenomic and metatranscriptomic data and thus allows further establishments of conclusive links395 to metabolic properties in the gut.

397 Deep immune profiling

Deep immune profiling is done using a recently established and optimised panel of metal-labelled antibodies together with cytometry coupled to mass spectrometry (MS), the Maxpar Direct Immune Profiling System (MDIPA). This approach allows the simultaneous quantification of 38 parameters on single cells. Whole blood is stained with the MDIPA kit and stabilised with Proteomic stabiliser Prot-1 (501351694, Smart Tube Inc., Las Vegas) before storage at -80°C. The quantified immune cells included in the MDIPA panel are CD3+, CD4+, CD8+, monocytes, dendritic cells, granulocytes, MAIT, T cells, NK and B cells[79]. Cytokine expression profiles is analysed on blood plasma using the Human Luminex performance Cytokine Panel (R&D Systems Europe, Abingdon), measuring CCL3, CCL4, CCL5, GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-18, IL-21, IL-27, IL-33, IFN-β, Galectin-1, IFN- γ and TNF- α [69].

21 409 Gut-on-a-chip models

410 PBMCs isolated from T0 blood samples are co-cultured with gut-derived microbes under
 411 physiologically representative conditions using the gut-on-a-chip model HuMiX[80]. This model of the
 412 human gastrointestinal interface allows the investigation of the interactions between immune,
 413 epithelial and bacterial cells and specifically the response to fasting in personalised in vitro models.

28 414

30 415 The Expobiome Map

The Expobiome Map (https://expobiome.lcsb.uni.lu) illustrates the diverse complex of microbial immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this "expobiome" and human immune pathways are encoded in the context of chronic diseases[1]. The ExpoBiome Map is visualised using the MINERVA Platform[81]. Clicking on different elements on the map reveals factors they affect and are affected by, allowing an easier navigation through the complex relationships between individual microbiome components in relation to human disease. The multi-omics data generated in the present study will be integrated with the Map.

40 424

425 Exploratory analysis of novel host-microbiome interactions

Unknown non-ribosomal peptides or metabolite features are associated through correlation with
transcripts, proteins, and metabolites. Extracellular DNA fragments, as well as transcripts, proteins
and ribosomal peptides are linked to their genomic context by using IMP[45]. The data generated by
the project will be connected and collated to existing, publicly available datasets.

49 431 Outcome parameters

⁵¹ 432 Primary Outcome

The primary endpoint of the study is the characterisation of the gut microbiome. The evaluation
includes both between-group and within-group differences in the longitudinal study arms with the
fasting intervention.

58 437 Secondary Outcome Measures

438 Secondary outcomes include the identification of common and disease-specific molecular signatures
 439 and the characterisation of microbiome-derived effector molecules impacting the innate and adaptive

immune pathways. Furthermore, several additional parameters mentioned in Anthropometric data and questionnaires are assessed over a period of 12 months.

Sample size and power calculation

A power calculation using pilot metatranscriptomic data based on faecal extracellular RNA samples was performed to determine the number of subjects to be recruited for the ExpoBiome project. The obtained relative abundances of genera were used for the calculation of the required sample size per group. The power calculation was based on the algorithm as described by Tusher, Tibshirani, and Chu[82]. To achieve a power of 90% (at α = 0.05), a total of 50 individuals per group (RA, PD, healthy controls) must be analysed. Considering any possible dropouts, 20% additional subjects are recruited, resulting in a total number of 180 individuals, i.e., 60 per group. For the longitudinal part, a subset of 60 adult individuals (30 patients with Parkinson's disease and 30 patients with rheumatoid arthritis) are selected, based on their ability and willingness to participate in the longitudinal part of the study (12 months follow-up). The selected number of participants for the longitudinal study is based on feasibility due to the complexity and high costs of the clinical trial. The total number of subjects in the longitudinal study can be smaller, as each individual serves as their own control.

Adverse events

There are no major risks expected for participants. Minor common adverse effects of PF might include headaches, nausea, insomnia, back pain, dyspepsia and fatigue[83]. Any occurring adverse events are recorded at each visit in REDCap[65]. Serious adverse events are communicated to the study coordinator and principal investigator within 24 h of their report.

Data management, monitoring, analysis, and evaluation of data

The study participants receive a study ID (pseudonym) which is used for all collected data. Self-administered questionnaires are directly recorded in REDCap. Participant files are kept for at least 10 years at the respective clinical sites.

- Weekly meetings between the study team, the different clinical partners, and the principal investigator, ensure a close monitoring of the data. Any occurring adverse events or other issues are thus handled immediately.
- Different statistical tests are performed according to the nature of the data. A premature termination of the study is not envisaged; therefore, no interim analysis is done. Different correlation measures are applied, including Spearman correlation, mutual information on discretised data, distance correlation, maximum information criterion, local similarity analysis and the bioenv approach. Comparison across all omic levels allows identification of common and disease-specific signatures. Multivariate machine learning is used to link different data features to observed patterns. For additional confounding factors, especially in the cross-sectional study, multivariate statistical analysis will be performed. These factors will be accounted for by including confounders in the analysis, e.g., as covariate in the statistical models.
- The longitudinal part of the study continues for a period of 12 months. After finalisation of this period, there is no follow-up of the participants. Interesting findings will be further validated using the existing sample set and analyses may be performed on additionally collected samples.
- The SPIRIT - checklist (Standard Protocol Items: Recommendations for Interventional Trials) was used to write this protocol [84].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Trial status

The recruitment for the ExpoBiome study started in April 2021 and is currently ongoing. All study participants should be recruited by the end of 2022. The sample collection will take place from April 2021 to November 2023.

489 Acknowledgements

We thank Dr. Catharina Delebinski, Melanie Dell'Oro, Grit Langhans, Ursula Reuß, Maik Schröder andNadine Sylvester for their support during the study.

493 Author contributions:

Study design and protocol were done by Bérénice Hansen, Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes; the interventional concept was drawn by Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Anika Hartmann, Brit Mollenhauer, Sebastian Schade, Nico Steckhan, Jochen G. Schneider, Paul Wilmes; the clinical trial was designed and is conducted by Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Anika Hartmann, Brit Mollenhauer, Sebastian Schade; the procured funding was provided by Paul Wilmes; the planning of high-throughput applications, statistical planning, sample size calculation and randomisation were defined by Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes, Kirsten Roomp; the initial draft of the manuscript and coordination of the editing process were performed by Bérénice Hansen; the protocol preparation has been done by Bérénice Hansen, Audrey Frachet-Bour, Janine Habier; the planning of the data analysis was done by Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes, Kirsten Roomp, Velma T.E. Aho, Marek Ostaszewski; all authors contributed equally with edits, comments and feedback, read and approved the final manuscript.

508 Ethics and dissemination

Ethical approval was obtained to plan and conduct the trial from the institutional review board of the Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of the University of Luxembourg (ERP 21-001-A ExpoBiome). The results of this study will be disseminated through peer-reviewed publications, scientific presentations, as well as press releases and social media postings (Twitter, LinkedIn). Study participants will be contacted and informed by the respective clinical sites about the outcome and results of the study, once the data analysis has been completed (dissemination phase).

⁸ 519 **Funding statement**: This project has received funding from the European Research

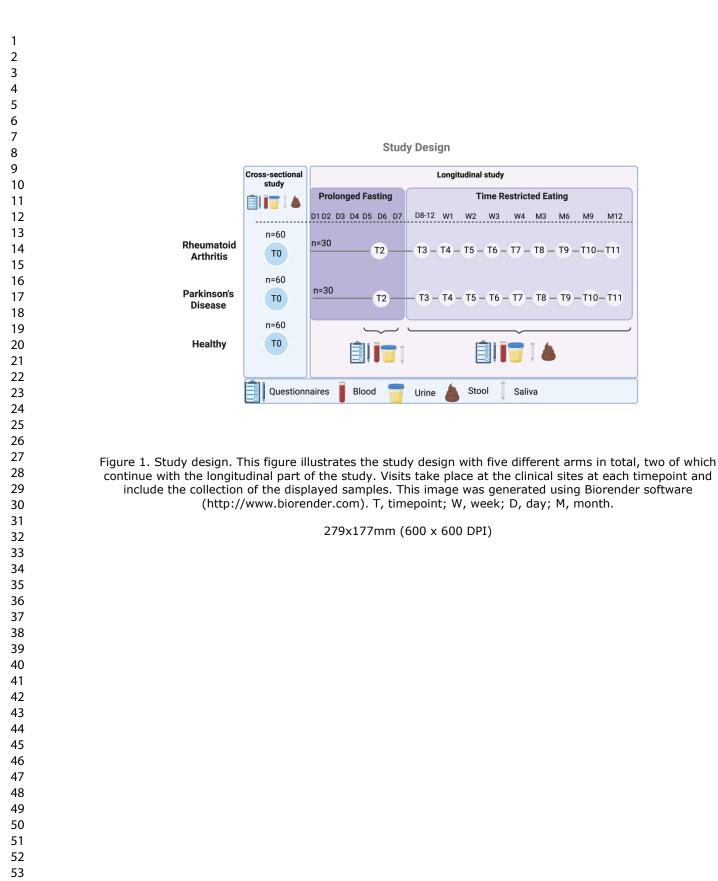
520 Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant 521 agreement No. 863664).

522 Competing interests statement

523 None declared.

Supplements The SPIRIT checklist was used to write our report[84]. References Wilmes, P., et al., The gut microbiome molecular complex in human health and 1. disease. Cell Host Microbe, 2022. 30(9): p. 1201-1206. 2. De Saedeleer, B., et al., Systematic characterization of human gut microbiome-secreted molecules by integrated multi-omics. ISME Communications, 2021. 1(1): p. 82. 3. Greenhalgh, K., et al., The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol, 2016. 18(7): p. 2103-16. 4. Hall, A.B., A.C. Tolonen, and R.J. Xavier, Human genetic variation and the gut microbiome in disease. Nature Reviews Genetics, 2017. 18(11): p. 690-699. Baldini, F., et al., Parkinson's disease-associated alterations of the gut microbiome 5. predict disease-relevant changes in metabolic functions. BMC Biol, 2020. 18(1): p. 62. Yoo, J.Y., et al., Gut Microbiota and Immune System Interactions. Microorganisms, 6. 2020. 8(10). 7. Sonnenburg, J.L. and F. Bäckhed, Diet-microbiota interactions as moderators of human metabolism. Nature, 2016. 535(7610): p. 56-64. 8. Zmora, N., J. Suez, and E. Elinav, You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol, 2019. 16(1): p. 35-56. 9. Guo, Q., et al., Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res, 2018. 6: p. 15. 10. Healthline, V.L. Rheumatoid Arthritis by the Numbers: Facts, Statistics, and You. 2021. 11. Scherer, H.U., T. Häupl, and G.R. Burmester, The etiology of rheumatoid arthritis. Journal of Autoimmunity, 2020. 110: p. 102400. Bodkhe, R., B. Balakrishnan, and V. Taneja, The role of microbiome in rheumatoid 12. arthritis treatment. Ther Adv Musculoskelet Dis, 2019. 11: p. 1759720x19844632. Chen, J., et al., An expansion of rare lineage intestinal microbes characterizes 13. rheumatoid arthritis. Genome Medicine, 2016. 8(1): p. 43. 14. Kitamura, K., et al., Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J Immunol Res, 2022. 2022: p. 6839356. Wu, H.J., et al., Gut-residing segmented filamentous bacteria drive autoimmune 15. *arthritis via T helper 17 cells.* Immunity, 2010. **32**(6): p. 815-27. 16. Scher, J.U., et al., Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife, 2013. 2: p. e01202. Zhang, X., et al., The oral and gut microbiomes are perturbed in rheumatoid arthritis 17. and partly normalized after treatment. Nature Medicine, 2015. 21(8): p. 895-905. 18. Lubomski, M., et al., Parkinson's disease and the gastrointestinal microbiome. J Neurol, 2020. 267(9): p. 2507-2523. 19. Opara, J., et al., Motor assessment in Parkinson's disease. Ann Agric Environ Med, 2017. **24**(3): p. 411-415.

1			
2			
3	568	20.	Tysnes, O.B. and A. Storstein, Epidemiology of Parkinson's disease. J Neural Transm
4 5	569		(Vienna), 2017. 124 (8): p. 901-905.
6	570	21.	Garcia, P., et al., Neurodegeneration and neuroinflammation are linked, but
7	571		independent of alpha-synuclein inclusions, in a seeding/spreading mouse model of
8	572		<i>Parkinson's disease.</i> Glia, 2022. 70 (5): p. 935-960.
9 10	573	22.	Heintz-Buschart, A. and P. Wilmes, Human Gut Microbiome: Function Matters.
10	574		Trends Microbiol, 2018. 26 (7): p. 563-574.
12	575	23.	Romano, S., et al., Meta-analysis of the Parkinson's disease gut microbiome suggests
13	576		alterations linked to intestinal inflammation. npj Parkinson's Disease, 2021. 7(1): p.
14	577		27.
15 16	578	24.	Becker, A., et al., Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut
17	579		Microbiota in Parkinson's Disease - The RESISTA-PD Trial. Genomics Proteomics
18	580		Bioinformatics, 2022. 20 (2): p. 274-287.
19	581	25.	Hall, D.A., et al., An open label, non-randomized study assessing a prebiotic fiber
20 21	582		intervention in a small cohort of Parkinson's disease participants. Nat Commun,
21	583		2023. 14 (1): p. 926.
23	584	26.	Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's
24	585		disease and their connection to gut microbiota. European journal of neurology, 2017.
25	586		24 (11): p. 1375-1383.
26 27	587	27.	Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in
28	588		Parkinson's Disease. Cell Mol Neurobiol, 2022. 42 (2): p. 315-332.
29	589	28.	Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa
30	590		alpha-synuclein staining and endotoxin exposure markers in early Parkinson's
31 32	591		<i>disease.</i> PLoS One, 2011. 6 (12): p. e28032.
33	592	29.	Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013.
34	593		50 : p. 42-8.
35	594	30.	Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,,
36 37	595		Accessed 3 October 2022. https://www.britannica.com/topic/fasting.
37 38	596	31.	Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in
39	597		patients with rheumatoid arthritis (NutriFast): study protocol for a randomised
40	598		<i>controlled clinical trial.</i> BMJ Open, 2021. 11 (8): p. e047758.
41	599	32.	Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain
42 43	600		syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep,
44	601		2010. 14 (2): p. 80-7.
45	602	33.	Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health
46	603		parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121 (8): p. 2349-
47 48	604		2359.
40	605	34.	Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus
50	606		monkeys. Nature Communications, 2017. 8(1): p. 14063.
51	607	35.	Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and
52	608		body weight in metabolic syndrome patients. Nature Communications, 2021. 12 (1):
53 54	609		p. 1970.
55	610	36.	Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces
56	611		Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-
57	612		2146.
58 59	613	37.	Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte
60	614		<i>Pool.</i> Cell, 2019. 178 (5): p. 1102-1114.e17.


1 2			
3	615	38.	Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front
4	616	50.	Neurol, 2021. 12 : p. 682184.
5	617	39.	Cignarella, F., et al., Intermittent Fasting Confers Protection in CNS Autoimmunity by
6 7	618	39.	Altering the Gut Microbiota. Cell Metab, 2018. 27 (6): p. 1222-1235.e6.
8	619	40.	Mesnage, R., et al., Changes in human gut microbiota composition are linked to the
9	620	40.	energy metabolic switch during 10 d of Buchinger fasting. J Nutr Sci, 2019. 8: p. e36.
10	620 621	41.	Magne, F., et al., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut
11	622	41.	Dysbiosis in Obese Patients? Nutrients, 2020. 12 (5).
12 13	623	42.	Purchiaroni, F., et al., The role of intestinal microbiota and the immune system. Eur
14	624	42.	Rev Med Pharmacol Sci, 2013. 17 (3): p. 323-33.
15	625	43.	Leeming, E.R., et al., Effect of Diet on the Gut Microbiota: Rethinking Intervention
16	626	43.	Duration. Nutrients, 2019. 11 (12): p. 2862.
17 18	627	44.	Heintz-Buschart, A., et al., Integrated multi-omics of the human gut microbiome in a
19	628	44.	case study of familial type 1 diabetes. Nature Microbiology, 2016. 2 (1): p. 16180.
20	628 629	45.	Narayanasamy, S., et al., <i>IMP: a pipeline for reproducible reference-independent</i>
21		45.	
22	630 631		<i>integrated metagenomic and metatranscriptomic analyses.</i> Genome Biology, 2016. 17 (1): p. 260.
23 24	631 632	16	
25	632 633	46.	Wilmes, P., A. Heintz-Buschart, and P.L. Bond, A decade of metaproteomics: where we stand and what the future holds. Proteomics, 2015. 15 (20): p. 3409-17.
26		47	
27	634 635	47.	Gabel, K., et al., Effects of 8-hour time restricted feeding on body weight and
28	635 632		metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging,
29 30	636	40	2018. 4 (4): p. 345-353.
31	637 638	48.	Hughes, A.J., et al., A clinicopathologic study of 100 cases of Parkinson's disease. Arch
32	638	40	Neurol, 1993. 50 (2): p. 140-8.
33	639 640	49.	Hoehn, M.M. and M.D. Yahr, <i>Parkinsonism.</i> onset, progression, and mortality, 1967.
34 35	640	го	17(5): p. 427-427.
36	641 642	50.	Kay, J. and K.S. Upchurch, ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology (Oxford), 2012. 51 Suppl 6 : p. vi5-9.
37	642 643	51.	Feng, X., et al., Body Mass Index and the Risk of Rheumatoid Arthritis: An Updated
38		51.	Dose-Response Meta-Analysis. Biomed Res Int, 2019. 2019: p. 3579081.
39 40	644 645	52.	Wells G, B.J., Teng J, et al, Validation of the 28-joint Disease Activity Score (DAS28)
40 41	645 646	52.	and European League Against Rheumatism response criteria based on C-reactive
42	647		protein against disease progression in patients with rheumatoid arthritis, and
43	648		comparison with the DAS28 based on erythrocyte sedimentation rate. Annals of the
44	649		Rheumatic Diseases 2009. 68 : p. 954-960.
45 46	650	53.	Trenkwalder, C., et al., Parkinson's disease sleep scalevalidation of the revised
47	651	55.	version PDSS-2. Mov Disord, 2011. 26 (4): p. 644-52.
48	652	54.	Bushnell, D.M. and M.L. Martin, <i>Quality of life and Parkinson's disease: translation</i>
49	653	54.	and validation of the US Parkinson's Disease Questionnaire (PDQ-39). Qual Life Res,
50 51	654		1999. 8 (4): p. 345-50.
52	655	55.	Smolen, J.S., et al., A simplified disease activity index for rheumatoid arthritis for use
53	656	55.	in clinical practice. Rheumatology (Oxford), 2003. 42 (2): p. 244-57.
54	657	56.	Raspe, H.H., Hagedorn, U., Kohlmann, T., & Mattussek, S., <i>Der Funktionsfragebogen</i>
55 56	658	50.	Hannover (FFbH): Ein Instrument zur Funktionsdiagnostik bei polyartikulären
56 57	659		Gelenkerkrankungen, in Ergebnisse sozialwissenschaftlicher Evaluation eines
58	660		Modellversuchs (pp. 164-182). 1990, Schattauer Verlag.
59	000		modentersachs (pp. 10+ 102). 1550, Schattader Verlag.
60			

1			
2 3			
4	661	57.	Goetz, C.G., et al., Movement Disorder Society-sponsored revision of the Unified
5	662		Parkinson's Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric
6 7	663	ГO	testing plan. Mov Disord, 2007. 22 (1): p. 41-7.
8	664 665	58.	Chaudhuri, K.R., et al., International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's
9	666		disease: the NMSQuest study. Mov Disord, 2006. 21 (7): p. 916-23.
10	667	59.	Chaudhuri, K.R., et al., The metric properties of a novel non-motor symptoms scale
11 12	668	55.	for Parkinson's disease: Results from an international pilot study. Mov Disord, 2007.
13	669		22 (13): p. 1901-11.
14	670	60.	Wolfe, F., A brief clinical health assessment instrument clinhaq. Arthritis and
15	671		Rheumatism, 1989. 32 (4 Suppl): p. S99-S99.
16 17	672	61.	Lewis, S.J. and K.W. Heaton, Stool form scale as a useful guide to intestinal transit
18	673		<i>time.</i> Scand J Gastroenterol, 1997. 32 (9): p. 920-4.
19	674	62.	Topp, C.W., et al., The WHO-5 Well-Being Index: a systematic review of the literature.
20 21	675		Psychother Psychosom, 2015. 84 (3): p. 167-76.
21	676	63.	Zigmond, A.S. and R.P. Snaith, The hospital anxiety and depression scale. Acta
23	677		Psychiatr Scand, 1983. <mark>67</mark> (6): p. 361-70.
24	678	64.	McNair DM, L.M., Droppleman LF, Edits Manual for the Profile of Mood States
25 26	679		(Poms). Rev ed San Diego: Educational and Industrial Testing Service, 1992.
27	680	65.	Harris, P.A., et al., <i>Research electronic data capture (REDCap)a metadata-driven</i>
28	681		methodology and workflow process for providing translational research informatics
29	682		<i>support.</i> J Biomed Inform, 2009. 42 (2): p. 377-81.
30 31	683	66.	Wilmes, P., Roume, H., Hiller, K. & Cordes, T., Method and kit for the isolation of
32	684		genomic DNA, RNA, proteins and metabolites from a single biological sample., in
33	685		World Intellectual Property Organization, C.D.R.PG.L. Université Du Luxembourg,
34 35	686	67	Editor. 2014: Switzerland.
36	687 688	67.	Roume, H., et al., A biomolecular isolation framework for eco-systems biology. The ISME Journal, 2013. 7 (1): p. 110-121.
37	689	68.	Locati, M.D., et al., Improving small RNA-seq by using a synthetic spike-in set for size-
38	690	00.	range quality control together with a set for data normalization. Nucleic Acids Res,
39 40	691		2015. 43 (14): p. e89.
41	692	69.	Wampach, L., et al., Birth mode is associated with earliest strain-conferred gut
42	693		microbiome functions and immunostimulatory potential. Nature Communications,
43 44	694		2018. 9 (1): p. 5091.
44	695	70.	Albanese, D. and C. Donati, Strain profiling and epidemiology of bacterial species
46	696		from metagenomic sequencing. Nature Communications, 2017. 8(1): p. 2260.
47	697	71.	Vandeputte, D., et al., Quantitative microbiome profiling links gut community
48 49	698		variation to microbial load. Nature, 2017. 551 (7681): p. 507-511.
50	699	72.	Tang, H., S. Li, and Y. Ye, A Graph-Centric Approach for Metagenome-Guided Peptide
51	700		and Protein Identification in Metaproteomics. PLoS Comput Biol, 2016. 12(12): p.
52	701		e1005224.
53 54	702	73.	Tabb, D.L., C.G. Fernando, and M.C. Chambers, MyriMatch: highly accurate tandem
55	703		mass spectral peptide identification by multivariate hypergeometric analysis. J
56	704		Proteome Res, 2007. 6(2): p. 654-61.
57 58	705	74.	Heintz-Buschart, A., et al., <i>The nasal and gut microbiome in Parkinson's disease and</i>
59	706		<i>idiopathic rapid eye movement sleep behavior disorder.</i> Mov Disord, 2018. 33 (1): p.
60	707		88-98.

2								
3 4	708	75.	Chen, S.G., et al., <i>Exposure to the Functional Bacterial Amyloid Protein Curli Enhances</i>					
5	709		Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans.					
6	710		Scientific Reports, 2016. 6 (1): p. 34477.					
7	711	76.	Wilmes, P., et al., Metabolome-proteome differentiation coupled to microbial					
8	712		<i>divergence.</i> mBio, 2010. 1 (5).					
9 10	713	77.	Kim, D.H., et al., LC-MS-based absolute metabolite quantification: application to					
11	714		metabolic flux measurement in trypanosomes. Metabolomics, 2015. 11(6): p. 1721-					
12	715		1732.					
13	716	78.	Lei, Z., D.V. Huhman, and L.W. Sumner, Mass spectrometry strategies in					
14	717		<i>metabolomics.</i> J Biol Chem, 2011. 286 (29): p. 25435-42.					
15	718	79.	Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective					
16 17	719		longitudinal study. Sci Immunol, 2021. 6 (62).					
17	720	80.	Shah, P., et al., A microfluidics-based in vitro model of the gastrointestinal human–					
19	721	00.	<i>microbe interface</i> . Nature Communications, 2016. 7 (1): p. 11535.					
20	721	81.	Aho, V.T.E., et al., <i>SnapShot: The Expobiome Map.</i> Cell Host Microbe, 2022. 30 (9): p.					
21		01.						
22	723	0.2	1340-1340.e1.					
23	724	82.	Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to					
24 25	725		the ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5116-21.					
25 26	726	83.	Finnell, J.S., et al., Is fasting safe? A chart review of adverse events during medically					
27	727		supervised, water-only fasting. BMC Complementary and Alternative Medicine,					
28	728		2018. 18 (1): p. 67.					
29	729	84.	Chan, AW., et al., SPIRIT 2013 explanation and elaboration: guidance for protocols					
30	730		of clinical trials. BMJ : British Medical Journal, 2013. 346 : p. e7586.					
31	731							
32 33								
33 34		F iau	ura Laganda					
35	732	Figu	Ire Legends					
36								
37	733	Figure	e 1. Study design. This figure illustrates the study design with five different arms in					
38	734	total,	total, two of which continue with the longitudinal part of the study. Visits take place at the					

³⁹ 735 clinical sites at each timepoint and include the collection of the displayed samples. This
 ⁴⁰ 736 image was generated using Biorender software (http://www.biorender.com). T, timepoint;
 ⁴² 737 W, week; D, day; M, month.

1

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SPIRITreporting guidelines, and cite them as:

Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 Explanation and Elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586

			Page
		Reporting Item	Number
Administrative information			
Title	<u>#1</u>	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	<u>#2a</u>	Trial identifier and registry name. If not yet registered, name of intended registry	2
Trial registration: data set	<u>#2b</u>	All items from the World Health Organization Trial Registration Data Set	n/a
Protocol version	<u>#3</u>	Date and version identifier	n/a
Funding	<u>#4</u>	Sources and types of financial, material, and other support	13
Roles and responsibilities: contributorship	<u>#5a</u>	Names, affiliations, and roles of protocol contributors	1
	or peer re	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6	Roles and responsibilities: sponsor contact information	<u>#5b</u>	Name and contact information for the trial sponsor	1
7 8 9 10 11 12 13 14 15	Roles and responsibilities: sponsor and funder	<u>#5c</u>	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	1, 13
16 17 18 19 20 21 22 23	Roles and responsibilities: committees	<u>#5d</u>	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	1, 13
24 25	Introduction			
26 27 28 29 30	Background and rationale	<u>#6a</u>	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	5
31 32 33 34 35 36	Background and rationale: choice of comparators	<u>#6b</u>	Explanation for choice of comparators	5
37 38	Objectives	<u>#7</u>	Specific objectives or hypotheses	5
39 40 41 42 43 44 45	Trial design	<u>#8</u>	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, non-inferiority, exploratory)	5
46 47	Methods:			
48 49	Participants,			
50 51 52	interventions, and outcomes			
53 54 55 56 57 58 59 60	Study setting	<u>#9</u> For peer re	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	6

1 2 3 4 5	Eligibility criteria	<u>#10</u>	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6
6 7 8	Interventions: description	<u>#11a</u>	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	5,7
9 10 11 12 13 14	Interventions: modifications	<u>#11b</u>	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving / worsening disease)	5,7
15 16 17 18 19	Interventions: adherance	<u>#11c</u>	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return; laboratory tests)	7
20 21 22 23	Interventions: concomitant care	<u>#11d</u>	Relevant concomitant care and interventions that are permitted or prohibited during the trial	6,7
24 25 26 27 28 29 30 31 32 33	Outcomes	<u>#12</u>	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	10f
34 35 36 37 38	Participant timeline	<u>#13</u>	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5
39 40 41 42 43	Sample size	<u>#14</u>	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	12
44 45 46 47	Recruitment	<u>#15</u>	Strategies for achieving adequate participant enrolment to reach target sample size	5
48 49 50 51 52 53	Methods: Assignment of interventions (for controlled trials)			
54 55 56 57 58 59 60	Allocation: sequence generation	<u>#16a</u> r peer rev	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

Page 25 of 26			BMJ Open	
1 2 3			provided in a separate document that is unavailable to those who enrol participants or assign interventions	
3 4 5 6 7 8 9	Allocation concealment mechanism	<u>#16b</u>	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	n/a
10 11 12 13	Allocation: implementation	<u>#16c</u>	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	n/a
14 15 16 17 18 19 20 21 22 23 24	Blinding (masking)	<u>#17a</u>	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	n/a
	Blinding (masking): emergency unblinding	<u>#17b</u>	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	n/a
25 26	Methods: Data			
27 28	collection,			
29 30	management, and analysis			
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 	Data collection plan	<u>#18a</u>	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	10f
	Data collection plan: retention	<u>#18b</u>	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	7,12
	Data management	<u>#19</u>	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12
	Statistics: outcomes	<u>#20a</u> For peer rev	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol /iew only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	12f

1 2 3	Statistics: additional analyses	<u>#20b</u>	Methods for any additional analyses (eg, subgroup and adjusted analyses)	12f
4 5 6 7 8 9	Statistics: analysis population and missing data	<u>#20c</u>	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	12f
10 11	Methods: Monitoring			
12 13 14 15 16 17 18 19 20 21	Data monitoring: formal committee	<u>#21a</u>	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	12f
22 23 24 25 26	Data monitoring: interim analysis	<u>#21b</u>	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	n/a
27 28 29 30 31	Harms	<u>#22</u>	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	12
32 33 34 35 36 37	Auditing	<u>#23</u>	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	n/a
38 39	Ethics and			
40 41	dissemination			
42 43 44	Research ethics approval	<u>#24</u>	Plans for seeking research ethics committee / institutional review board (REC / IRB) approval	2
45 46 47 48 49 50 51	Protocol amendments	<u>#25</u>	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC / IRBs, trial participants, trial registries, journals, regulators)	2, 13
52 53 54 55 56 57 58 59	Consent or assent	<u>#26a</u>	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	6
60	Fo	r peer rev	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5	Consent or assent: ancillary studies	<u>#26b</u>	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	6			
6 7 8 9 10 11 12 13 14 15 16 17 18 19	Confidentiality	<u>#27</u>	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	12			
	Declaration of interests	<u>#28</u>	Financial and other competing interests for principal investigators for the overall trial and each study site	13			
	Data access	<u>#29</u>	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	12f			
20 21 22 23	Ancillary and post trial care	<u>#30</u>	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	n/a			
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Dissemination policy: trial results	<u>#31a</u>	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	2, 13			
	Dissemination policy: authorship	<u>#31b</u>	Authorship eligibility guidelines and any intended use of professional writers	13			
	Dissemination policy: reproducible research	<u>#31c</u>	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	n/a			
40 41	Appendices						
42 43 44 45 46 47 48 49 50	Informed consent materials	<u>#32</u>	Model consent form and other related documentation given to participants and authorised surrogatess	6			
	Biological specimens	<u>#33</u>	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	7			
51 52 53	The SPIRIT Explanation	and Ela	boration paper is distributed under the terms of the Creative Commons				
54	Attribution License CC-I	Attribution License CC-BY-NC. This checklist was completed on 07. November 2022 using					
55 56 57 58	https://www.goodreports	<u>.org/</u> , a 1	tool made by the <u>EQUATOR Network</u> in collaboration with <u>Penelope.ai</u>				
59 60	Fo	or peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				

BMJ Open

Protocol for a multicentre cross-sectional, longitudinal ambulatory clinical trial in rheumatoid arthritis and Parkinson's disease patients analysing the relation between the gut microbiome, fasting and immune status in Germany (ExpoBiome)

Journal:	BMJ Open
Manuscript ID	bmjopen-2022-071380.R3
Article Type:	Protocol
Date Submitted by the Author:	14-Jul-2023
Complete List of Authors:	Hansen, Bérénice; LCSB Laczny, Cédric C.; LCSB Aho, Velma T.E.; LCSB Frachet-Bour, Audrey; LCSB Habier, Janine; LCSB Ostaszewski, Marek; LCSB Michalsen, Andreas; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch, Department of Internal and Integrative Medicine Hanslian, Etienne; Charite Universitatsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Voppold-Liebscher, Daniela; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Hartmann, Anika; Charité Universitätsmedizin Berlin, Institute of Social Medicine, Epidemiology and Health Economics; Immanuel Hospital Berlin-Wannsee Branch Hartmann, Anika; Charité Universitätsmedizin Berlin, Institute of Social Medicine, Epidemiology and Health Economics; Charité Universitätsmedizin Berlin, Department of Dermatology, Venereology and Allergology Steckhan, Nico; Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics; University of Potsdam, Digital Health - Connected Healthcare, Hasso Plattner Institute Mollenhauer, Brit; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH Schade, Sebastian; University Medical Center Göttingen; Paracelsus- Kliniken Deutschland GmbH, Roomp, Kirsten; LCSB Schneider, Jochen; LCSB; Saarland University Hospital and Saarland University Faculty of Medicine, Department of Internal Medicine and Psychiatry Wilmes, Paul; LCSB; University of Luxembourg, Department of Life Sciences and Medicine
Primary Subject Heading :	Nutrition and metabolism
Secondary Subject Heading:	Immunology (including allergy), Rheumatology, Pharmacology and

trials < THERAPEUTICS

Keywords:

therapeutics, Neurology, Evidence based practice

SCHOLARONE[™] Manuscripts

IMMUNOLOGY, Rheumatology < INTERNAL MEDICINE, MICROBIOLOGY, Parkinson-s disease < NEUROLOGY, NUTRITION & DIETETICS, Clinical

1	
2	
3 4	
4 5	
5 6	
7	
8	
9	
10	
11	
12	
13	
14 15	
16	
17	
18	
19	
20	
21	
22	
25 24	
25	
26	
27	
20 21 22 23 24 25 26 27 28 29	
29	
30	
31 32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47 48	
40 49	
50	
51	
52	
53	
54	
55 56	
56 57	
58	

59

1	Protocol for a multicentre cross-sectional, longitudinal ambulatory
2	clinical trial in rheumatoid arthritis and Parkinson's disease patients
3	analysing the relation between the gut microbiome, fasting and
4	immune status in Germany (ExpoBiome)
5 6 7 8 9 10	Bérénice Hansen ¹ , Cédric C. Laczny ¹ , Velma T.E. Aho ¹ , Audrey Frachet-Bour ¹ , Janine Habier ¹ , Marek Ostaszewski ¹ , Andreas Michalsen ^{4,5} , Etienne Hanslian ^{4,5} , Daniela A. Koppold ^{4,5,8} , Anika Hartmann ^{4,10} , Nico Steckhan ^{4,9} , Brit Mollenhauer ^{6,7} , Sebastian Schade ^{6,7} , Kirsten Roomp ¹ , Jochen G. Schneider ^{1,3+} , Paul Wilmes ^{1,2+}
11 12	¹ Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts- Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
13 14 15 16	² Department of Life Sciences and Medicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
17 18 19	³ Department of Internal Medicine and Psychiatry, Saarland University Medical Center, D- 66421 Homburg Saar, Germany
20 21 22	⁴ Institute for Social Medicine, Epidemiology and Health Economics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
23 24	⁵ Department of Internal and Integrative Medicine, Immanuel Hospital Berlin, Germany
25 26	⁶ Paracelsus-Elena-Klinik, Kassel, Germany
27 28	⁷ University Medical Center Göttingen, Germany
29 30 31 32	⁸ Department of Pediatrics, Division of Oncology and Hematology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
33 34	⁹ Digital Health - Connected Healthcare, Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
35 36 37	¹⁰ Department of Dermatology, Venereology and Allergology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
38 39	*contributed equally
40 41	*Correspondence to:
42 43 44	Jochen Schneider (jochen.schneider@uni.lu) Paul Wilmes (paul.wilmes@uni.lu)
45 46 47	Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux,
48 49	L-4362 Esch-sur-Alzette, Luxembourg
50	Word count: 4461

51 Abstract

53 Introduction

54 Chronic inflammatory diseases like rheumatoid arthritis (RA) and neurodegenerative 55 disorders like Parkinson's disease (PD) have recently been associated with a decreased 56 diversity in the gut microbiome, emerging as key driver of various diseases. The specific 57 interactions between gut-borne microorganisms and host pathophysiology remain largely 58 unclear. The microbiome can be modulated by interventions comprising nutrition.

The aim of our clinical study is to (1) examine effects of prolonged fasting and time-restricted eating (TRE) on the outcome parameters and the immunophenotypes of RA and PD with (2) special consideration of microbial taxa and molecules associated with changes expected in (1), and (3) identify factors impacting the disease course and treatment by in-depth screening of microorganisms and molecules in personalised HuMiX gut-on-chip models, to identify novel targets for anti-inflammatory therapy.

23 65

66 Methods and Analysis

This trial is an open-label, multicentre, controlled clinical trial consisting of a cross-sectional and a
longitudinal study. A total of 180 patients is recruited. For the cross-sectional study, 60 patients with
PD, 60 patients with RA and 60 healthy controls are recruited at two different, specialized clinical sites.
For the longitudinal part, 30 patients with PD and 30 patients with RA undergo 5-7 days of prolonged
fasting (PF) followed by TRE (16:8) for a period of 12 months. One baseline visit takes place before the
PF intervention and 10 follow-up visits will follow over a period of 12 months (April 2021 to November
2023).

33 73 34 74

36 75 Ethics and dissemination

Ethical approval was obtained to plan and conduct the trial from the institutional review board of the
Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical
association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of
the University of Luxembourg (ERP 21-001-A ExpoBiome). The results of this study will be
disseminated through peer-reviewed publications, scientific presentations and social media.

82 Trial registration number at clinicaltrials.gov:

83 NCT04847011

Key words: Microbiome, fasting therapy, intermittent fasting, time restricted eating, chronic
disease, rheumatoid arthritis, Parkinson's disease, nutrition, chronic diseases, ExpoBiome,
inflammation, gut on a chip, HuMiX, immunophenotype, metagenomics, metatranscriptomics,
metaproteomics, metabolomics

90 Strengths and limitations of the study

• The participants of the longitudinal study will be closely monitored for 12 months and routine blood parameters as well as anthropometric data and questionnaires will be precisely documented.

- This study will identify novel microbiome-derived common and disease-associated molecules involved in immune system modulation in two major chronic diseases: RA and PD.
 - This study aims at also identifying novel targeted pathways to control chronic • inflammatory conditions in the future.
 - A limitation is the heterogeneity of the cohorts regarding age and sex, which is due to the prevalence of the diseases: RA is more common in women, while PD is more common in men and has a later disease onset.
 - A bias exists in choosing RA and PD as chronic disorders to study immunophenotypes although generalisable results are targeted.

Introduction (1339)

The human microbiome is emerging as a key driver of various diseases through its complex of distinct

yet connected biomolecules (referred to as the "expobiome")[1, 2]. The expobiome comprises a diverse set of nucleic acids, polypeptides and metabolites which, in the gut alone, are present in substantial concentrations[1]. However, the specific interactions between gut-borne microorganisms and host (patho)physiology remain largely unknown. Although host genetics shape the composition of the gut microbiome, the latter is particularly influenced by non-genetic factors such as lifestyle and diet[3, 4]. Therefore, the microbiome is a plausible target to modify health outcomes.

Individuals suffering from chronic diseases, including autoimmune, metabolic, and neurodegenerative diseases as well as cancer, often present alterations in their gut microbiome composition. These shifts are typically characterised by an overgrowth of one or several microbial species with likely adverse effects as well as a decrease in beneficial taxa[5]. Such imbalances are referred to as dysbiosis. Although structural microbiome changes are clearly detectable, the mechanistic or functional consequences of dysbiosis are still largely unknown. However, they may result in dysregulated interactions with the immune system[6]. Considering the intricacy of the immune system, the question arises whether the observed microbiome changes are cause or consequence of disease. This implies that, in addition to the genetic predisposition of the host, the gut microbiome needs to be considered a potential pathogenic factor or major driver of disease onset and course[3, 4].

RA and PD are two specific examples representing dysregulated microbiome-immune system interactions [7, 8]. RA is a multifactorial, chronic, and systemic autoimmune disease, primarily affecting the lining of the synovial joints with a higher risk and younger age for disease onset in women and a global prevalence of 1%[9, 10]. The exact disease pathogenesis is still unclear and no cure for RA currently exists. In addition to the common local articular symptoms of RA, systemic comorbidities can affect the vasculature, metabolism and bones[11]. Besides various environmental risk factors e.g. smoking and a Western diet, the host microbiome is associated with the pathophysiology of the disease[12]. The diversity of the gut microbiome has been reported to be decreased in individuals with RA, compared with the general population, and is correlated with disease duration, activity, and autoantibody levels [13, 14]. Studies in murine models also report that autoimmune arthritis is strongly attenuated under germ-free conditions[15]. The introduction of specific bacteria, e.g. segmented filamentous bacteria, into germ-free animals or oral infection with Porphyromonas gingivalis drive autoimmune arthritis through activation of T helper cells[15]. Several different taxa, including Prevotella copri, Lactobacillus spp. and Colinsella spp. are enriched in the gut microbiome of patients with RA and correlate positively with disease markers e.g. immunoglobulins IgA and IgG , while other taxa like Haemophilus spp. and Faecalibacterium spp. are typically found at lower abundances in

patients with RA compared to healthy individuals[13, 16, 17]. Alterations of the gut microbiome may
therefore have an important impact on RA pathophysiology[12].

- PD affects 0.4-2% of the population over 65 years worldwide and is the second most common progressive neurodegenerative disease with men being 1.5 times more likely to be affected than R women[18]. Cardinal symptoms are motor deficiencies such as tremor and rigidity, but also include a wide range of non-motor symptoms, such as hyposmia, depression, insomnia or cognitive impairment, severely impacting patients' quality of life[19]. Aggregations of the protein α -synuclein in the dopaminergic substantia nigra represent the main neuropathological manifestations[20]. PD-associated loss of dopaminergic neurons involves mechanisms of inflammatory and autoimmune responses with microglial activity as a major driver [21]. Dysbiosis of the gut microbiome has been associated with the characteristic motor deficits and pathophysiological changes in the enteric and central nervous systems in animal studies. Increased relative abundances of the genera Akkermansia, Bifidobacterium, Lactobacillus, and *Methanobrevibacter* and decreased abundances in Faecalibacterium and Roseburia have been reported[22, 23]. Two recently published clinical-trials with prebiotic supplementation in PD observed a shift in gut microbiome composition, an increase in short-chain fatty acids (SCFA) and a reduction in non-motor-symptoms [24, 25]. Most patients with PD suffer from gastrointestinal symptoms such as constipation and irritable bowel syndrome (IBS) -like symptoms[26]. The gut-brain axis, e.g. by-products produced by the gut microbiome, may contribute to the production of α -synuclein aggregates in the enteric nervous system[27]. In addition, increased intestinal permeability[28] as driver for enteric inflammation occur in PD and substantiate a role of peripheral inflammation in the initiation and the progression of the disease[29].
- One factor with known major impact on the gut microbiome and on chronic diseases is diet[7]. Dietary approaches as fasting have already been used by Hippocrates in the 5th century BCE and have been applied ever since by numerous medical schools to treat acute and chronic diseases [30-32]. Various practices of caloric restriction through fasting have repeatedly shown remarkable health benefits[33, 34]. Maifeld et al. found that a 5-day fast followed by a modified Dietary Approach to Stop Hypertension (DASH), with additional emphasis on plant-based and Mediterranean diets, reduced systolic blood pressure, BMI, and the need for antihypertensive medications at three months post intervention compared with DASH alone [35].
- Furthermore, Choi et al. demonstrated that cycles of a fasting-mimicking diet suppress autoimmunity and stimulate remyelination via oligodendrocyte regeneration in a murine experimental autoimmune encephalomyelitis (EAE) model[36]. Jordan et al. described a reduction in monocyte metabolic and inflammatory activity after a short-term fast and conclude that fasting attenuates chronic inflammatory diseases without compromising monocyte capacity for mobilisation during acute infectious inflammation and tissue repair[37].
- These improvements can, however, typically only be maintained for a limited period of time, and the symptoms can reappear after reintroduction of the patients' standard diet. Hence, protocols to sustain these beneficial effects are of utmost importance. In mouse models of PD, intermittent fasting (IF) has led to several improvements including decreased excitotoxicity, reduced neurodegeneration and protection against autonomic dysfunction, motor and cognitive decline[38].
- IF and PF may have potent immunomodulatory effects which may partially be mediated by the gut microbiome and the fasting induced alterations of the latter[39]. These microbial shifts include upregulation of Akkermansia muciniphila, Bacteroides fragilis, other Bacteroides spp., Proteobacteria, and butyric acid producing Lachnospiraceae, but also Odoribacter, which is negatively associated with blood pressure[35, 40]. Interestingly, an overall decrease of the Firmicutes/Bacteroidetes ratio could be observed, a high ratio is commonly associated with several pathologies, including RA [41].

A potential mechanism underlying the observed beneficial effects induced by dietary interventions might be a direct gut microbiome-immune system interaction by pattern recognition. The microbiome can regulate the intestinal innate immune system by modulating toll-like receptor (TLR) expression on immunosensor cell surface through microbe-associated molecular patterns (MAMPs), which can consequently trigger cytokine production and up-regulation of molecules on antigen presenting cells, leading to activation of T cells[42]. Therefore, a change in gut microbiome composition can lead to different outcomes in immune signalling pathways and either favour or suppress inflammation and autoimmunity.

The impact and importance of the gut microbiome on human physiology and its potential modifications by nutrition and dietary patterns, have been underestimated for centuries[43]. Reasons may include missing standardised therapeutic protocols, the interindividual variability in the response to fasting, lack of knowledge about possible adverse effects, and difficulties in the interpretation of underlying mechanisms seen in clinical trials, but also in the comparably low potential for achieving economic revenue or scientific impact[8].

Modern experimental approaches and computational integration allow a multi-layer analysis of digestive processes in low caloric settings including the gut microbiome[44]. These technological developments also permit a closer investigation of the link between the immune system and severe caloric restriction.

To our knowledge no clinical trials have been investigating the connection between IF or PF and PD in humans so far[38]. Our study aims to elucidate the causal relationship between the gut microbiome and the immune system. To do so, we will use analyses of the molecular basis of human-microbiome interactions enabled by high throughput methodologies such as the combination of metagenomics, metatranscriptomics and metaproteomics. Moreover, we are aiming at identifying new genes, proteins, metabolites, and host pathways facilitating the development of novel diagnostic and therapeutic tools[45, 46].

Study objectives

Methods and Analysis (3122)

The first objective of the study is to define specific gut microbiome-derived molecules in RA and PD, compared to healthy individuals, and relate this information to the immunophenotypes of the individuals. The second objective is to identify and track common and disease-specific molecular signatures to predict the outcome of a gut microbiome-targeted therapeutic intervention, here fasting, on inflammation-driven symptoms in RA and PD. The third objective of the study is to identify and validate microbiome-derived effector molecules which downregulate pro-inflammatory innate and adaptive immune pathways.

Study design

The ExpoBiome cohort consists of 180 adult individuals, meeting the exclusion and inclusion criteria (Table 1), for the cross-sectional study (objectives 1 and 3) and 60 adult individuals for the longitudinal study (objectives 2 and 3). There are five different arms in total: (1) RA - cross-sectional arm [60 patients], (2) PD – cross-sectional arm [60 patients], and (3) healthy controls – cross-sectional arm [60 patients], (4) RA – longitudinal arm [30 patients], (5) PD – longitudinal arm [30 patients] (Figure 1).

At the first visit (T0), patients answer several questionnaires, and blood, urine, saliva, and stool samples are obtained (Table 2). The longitudinal arms (4) and (5) undergo a 5–7-day PF with a dietary energy supply of max. 350-400 kcal per day with vegetable or grain broths as well as fresh vegetable juices[31, 40]. After the PF, the longitudinal arms follow a dietary regimen including the concept of TRE for a period of 12 months following the 16:8 pattern[47]. This means that food intake is allowed ad libitum for 8 h, followed by 16 h of fasting where no food should be consumed. The intake of non-caloric beverages, e.g., water, unsweetened tea or coffee is, however, allowed. The participants attend one follow-up visit (T2) during the PF and 9 follow-up visits during the 12 months of TRE (Figure 1).

5 251 Patient and Public Involvement

Feedback of patients during former clinical trials at the study centre in Berlin was integrated in the planning and design of the fasting intervention of this study. Patients are not involved in the conduct, reporting, or dissemination plans of this research.

20 255

Recruitment and randomisation

Patients are recruited by the specialised sites via different sources, e.g., by direct referral from either a physician at the Immanuel Hospital Berlin and the outpatient department of the Institute of Social Medicine, Epidemiology and Health Economics at Charité-Universitätsmedizin Berlin, or the Paracelsus-Elena Clinic in Kassel, or by non-personal advertising strategies (e.g. flyers or social media). For PD, the patients are screened by an experienced movement disorders specialist for featuring at least two of resting tremor, bradykinesia, and rigidity according to the United Kingdom Parkinson's Disease Society Brain Bank criteria[48]. Additionally, patients must show evidence of a dopaminergic deficit, either with DaTScan imaging or with a clear response to dopaminergic drugs. Motor and non-motor symptoms are assessed with the MDS-UPDRS (part I – IV) including the Hoehn and Yahr (severity) scale[49]. Additional PD-specific scales as Parkinson's Disease Sleep Scale-2, Parkinson's Disease Questionnaire-39, Non-Motor Symptoms Questionnaire and Non-Motor Symptoms Scale are used.

For patients with RA, the diagnosis has been made prior to the study by an experienced rheumatologist according to the European League Against Rheumatism (EULAR) criteria[50]. All clinical stages of RA will be included. We excluded patients with a BMI <18.5, as this indicates underweight, and fasting is not recommended. We did, however, not include an upper limit as fasting might be especially beneficial for patients with a BMI >24.9 and more than 60% of patients with RA are classified as overweight or obese[51]. For comorbidities we excluded mainly diseases which are known to interfere with the gut microbiome and might be potential confounders.

The chosen exclusion criteria will optimize the pairing process of healthy controls and patients with either RA or PD. However, as we have two diseases with different anthropometric characteristics (including age, gender, BMI) and only one control group, adding additional inclusion and exclusion criteria in the recruitment process would compromise on optimized matching. Furthermore, for the longitudinal part of the study, each patient will serve as his/her own control over time. Participants meeting all the inclusion and no exclusion criteria (Table 1) are assigned to their respective groups (RA, PD, or healthy control) (Figure 1) for the cross-sectional study after written informed consent.

Half of the patients from the RA group and half of the patients from the PD group is selected to take
 part in the longitudinal part of the study, including the fasting intervention according to their
 availability for all 11 visits and their willingness to follow TRE over 12 months. This study is an open label trial, as blinding is not feasible in fasting interventions.

Table 1: Inclusion and exclusion criteria

Inclusion criteria	Exclusion criteria
--------------------	--------------------

• Age 18-79	 Gout or proven bacterial arthritis
• One of the following diagnoses:	 Participation in another study
rheumatoid arthritis (first diagnosis	 Existing/current eating disorder
>6 weeks ago), Parkinson's disease	(bulimia nervosa, anorexia nervosa)
OR healthy volunteer	within the past 5 years
 Control ("healthy") individuals must 	• Severe internal disease (e.g. kidney
be without any evidence of active	deficiency with creatinine > 2mg/dl)
known or treated RA, without any	Existing vegan diet or fasting during
evidence of active, known or treated	the last six months
central nervous system disease, and	• Presence or suspicion of atypical PD
without a known family history of	(e.g. early dementia, early
idiopathic PD	autonomous dysfunction)
Control individuals should match the	Diagnosis of chronic inflammatory
RA or PD individuals as closely as	bowel diseases, celiac disease or
possible (sex, age, education)	colorectal cancer according to the
Present written declaration of	guidelines of the German Society of
consent	Gastroenterology
Ability to understand the patient	 Use of anti-psychotic drugs
information and willingness to sign the consent form	 Antibiotic use during the previous 12 months
 Consent to specimen collection and 	• Start of novel therapy with disease-
specimen use	modifying anti-rheumatic drugs
	Pregnancy or breastfeeding women
	Contraindication for additional blood
	draws (e.g. haemoglobin <10)
	• BMI < 18.5
	• Psychiatric illness that limits
	understanding of the examination
	protocol (unable to consent)
	, , , , , , , , , , , , , , , , , , , ,

Fasting dietary counselling

The fasting group is closely monitored by nutritionists trained in fasting therapy, backed up by physicians experienced in fasting, from the Charité – Universitätsmedizin Berlin and the Paracelsus-Elena Clinic to ensure a uniform implementation of the fasting guidelines and the well-being of the study participants. The monitoring consists of several in person and virtual meetings which held individually or in group settings. Five meetings including the visits T0 and T2 during the fasting week as well as a group meeting after PF to ensure a well-managed start to the TRE phase take place. Group sessions are standardised using a pre-set deck of slides to be discussed during the group meetings with only minor disease-related differences between the PD and RA groups. All longitudinal participants receive a study-specific script with information on fasting procedures. Although the adherence of the patients cannot be profoundly controlled in the ambulatory setting, the blood samples will allow us to have additional insight into the nutritional habits as well as the fasting state of the patients on the day of the visit (blood glucose levels).

1		
2 3		
4 5	303	
6	304	Medication
7 8	305 306	The medical treatments of the patients are monitored and documented with every clinical visit. The fasting intervention might necessitate temporary adjustments of several medications e.g., anti-
9	307	diabetic and anti-hypertensive drugs as insulin levels and hypertension will be reduced due to lack of
10 11	308	food intake [31].
12 13	309	
14	310	Data collection
15 16	311 312	Sample and data collection is performed at the two clinical sites, Charité – Universitätsmedizin Berlin and Paracelsus-Elena Clinic (Table 2).
17	313	
18 19	314	Table 2: Sampling procedures.
20 21		a) Biochemical samples and procedures
22		Blood (123 mL at T0, 23 mL at T2-T11)
23 24		Stool collection (2 mL at T0 and T3-T11)
25 26		Saliva collection (3.5 mL at T0-T11)
27		Midstream urine (50 mL at T0 -T11)
28 29	315	
30		b) Questionnaires
31 32		Disease specific
33 34		PD:
35		 Disease Activity Score (DAS-28) [52]
36 37		 Parkinson's Disease Sleep Scale-2
38 39		(PDSS-2) [53]
40		 Parkinson's Disease Questionnaire-39
41 42		(PDQ-39)[54]
43		Simplified Disease Index Score (SDAI) [55]
44 45		 Funktionsfragebogen Hannover (FFbH-R)
46 47		[56]
48		
49 50		Movement Disorder Society Unified PD
51		Rating Scale (MDS-UPDRS)[57]
52 53		Non-Motor Symptoms Questionnaire
54 55		(NMSQ)[58]
56		 Non-Motor Symptoms Scale (NMSS)[59]
57 58		RA:
		• Disease Activity Score (DAS-28) [55]

1 2		
3 4		Non-Motor Symptoms Questionnaire
5 6		(NMSQ) [58]
7		 Funktionsfragebogen Hannover (FFbH-R)
8 9		[56]
10		Dietary behaviour and lifestyle
11 12		
13		 Fasting experience, expectation, and
14 15		intervention
16		Lifestyle
17 18		24H-Food-recall
19 20		 Food Frequency Questionnaire (FFQ)
21		General health and well-being
22 23		 Health Assessment Questionnaire
24 25		(HAQ)[60]
26		Bristol Stool Scale[61]
27 28		 Quality of Life questionnaire (WHO-5)[62]
29		 Hospital Anxiety and Depression Scale
30 31		(HADS)[63]
32 33		
34		Profile of Mood States[64]
35 36	316 317	
37		
38 39	318 319	Anthropometric data and questionnaires The electronic data capture system REDCap[65], a secure web-based application, is used to record all
40 41	320	individual specific data. All data is stored on a secure server infrastructure at the host institution in
41	321	Luxembourg. Weight, height, body mass index (BMI), heart rate and blood pressure in sitting and
43 44	322 323	standing position as well as waist-hip-ratio is determined at every visit. Dietary behaviour, sociodemographic measurements (age, sex, education level, employment status, marital status),
44 45	324	family history, current and previous illness and co-morbidities, and current medications, as well as
46 47	325	disease-specific data, questionnaires about the well-being of the patients and data on the behavioural
47 48	326 327	factors are collected at baseline, T6 (week 3), T9 (month 6) and T11 (month 12) (Table 2). Questionnaires (24h-Food Recall, Bristol Stool Scale) are answered at all visits by the study
49 50	328	participants. Data storage, analysis and exchange are done only in pseudonymised fashion. The
51	329	nutritional data is analysed using the Nutrilog 3.20 software (Nutrilog SAS, Marans).
52 53	330 331	Blood samples and parameters
54	J JT	
55	332	Blood samples are collected at each visit, and immediately used for peripheral blood mononuclear cell
55 56	333	(PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at
56 57	333 334	(PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at -80°C (T0-T11). A clinical standard laboratory report is generated after every visit for each study
56	333	(PBMC) isolation (T0), analysis by the study laboratory and centrifugation to freeze plasma samples at

3	336	(ACPA), zonulin, fatty-acid binding protein 2 (FABP2), and calprotectin levels are measured. Aliquots
4	337	are securely stored to account for novel observations and testing of hypotheses.
5	220	

6	338	
0	339	<i>Table 3: Routine blood parameters measured at each timepoint (T0 for cross-sectional study, T0-T11 for longitudinal study)</i>
7		= = = = = = = = = = = = = = = = = = =

Hae	matology – EDTA-	Clinical Chemistry –
bloo	d	Serum
Base	ophils, %	Albumin
Base	ophils, abs.	ALT, 37°C
Eosi	nophils, %	Alkaline Phosphatase,
		37°C
Eosi	nophils, abs.	AST, 37°C
Eryt	nrocytes	Bilirubin, total
Hae	matocrit	Cholinesterase
Hae	moglobin	Cholesterol
HbA	1c	Creatinine
Leuc	cocytes	hs-CRP
Lym	phocytes, %	Glucose, serum
Lym	phocytes, abs.	Gamma-GT, 37°C
MCH	1	HDL-Cholesterol
MCH	IC	LDL-Cholesterol
MC\	/	Potassium
Mon	ocytes, %	Sodium
Mon	ocytes, abs.	Total Protein
Neu	rophils, %	Triglycerides
Neu	rophils, abs.	Uric Acid
Plate	elets	Urea/BUN
RDV	V	Proteins – Serum
Reti	culocytes	Rheumatoid factor H 35.9
Reti	culocytes	Hormones – Serum
Reti	culocytes, abs.	Insulin
		TSH (basal)

53 340

⁵⁴ 341 Stool, urine and saliva samples

The samples listed in Table 2 are collected at each visit, except for stool samples on T2 (fasting week) and immediately frozen and stored at -80°C. Stool characteristics are recorded at the time of the sampling. Faecal samples represent the main sample type for resolving the dynamic processes driven by microbiome in the gut. Also, as the gut microbiome is prone to diurnal fluctuations, the stool samples are collected in the morning, as far as possible.

Methods applied to samples

Biomolecular extractions

The collected stool samples undergo a biomolecular extraction procedure to allow isolation of concomitant DNA, RNA, proteins, peptides and metabolites from single, unique faecal water samples; this process involves cryo-milling the samples in liquid nitrogen, disassociating metabolites from membrane and cell wall components in a solvent mixture of methanol, chloroform and water and lastly proteins and RNA extraction by a methanol/chloroform and phenol buffer [66, 67]. Faecal water is recovered following centrifugation and filtration, at low-speed or low-flow, respectively, to avoid cell lysis. Nucleic acids are preserved by the addition of ribonuclease inhibitors and isolated by silica-column-based techniques. This protocol involves the use of a robotic platform, ensuring a higher level of standardisation and reproducibility[2].

Coupled metagenomic and metatranscriptomic analyses

Prior to sequencing library preparation, internal standards are introduced to obtain quantitative sequencing data[68]. Contamination-free metagenomic (MG) and metatranscriptomic (MT) data is generated, processed and analysed using the Integrated Meta-omics Pipeline (IMP)[45], which incorporates pre-processing, assembly, gene annotation, mapping of reads, single nucleotide polymorphism calling, data normalisation as well as analyses of community structure and function in a fully reproducible software framework based on Docker. The MG and MT data is specifically screened for enrichments in genes and pathways with known immunogenic properties[69]. The extracellular biomolecules are linked to specific microbial populations based on the intracellular metagenomic data [70]. In addition, the sequencing data is mapped against genomes of food components[44]. The quantitative data is also related to microbial population sizes to determine the contribution of the resolved microbial populations in stool to the extracellular DNA and RNA complements[71].

Metaproteomics

For the metaproteomic analyses, filtration is used to separate extracellular peptides from the obtained (poly)peptides. The resulting smaller fractions are then desalted and analysed without proteolytic digestion via liquid chromatography (LC) and mass spectrometry (MS) on an EasyNano-LC coupled online to a QExactive-Plus mass spectrometer (ThermoScientific, Waltham, USA). The identification of ribosomal peptides is done with an integrated catalogue of MG and MT data, while the non-ribosomal peptides are identified using different tools, i.e., MyriMatch, DirecTag as well as CycloBranch[45, 72, 73]. The metaproteomic data also allows identification of extracellular (poly)peptides with possible pathogenic functions including protein misfolding and molecular mimicry[74, 75].

Metabolomics

Metabolomic data is analysed using a combination of targeted and untargeted approaches [44, 67, 76]. This highlights the major metabolite classes produced by the gut microbiome with an effect on human physiology including organic acids, SCFA, lipids, branched-chain fatty acids, branched-chain amino acids, vitamins, bile acids and neurotransmitters. Besides external compound calibration series for quantification and quality control samples to ensure data normalisation and data acquisition quality assessment, the metabolite extraction fluid is fortified with multiple internal standards to improve method precision and accuracy[77, 78]. The data is compared to in-house databases and public mass spectral libraries to identify known metabolites. The metabolomic data complements the

394 metagenomic and metatranscriptomic data and thus allows further establishments of conclusive links395 to metabolic properties in the gut.

397 Deep immune profiling

Deep immune profiling is done using a recently established and optimised panel of metal-labelled antibodies together with cytometry coupled to mass spectrometry (MS), the Maxpar Direct Immune Profiling System (MDIPA). This approach allows the simultaneous quantification of 38 parameters on single cells. Whole blood is stained with the MDIPA kit and stabilised with Proteomic stabiliser Prot-1 (501351694, Smart Tube Inc., Las Vegas) before storage at -80°C. The quantified immune cells included in the MDIPA panel are CD3+, CD4+, CD8+, monocytes, dendritic cells, granulocytes, MAIT, T cells, NK and B cells[79]. Cytokine expression profiles is analysed on blood plasma using the Human Luminex performance Cytokine Panel (R&D Systems Europe, Abingdon), measuring CCL3, CCL4, CCL5, GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-15, IL-18, IL-21, IL-27, IL-33, IFN-β, Galectin-1, IFN- γ and TNF- α [69].

21 409 Gut-on-a-chip models

410 PBMCs isolated from T0 blood samples are co-cultured with gut-derived microbes under
 411 physiologically representative conditions using the gut-on-a-chip model HuMiX[80]. This model of the
 412 human gastrointestinal interface allows the investigation of the interactions between immune,
 413 epithelial and bacterial cells and specifically the response to fasting in personalised in vitro models.

28 414

30 415 The Expobiome Map

The Expobiome Map (https://expobiome.lcsb.uni.lu) illustrates the diverse complex of microbial immunogenic molecules, including nucleic acids, (poly)peptides, structural molecules, and metabolites. The interactions between this "expobiome" and human immune pathways are encoded in the context of chronic diseases[1]. The ExpoBiome Map is visualised using the MINERVA Platform[81]. Clicking on different elements on the map reveals factors they affect and are affected by, allowing an easier navigation through the complex relationships between individual microbiome components in relation to human disease. The multi-omics data generated in the present study will be integrated with the Map.

40 424

425 Exploratory analysis of novel host-microbiome interactions

Unknown non-ribosomal peptides or metabolite features are associated through correlation with
transcripts, proteins, and metabolites. Extracellular DNA fragments, as well as transcripts, proteins
and ribosomal peptides are linked to their genomic context by using IMP[45]. The data generated by
the project will be connected and collated to existing, publicly available datasets.

49 431 Outcome parameters

⁵¹ 432 Primary Outcome

The primary endpoint of the study is the characterisation of the gut microbiome. The evaluation
includes both between-group and within-group differences in the longitudinal study arms with the
fasting intervention.

58 437 Secondary Outcome Measures

438 Secondary outcomes include the identification of common and disease-specific molecular signatures
 439 and the characterisation of microbiome-derived effector molecules impacting the innate and adaptive

immune pathways. Furthermore, several additional parameters mentioned in Anthropometric data and questionnaires are assessed over a period of 12 months.

Sample size and power calculation

A power calculation using pilot metatranscriptomic data based on faecal extracellular RNA samples was performed to determine the number of subjects to be recruited for the ExpoBiome project. The obtained relative abundances of genera were used for the calculation of the required sample size per group. The power calculation was based on the algorithm as described by Tusher, Tibshirani, and Chu[82]. To achieve a power of 90% (at α = 0.05), a total of 50 individuals per group (RA, PD, healthy controls) must be analysed. Considering any possible dropouts, 20% additional subjects are recruited, resulting in a total number of 180 individuals, i.e., 60 per group. For the longitudinal part, a subset of 60 adult individuals (30 patients with Parkinson's disease and 30 patients with rheumatoid arthritis) are selected, based on their ability and willingness to participate in the longitudinal part of the study (12 months follow-up). The selected number of participants for the longitudinal study is based on feasibility due to the complexity and high costs of the clinical trial. The total number of subjects in the longitudinal study can be smaller, as each individual serves as their own control.

Adverse events

There are no major risks expected for participants. Minor common adverse effects of PF might include headaches, nausea, insomnia, back pain, dyspepsia and fatigue[83]. Any occurring adverse events are recorded at each visit in REDCap[65]. Serious adverse events are communicated to the study coordinator and principal investigator within 24 h of their report.

Data management, monitoring, analysis, and evaluation of data

The study participants receive a study ID (pseudonym) which is used for all collected data. Self-administered questionnaires are directly recorded in REDCap. Participant files are kept for at least 10 years at the respective clinical sites.

- Weekly meetings between the study team, the different clinical partners, and the principal investigator, ensure a close monitoring of the data. Any occurring adverse events or other issues are thus handled immediately.
- Different statistical tests are performed according to the nature of the data. A premature termination of the study is not envisaged; therefore, no interim analysis is done. Different correlation measures are applied, including Spearman correlation, mutual information on discretised data, distance correlation, maximum information criterion, local similarity analysis and the bioenv approach. Comparison across all omic levels allows identification of common and disease-specific signatures. Multivariate machine learning is used to link different data features to observed patterns. For additional confounding factors, especially in the cross-sectional study, multivariate statistical analysis will be performed. These factors will be accounted for by including confounders in the analysis, e.g., as covariate in the statistical models.
- The longitudinal part of the study continues for a period of 12 months. After finalisation of this period, there is no follow-up of the participants. Interesting findings will be further validated using the existing sample set and analyses may be performed on additionally collected samples.
- The SPIRIT - checklist (Standard Protocol Items: Recommendations for Interventional Trials) was used to write this protocol [84].

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Trial status

The recruitment for the ExpoBiome study started in April 2021 and is currently ongoing. All study participants should be recruited by the end of 2022. The sample collection will take place from April 2021 to November 2023.

Ethics and dissemination

Ethical approval was obtained to plan and conduct the trial from the institutional review board of the Charité-Universitätsmedizin Berlin (EA1/204/19), the ethics committee of the state medical association (Landesärztekammer) of Hessen (2021-2230-zvBO) and the Ethics Review Panel (ERP) of the University of Luxembourg (ERP 21-001-A ExpoBiome). The results of this study will be disseminated through peer-reviewed publications, scientific presentations, as well as press releases and social media postings (Twitter, LinkedIn). Study participants will be contacted and informed by the respective clinical sites about the outcome and results of the study, once the data analysis has been completed (dissemination phase).

Acknowledgements

We thank Dr. Catharina Delebinski, Melanie Dell'Oro, Grit Langhans, Ursula Reuß, Maik Schröder and Nadine Sylvester for their support during the study.

Author contributions:

Study design and protocol were done by Bérénice Hansen, Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes; the interventional concept was drawn by Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Anika Hartmann, Brit Mollenhauer, Sebastian Schade, Nico Steckhan, Jochen G. Schneider, Paul Wilmes; the clinical trial was designed and is conducted by Etienne Hanslian, Daniela Liebscher, Andreas Michalsen, Anika Hartmann, Brit Mollenhauer, Sebastian Schade; the procured funding was provided by Paul Wilmes; the planning of high-throughput applications, statistical planning, sample size calculation and randomisation were defined by Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes, Kirsten Roomp; the initial draft of the manuscript and coordination of the editing process were performed by Bérénice Hansen; the protocol preparation has been done by Bérénice Hansen, Audrey Frachet-Bour, Janine Habier; the planning of the data analysis was done by Cédric C. Laczny, Jochen G. Schneider, Paul Wilmes, Kirsten Roomp, Velma T.E. Aho, Marek Ostaszewski; all authors contributed equally with edits, comments and feedback, read and approved the final manuscript.

Funding statement: This project has received funding from the European Research

Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 863664). This work was supported by the Luxembourg National Research Fund (FNR) under grant PRIDE/11823097.

Competing interests statement

None declared.

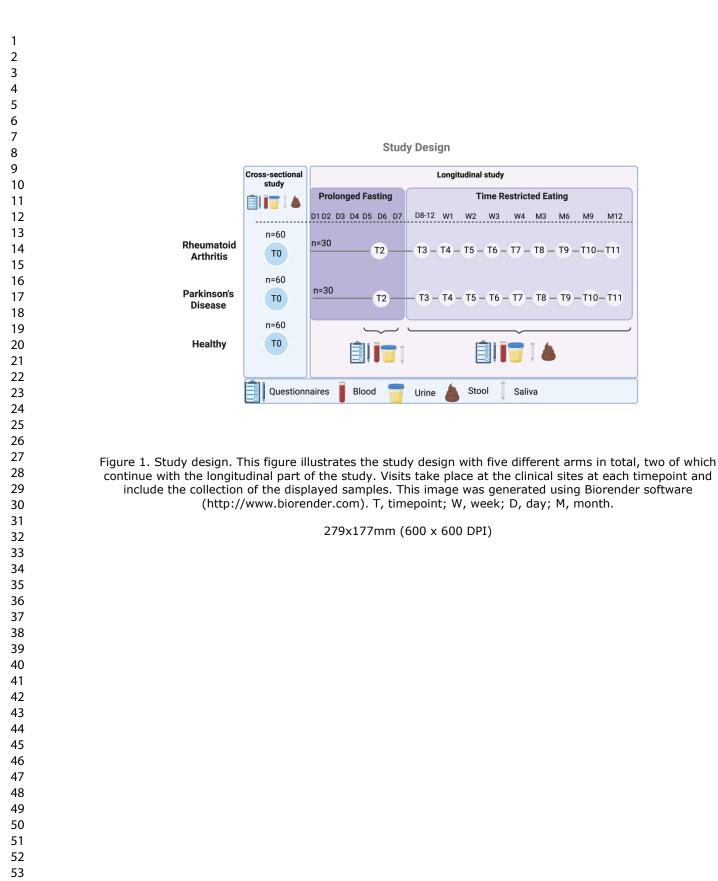
Supplements

The SPIRIT checklist was used to write our report[84].

References

5	525		erences
6	526		
7	527	1.	Wilmes, P., et al., The gut microbiome molecular complex in human health and
8	528		<i>disease.</i> Cell Host Microbe, 2022. 30 (9): p. 1201-1206.
9	529	2.	De Saedeleer, B., et al., Systematic characterization of human gut microbiome-
10	530		secreted molecules by integrated multi-omics. ISME Communications, 2021. 1(1): p.
11 12	531		82.
13	532	3.	Greenhalgh, K., et al., The human gut microbiome in health: establishment and
14	533		resilience of microbiota over a lifetime. Environ Microbiol, 2016. 18 (7): p. 2103-16.
15	534	4.	Hall, A.B., A.C. Tolonen, and R.J. Xavier, Human genetic variation and the gut
16	535		microbiome in disease. Nature Reviews Genetics, 2017. 18(11): p. 690-699.
17 18	536	5.	Baldini, F., et al., Parkinson's disease-associated alterations of the gut microbiome
19	537		predict disease-relevant changes in metabolic functions. BMC Biol, 2020. 18 (1): p. 62.
20	538	6.	Yoo, J.Y., et al., <i>Gut Microbiota and Immune System Interactions</i> . Microorganisms,
21	539		2020. 8 (10).
22	540	7.	Sonnenburg, J.L. and F. Bäckhed, <i>Diet–microbiota interactions as moderators of</i>
23 24	541	7.	human metabolism. Nature, 2016. 535 (7610): p. 56-64.
25	542	8.	Zmora, N., J. Suez, and E. Elinav, You are what you eat: diet, health and the gut
26	543	0.	microbiota. Nat Rev Gastroenterol Hepatol, 2019. 16 (1): p. 35-56.
27	544	9.	Guo, Q., et al., Rheumatoid arthritis: pathological mechanisms and modern
28	545	5.	pharmacologic therapies. Bone Res, 2018. 6 : p. 15.
29 30	546	10.	Healthline, V.L. Rheumatoid Arthritis by the Numbers: Facts, Statistics, and You.
31	540 547	10.	2021.
32	548	11.	Scherer, H.U., T. Häupl, and G.R. Burmester, <i>The etiology of rheumatoid arthritis.</i>
33	548 549	11.	Journal of Autoimmunity, 2020. 110 : p. 102400.
34		12.	Bodkhe, R., B. Balakrishnan, and V. Taneja, <i>The role of microbiome in rheumatoid</i>
35 36	550	12.	
37	551	10	arthritis treatment. Ther Adv Musculoskelet Dis, 2019. 11 : p. 1759720x19844632.
38	552	13.	Chen, J., et al., An expansion of rare lineage intestinal microbes characterizes
39	553	1.4	rheumatoid arthritis. Genome Medicine, 2016. 8(1): p. 43.
40	554	14.	Kitamura, K., et al., Oral and Intestinal Bacterial Substances Associated with Disease
41 42	555		Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J
43	556	4 5	Immunol Res, 2022. 2022 : p. 6839356.
44	557	15.	Wu, H.J., et al., <i>Gut-residing segmented filamentous bacteria drive autoimmune</i>
45	558	10	arthritis via T helper 17 cells. Immunity, 2010. 32 (6): p. 815-27.
46	559	16.	Scher, J.U., et al., <i>Expansion of intestinal Prevotella copri correlates with enhanced</i>
47 48	560	47	susceptibility to arthritis. eLife, 2013. 2 : p. e01202.
49	561	17.	Zhang, X., et al., The oral and gut microbiomes are perturbed in rheumatoid arthritis
50	562	4.0	and partly normalized after treatment. Nature Medicine, 2015. 21 (8): p. 895-905.
51	563	18.	Lubomski, M., et al., Parkinson's disease and the gastrointestinal microbiome. J
52	564		Neurol, 2020. 267 (9): p. 2507-2523.
53 54	565	19.	Opara, J., et al., <i>Motor assessment in Parkinson</i> 's disease. Ann Agric Environ Med,
55	566	•	2017. 24 (3): p. 411-415.
56	567	20.	Tysnes, O.B. and A. Storstein, <i>Epidemiology of Parkinson's disease</i> . J Neural Transm
57	568		(Vienna), 2017. 124 (8): p. 901-905.
58 59			
59 60			

 Garcia, P., et al., Neurodegeneration and neuroinflammation are linked, but independent of alpha-synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia, 2022. 70(5): p. 935-960. Heintz-Buschart, A. and P. Wilmes, Human Gut Microbiome: Function Matters. Trends Microbiol, 2018. 26(7): p. 563-574. Romano, S., et al., Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. npj Parkinson's Disease, 2021. 7(1): p. 27. Becker, A., et al., Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trid. Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., A open lobel, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(1): p. 1375-1383. Dogra, N., R.J. Mani, and D.P., Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Dogra, N., R.J. Mani, and D.P., Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Dorso, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 591 Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 592 Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 593 Hartmann, A.M., et al., <i>Efficacy of theropeutic fosting and plant-based diet in patients with theumatoid arthritis</i> (Nutrifast): study protocol for a randomised controlied clinical tritrial. BM Uopen, 2021. 11(18): p. 2047758. Micha	1			
 Jan P. L. Borku, Y. Chouse, Neuroperiod and inclusions in the complement of alpho-synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia, 2022. 70(5): p. 935-960. Heintz-Buschart, A. and P. Wilmes, Human Gut Microbiome: Function Matters. Trends Microbiol, 2018. 26(7): p. 563-574. Romano, S., et al., <i>Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflommation.</i> npj Parkinson's Disease, 2021. 7(1): p. 27. Becker, A., et al., <i>Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial.</i> Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., <i>An open label, non-randomized study assessing a prebiotic fiber intervention in a simall cohort of Parkinson's disease participants.</i> Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., <i>An open tabel, non-randomized study assessing a prebiotic fiber intervention in a simall cohort of Parkinson's disease participants.</i> Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., <i>More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota.</i> European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucasa alpha-synuclein staining and endotaxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. Boy: p. 42-8. Britannica, The Editors of Encyclopedia, "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.bittannica.com/topic/fasting. Hartmann, A.M., et al., <i>Efficcs of a low-carbohydrate ketogenic diet on health parameters in resistance-trained</i>	23		•	
 Parkinson's disease. Glia, 2022. 70(5): p. 935-960. Parkinson's disease. Glia, 2022. 70(5): p. 935-960. Parkinson's disease. Glia, 2022. 70(5): p. 935-960. Romano, S., et al., Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation. npl Parkinson's Disease, 2021. 7(1): p. 27. Rocker, A., et al., Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial. Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Becker, A., et al., Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial. Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Ses Pics One, et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. Bortannica, The Editors of Encyclopaeda. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Bortannica, The Editors of Encyclopaeda. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Wichalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and			21.	
 S72 22. Heintz-Buschart, A. and P. Wilmes, <i>Human Gut Microbiome: Function Matters</i>. Trends Microbiol, 2018. 26(7): p. 563-574. S73 Trends Microbiol, 2018. 26(7): p. 563-574. Romano, S., et al., <i>Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease, 2021</i>. 7(1): p. 27. Becker, A., et al., <i>Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial.</i> Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., <i>An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants.</i> Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., <i>More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota.</i> European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease.</i> Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotxin exposure markers in early Parkinson's disease.</i> Poly Col., et al., <i>Colonic inflammation in Parkinson's disease.</i> Neurobiol Dis, 2013. 50: p. 42-8. Britannica, <i>The Editors of Encyclopaedia. "fasting".</i> Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., <i>Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. Hartmann, A.M., et al., <i>Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 12(8): p. 2349-2359. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health par</i>				
 573 Trends Microbiol, 2018. 26(7): p. 563-574. 574 23. Romano, S., et al., <i>Meta-analysis of the Parkinson's disease gut microbiome suggests alterations linked to intestinal inflammation</i>. npj Parkinson's Disease, 2021. 7(1): p. 27. 575 24. Becker, A., et al., <i>Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial.</i> Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. 580 25. Hall, D.A., et al., <i>An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants</i>. Nat Commun, 2023. 14(1): p. 926. 583 26. Mertsalmi, T.H., et al., <i>More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota.</i> European journal of neurology, 2017. 24(11): p. 1375-1383. 586 27. Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease</i>. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. 587 588 28. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid mucosa alpho-synuclein staining and endotoxin exposure markers in early Parkinson's disease</i>. PLoS One, 2011. 6(12): p. e28032. 593 30. Britannica, <i>The Editors of Encyclopaedia. "fasting".</i> Encyclopedia Britannica, <i>Accessed</i> 3 October 2022. https://www.britannica.com/topic/fasting. 595 31. Hartmann, A.M., et al., <i>Effeccy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (Nutrifast): study protocol for a randomised controled clinical trial. BM 10pen, 2021. 11(3): p. e047758.</i> 598 32. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms.</i> Curr Pain Headache Rep, 2010. 14(2): p. 80-7. 601 33. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health parameters in r</i>			22	
 Statument and the state of the			22.	
 alterations linked to intestinal inflammation. npj Parkinson's Disease, 2021. 7(1): p. 27. Becker, A., et al., <i>Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial.</i> Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., <i>An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants.</i> Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., <i>More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota.</i> European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease.</i> Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotani exposure markers in early Parkinson's disease.</i> PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease.</i> Neurobiol Dis, 2013. 50: p. 42-8. Britannica, <i>The Editors of Encyclopaedia. "fasting".</i> Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., <i>Effects of a low-carbohydrate ketogenic diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial.</i> BMI Open, 2021. 14(8): p. e047758. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. Mattison, J.A., et al., <i>Coloric restriction improves health and survival of rhesus morkeys.</i> Nature Communications, 2017. 8(1): p. 14063. Mattison, J.A., et al., <i>Coloric restriction improves health and survival of rhesus mo</i>	9		23	
 S76 27. Becker, A., et al., Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut Microbiota in Parkinson's Disease - The RESISTA-PD Trial. Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. S80 25. Hall, D.A., et al., An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. S86 27. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. S88 28. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. S91 29. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 592 593 disease. 105 One, 2011. 6(12): p. e28032. S93 30. Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. S95 31. Hartmann, A.M., et al., Effects of a law carbohydrate ketogenic diet in patients with rheumatolid arthritis (Nutrifast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. S98 32. Michalsen, A., Prolonged fasting as a method of mode enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. S04 34. Mattison, J.A., et al., Effects of a law-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. Mattison, J.A., et al., Abiet Mimicking F			25.	
 S77 24. Becker, A., et al., <i>Effects of Resistant Starch on Symptoms, Fecal Markers, and Gut</i> <i>Microbiots in Parkinson's Disease - The RESISTA-PD Trial.</i> Genomics Proteomics Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., <i>An open label, non-randomized study assessing a prebiotic fiber</i> <i>intervention in a small cohort of Parkinson's disease participants.</i> Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., <i>More than constipation - bowel symptoms in Parkinson's</i> <i>disease and their connection to gut microbiota.</i> European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in</i> <i>Parkinson's Disease.</i> Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid muccas</i> <i>alpha-synuclein stoling and endotoxin exposure markers in early Parkinson's</i> <i>disease.</i> PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease.</i> Neurobiol Dis, 2013. 50: p. 42-8. Britannica, <i>The Editors of Encyclopaedia. "fasting".</i> Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., <i>Effeccs of a low-carbohydrate ketogenic diet in</i> <i>patients with rheumatoid arthritis (Nutrifast): study protocol for a randomised</i> <i>controlled clinical trial.</i> BMJ Open, 2021. 11(8): p. 047758. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> <i>parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. Mattison, J.A., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> <i>parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2136- 2146. Mattison, J.A., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> <i>Autoimmunity and Multiple Sclerosis Symptoms</i>				
14578Microbiota in Parkinson's Disease - The RESISTA-PD Trial. Genomics Proteomics15579Bioinformatics, 2022. 20(2): p. 274-287.1758025.181Intervention in a small cohort of Parkinson's disease participants. Nat Commun,19582023. 14(1): p. 926.195827.195926.195827.195828.195959.295929.195929.195929.195929.195929.195929.195929.195929.195929.195929.195929.195929.195929.195929.195920.195929.195929.195920.195929.195929.195929.295920. <tr< td=""><td></td><td></td><td>24.</td><td></td></tr<>			24.	
 Bioinformatics, 2022. 20(2): p. 274-287. Hall, D.A., et al., An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 50: p. 42-8. Britannica, The Editors of Encyclopaeda. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMI Open, 2021. 11(8): p. e047758. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 12(8): p. 2349- 2359. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. Mattison, J.A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p				
 S80 25. Hall, D.A., et al., An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson's disease participants. Nat Commun, 2023. 14(1): p. 926. S81 26. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. S82 7. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. S83 8. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. S91 29. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 592 50; p. 42-8. S93 30. Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. S95 31. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (Nutrifast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. S93 30. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. S04 34. Mattison, J.A., et al., Caloric restriction improves health and surival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. S05 50. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. S05 31. Maifeld, A., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Ce				
 intervention in a small cohort of Parkinson's disease participants. Nat Commun, 2023. 14(1): p. 926. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease</i>. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease</i>. PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 50: p. 42-8. Britannica, <i>The Editors of Encyclopaedia. "fasting"</i>. Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diret in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial.</i> BMJ Open, 2021. 11(8): p. e047758. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms</i>. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women</i>. Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus monkeys</i>. Nature Communications, 2017. 8(1): p. 14063. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus monkeys</i>. Nature Communications, 2017. 12(1): p. 1970. Choi, I.Y., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms</i>. Cell Re			25.	
 S82 2023. 14(1): p. 926. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. S86 27. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. S87 Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. S91 29. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 50: p. 42-8. S93 30. Britannica, The Editors of Encyclopedia. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. S95 31. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. 047758. S98 32. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. G01 33. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. G04 34. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. G05 35. Maifeld, A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. G05 36. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-21				
 S83 26. Mertsalmi, T.H., et al., More than constipation - bowel symptoms in Parkinson's disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. S86 27. Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. S88 28. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. S91 29. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 592 50: p. 42-8. Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. S98 32. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. S03 33. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. Maitison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. Maitela, A., et al., Fasting alters the gut microbiome reduing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136- 2146. Jord		582		
 stat disease and their connection to gut microbiota. European journal of neurology, 2017. 24(11): p. 1375-1383. Dogra, N., RJ. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in</i> <i>Parkinson's Disease</i>. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid mucosa</i> <i>alpha-synuclein staining and endotoxin exposure markers in early Parkinson's</i> <i>disease</i>. PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 50: p. 42-8. Britannica, <i>The Editors of Encyclopaedia. "fasting"</i>. Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in</i> <i>patients with rheumatoid arthritis (NutriFast): study protocol for a randomised</i> controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain</i> <i>syndromes: a review of clinical evidence and mechanisms</i>. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> <i>parameters in resistance-trained women</i>. Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. Maftlon, J.A., et al., <i>Caloric restriction improves health and survival of rhesus</i> <i>monkeys</i>. Nature Communications, 2017. 8(1): p. 14063. Maffeld, A., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> <i>Autoimmunity and Multiple Sclerosis Symptoms</i>. Cell Rep, 2016. 15(10): p. 2136-2146. Jordan, S., et al., <i>Dietary Intake Regulates the Circulating Inflammatory Monocyte</i> <i>Poo</i>		583	26.	
 24 (11): p. 1375-1383. 27. Dogra, N., R.J. Mani, and D.P. Katare, <i>The Gut-Brain Axis: Two Ways Signaling in</i> <i>Parkinson's Disease</i>. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. 28. Forsyth, C.B., et al., <i>Increased intestinal permeability correlates with sigmoid mucosa</i> <i>alpha-synuclein staining and endotoxin exposure markers in early Parkinson's</i> <i>disease</i>. PLoS One, 2011. 6(12): p. e28032. 29. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 591 29. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 592 30. Britannica, <i>The Editors of Encyclopaedia. "fasting"</i>. Encyclopedia Britannica, Accessed 3 October 2022. <u>https://www.britannica.com/topic/fasting</u>. 595 31. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in</i> <i>patients with rheumatoid arthritis</i> (NutriFast): study protocol for a randomised <i>controlled clinical trial</i>. BMJ Open, 2021. 11(8): p. e047758. 598 32. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain</i> <i>syndromes: a review of clinical evidence and mechanisms</i>. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. 30. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> <i>parameters in resistance-trained women</i>. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. 31. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus</i> <i>monkeys</i>. Nature Communications, 2017. 8(1): p. 14063. 32. Maifeld, A., et al., <i>Fasting alters the gut microbiome reducing blood pressure and</i> <i>body weight in metabolic syndrome patients</i>. Nature Communications, 2021. 12(1): p. 1970. 33. Choi, I.Y., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> <i>Autoimmunity and Multiple Sclerosis Symptoms</i>. Cell Rep, 2016. 15(10): p. 2136- 2146. 34. Neth, B.J., et al., <i>The R</i>		584		disease and their connection to gut microbiota. European journal of neurology, 2017.
 Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Parkinson's Disease. Cell Mol Neurobiol, 2022. 42(2): p. 315-332. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 50: p. 42-8. Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-2146. Jordan, S., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front Neurol 2021 12 p. 682184 		585		24 (11): p. 1375-1383.
 Solar Formison's Disease. Cell Monted Bollo, 2022. 4(2), p. 31332. Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. So' p. 42-8. Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. Mattison, J.A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2012. 12(1): p. 1970. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-2146. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019. 178(5): p. 1102-1114.e17. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front 		586	27.	Dogra, N., R.J. Mani, and D.P. Katare, The Gut-Brain Axis: Two Ways Signaling in
 S88 28. Forsyth, C.B., et al., <i>increased intestinal permeability correlates with sigmoid mucosa</i> alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032. Devos, D., et al., <i>Colonic inflammation in Parkinson's disease</i>. Neurobiol Dis, 2013. 50: p. 42-8. Britannica, <i>The Editors of Encyclopaedia. "fasting"</i>. Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in</i> <i>patients with rheumatoid arthritis (NutriFast): study protocol for a randomised</i> controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain</i> <i>syndromes: a review of clinical evidence and mechanisms</i>. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> <i>parameters in resistance-trained women</i>. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus</i> <i>monkeys</i>. Nature Communications, 2017. 8(1): p. 14063. Maifeld, A., et al., <i>Fasting alters the gut microbiome reducing blood pressure and</i> <i>body weight in metabolic syndrome patients</i>. Nature Communications, 2021. 12(1): p. 1970. Choi, I.Y., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> <i>Autoimmunity and Multiple Sclerosis Symptoms</i>. Cell Rep, 2016. 15(10): p. 2136- 2146. Jordan, S., et al., <i>Dietary Intake Regulates the Circulating Inflammatory Monocyte</i> <i>Pool.</i> Cell, 2019. 178(5): p. 1102-1114.e17. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease</i>. Front 		587		Parkinson's Disease. Cell Mol Neurobiol, 2022. 42 (2): p. 315-332.
28589alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS One, 2011. 6(12): p. e28032.3059129.Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 5923159250: p. 42-8.3330.Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting.3559531.36Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758.3659832.37Syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7.406002010. 14(2): p. 80-7.41601arameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359.4660434.47605monkeys. Nature Communications, 2017. 8(1): p. 14063.4860635.4960740860850936.50936.50936.50937.50036.50137.50239.50339.50339.50434.50534.50635.50735.50835.50936.50936.50036. <tr< td=""><td></td><td>588</td><td>28.</td><td>Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa</td></tr<>		588	28.	Forsyth, C.B., et al., Increased intestinal permeability correlates with sigmoid mucosa
 591 29. Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013. 592 50: p. 42-8. 593 30. Britannica, The Editors of Encyclopaedia. "fasting". Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. 595 31. Hartmann, A.M., et al., Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. 598 32. Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. 601 33. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. 603 35. Maitfeld, A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. 606 35. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. 609 36. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136- 2146. 37. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 88. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front Neurol 2021 12: p. 682184 		589		alpha-synuclein staining and endotoxin exposure markers in early Parkinson's
3159159250: p. 42-8.3359330.Britannica, <i>The Editors of Encyclopaedia. "fasting"</i> . Encyclopedia Britannica, Accessed 3 October 2022. https://www.britannica.com/topic/fasting .3559331.Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. https://www.britannica.com/topic/fasting.3659531.Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. https://www.britannica.com/topic/fasting.3759832.Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain syndromes: a review of clinical evidence and mechanisms</i>. Curr Pain Headache Rep, 2010. 14600385972010. 14602399832.30Wargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359.4660434.Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus monkeys.</i> Nature Communications, 2017. 8647605504860635.Maifeld, A., et al., <i>Fasting alters </i></i></i>		590		<i>disease.</i> PLoS One, 2011. 6 (12): p. e28032.
 392 592 50. p. 42-8. 303 30. Britannica, <i>The Editors of Encyclopaedia. "fasting"</i>. Encyclopedia Britannica,, 404 Accessed 3 October 2022. https://www.britannica.com/topic/fasting. 595 31. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in</i> 596 patients with rheumatoid arthritis (NutriFast): study protocol for a randomised 597 controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. 598 32. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain</i> 599 syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 600 2010. 14(2): p. 80-7. 601 33. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> 602 parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 603 2359. 604 34. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus</i> 605 monkeys. Nature Communications, 2017. 8(1): p. 14063. 606 35. Maifeld, A., et al., <i>Fasting alters the gut microbiome reducing blood pressure and</i> 607 body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): 608 p. 1970. 609 36. Choi, I.Y., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> 611 Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136- 612 37. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte 613 70. 614 38. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease</i>. Front 614 38. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease</i>. Front 		591	29.	Devos, D., et al., Colonic inflammation in Parkinson's disease. Neurobiol Dis, 2013.
 33 593 30. Britannica, <i>The Editors of Encyclopaedia. "fasting"</i>. Encyclopedia Britannica,, Accessed 3 October 2022. https://www.britannica.com/topic/fasting. 595 31. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in</i> 596 <i>patients with rheumatoid arthritis (NutriFast): study protocol for a randomised</i> 597 <i>controlled clinical trial.</i> BMJ Open, 2021. 11(8): p. e047758. 598 32. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain</i> 599 <i>syndromes: a review of clinical evidence and mechanisms.</i> Curr Pain Headache Rep, 600 2010. 14(2): p. 80-7. 601 33. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> 602 <i>parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2349- 603 2359. 604 34. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus</i> 606 35. Maifeld, A., et al., <i>Fasting alters the gut microbiome reducing blood pressure and</i> 607 <i>body weight in metabolic syndrome patients.</i> Nature Communications, 2021. 12(1): 608 p. 1970. 609 36. Choi, I.Y., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> 611 <i>Autoimmunity and Multiple Sclerosis Symptoms.</i> Cell Rep, 2016. 15(10): p. 2136- 612 37. Jordan, S., et al., <i>Dietary Intake Regulates the Circulating Inflammatory Monocyte</i> 613 70. Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 614 38. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease.</i> Front 615 800 		592		
 595 31. Hartmann, A.M., et al., <i>Efficacy of therapeutic fasting and plant-based diet in</i> <i>patients with rheumatoid arthritis (NutriFast): study protocol for a randomised</i> <i>controlled clinical trial.</i> BMJ Open, 2021. 11(8): p. e047758. 598 32. Michalsen, A., <i>Prolonged fasting as a method of mood enhancement in chronic pain</i> <i>syndromes: a review of clinical evidence and mechanisms.</i> Curr Pain Headache Rep, 2010. 14(2): p. 80-7. 601 33. Vargas-Molina, S., et al., <i>Effects of a low-carbohydrate ketogenic diet on health</i> <i>parameters in resistance-trained women.</i> Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. 603 34. Mattison, J.A., et al., <i>Caloric restriction improves health and survival of rhesus</i> <i>monkeys.</i> Nature Communications, 2017. 8(1): p. 14063. 606 35. Maifeld, A., et al., <i>Fasting alters the gut microbiome reducing blood pressure and</i> <i>body weight in metabolic syndrome patients.</i> Nature Communications, 2021. 12(1): p. 1970. 609 36. Choi, I.Y., et al., <i>A Diet Mimicking Fasting Promotes Regeneration and Reduces</i> <i>Autoimmunity and Multiple Sclerosis Symptoms.</i> Cell Rep, 2016. 15(10): p. 2136- 2146. 612 37. Jordan, S., et al., <i>Dietary Intake Regulates the Circulating Inflammatory Monocyte</i> <i>Pool.</i> Cell, 2019. 178(5): p. 1102-1114.e17. 614 38. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease.</i> Front 615 		593	30.	
 for a mathematical arthritis (NutriFast): study protocol for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 12(8): p. e047758. for a controlled clinical trial. BMJ Open, 2021. 12(8): p. 2349-2010. 14(2): p. 80-7. for a controlled clinical trial. <i>Effects of a low-carbohydrate ketogenic diet on health</i> for a controlled clinical trial. <i>Caloric restriction improves health and survival of rhesus</i> monkeys. Nature Communications, 2017. 8(1): p. 14063. for monkeys. Nature Communications, 2017. 8(1): p. 14063. for body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. for body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. for dot during and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-2146. for Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-2146. for dot, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019. 178(5): p. 1102-1114.e17. for dotare, S., et al.,				
 solutions with methationa attitutes (value dst), study photoen for a randomised controlled clinical trial. BMJ Open, 2021. 11(8): p. e047758. Solution Stranger, Solution Stranger, Solution Stranger, Solution Study Photoen for a randomised syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. Solution Stranger, Solution Str			31.	
38597Controlled clinical trial. BMJ Open, 2021. 11(8): p. e04/758.3959832.Michalsen, A., Prolonged fasting as a method of mood enhancement in chronic pain40599syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep,416002010. 14(2): p. 80-7.4260133.Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health44602parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349-456032359.4660434.47605monkeys. Nature Communications, 2017. 8(1): p. 14063.4860635.49607body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1):51608p. 1970.5260936.53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-5461137.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front59615Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front				
 syndromes: a review of clinical evidence and mechanisms. Curr Pain Headache Rep, 2010. 14(2): p. 80-7. 33. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 2359. 604 34. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. 606 35. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. 609 36. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136- 2146. 56 612 37. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 614 38. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front 				
 41 600 2010. 14(2): p. 80-7. 42 601 33. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health 43 602 parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 45 603 2359. 46 604 34. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus 47 605 monkeys. Nature Communications, 2017. 8(1): p. 14063. 48 606 35. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and 49 607 body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): 408 p. 1970. 509 36. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces 400 Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136- 416. 417 612 37. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte 418 Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 418 614 38. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front 419 Neurol 2021 12: p. 682184 			32.	
 42 601 33. Vargas-Molina, S., et al., Effects of a low-carbohydrate ketogenic diet on health 43 602 parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349- 45 603 2359. 46 604 34. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus 47 605 monkeys. Nature Communications, 2017. 8(1): p. 14063. 48 606 35. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and 49 607 body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): 408 p. 1970. 50 609 36. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces 409 Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136- 415 2146. 56 612 37. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte 409 Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 58 614 38. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front 419 Neurol 2021 12: p. 682184 				
 601 SS. Valgas-Molinia, S., et al., Effects of a low-curbonyalate ketogenic alet on neutrinal parameters in resistance-trained women. Eur J Appl Physiol, 2021. 121(8): p. 2349-2359. 603 2359. 604 34. Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063. 606 35. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. 609 36. Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-2146. 612 37. Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 614 38. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front Neurol 2021 12: p. 682184 				
446032359.4660434.Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus47605monkeys. Nature Communications, 2017. 8(1): p. 14063.4860635.Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and49607body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1):51608p. 1970.5260936.Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-546112146.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59615Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front59615Neurol 2021 12: p. 682184			33.	
4660434.Mattison, J.A., et al., Caloric restriction improves health and survival of rhesus monkeys. Nature Communications, 2017. 8(1): p. 14063.47605monkeys. Nature Communications, 2017. 8(1): p. 14063.4860635.Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1):51608p. 1970.5260936.Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-546112146.5661237.Jordan, S., et al., Dietary Intake Regulates the Circulating Inflammatory Monocyte57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front59615Neurol 2021 12: p. 682184				
 monkeys. Nature Communications, 2017. 8(1): p. 14063. Maifeld, A., et al., Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. 609 610 611 611 612 612 613 614 614 615 615 615 616 617 615 618 614 614 615 614 615 615 614 615 615 614 616 617 618 619 615 614 614 614 614 614 614 615 615 615 616 617 615 618 614 614 614 614 614 615 615 615 616 617 615 618 614 614 614 615 615 615 615 615 615 616 615 617 618 618 614 615 614 615 614 615 615 615 616 615 617 618 618 614 615 614 615 615 615 615 616 615 617 618 618 618 614 615 614 615 614 615 615 615 616 617 618 618 618 614 618 614 615 614			24	
 Maifeld, A., et al., <i>Fasting alters the gut microbiome reducing blood pressure and</i> body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1): p. 1970. p. 1970. 609 610 611 611 612 612 613 614 614 615 615 616 617 617 618 618 619 614 76 			34.	
49607body weight in metabolic syndrome patients. Nature Communications, 2021. 12(1):51608p. 1970.5260936.Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-546112146.5561237.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59615Neurol 2021615Neurol 2021			25	
51608p. 1970.5260936.Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-546112146.5561237.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59615Neurol 202159615Neurol 2021			35.	
5260936.Choi, I.Y., et al., A Diet Mimicking Fasting Promotes Regeneration and Reduces53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-546112146.5561237.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59615Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front				
53610Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep, 2016. 15(10): p. 2136-546112146.5561237.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59615Neurol 2021 12: p. 682184			26	•
54610Autoinmunity und Multiple Scierosis Symptoms. Cell Rep, 2010. 15(10). p. 2130-556112146.5661237.5661237.57613Pool. Cell, 2019. 178(5): p. 1102-1114.e17.5861438.59615Neurol 2021 12: p. 682184			50.	
 56 612 37. Jordan, S., et al., <i>Dietary Intake Regulates the Circulating Inflammatory Monocyte</i> 57 613 <i>Pool.</i> Cell, 2019. 178(5): p. 1102-1114.e17. 58 614 38. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease</i>. Front 59 615 Neurol 2021 12: p. 682184 	54			
57 613 Pool. Cell, 2019. 178(5): p. 1102-1114.e17. 58 614 38. Neth, B.J., et al., The Role of Intermittent Fasting in Parkinson's Disease. Front 59 615 Neurol 2021 12: p. 682184			27	
⁵⁸ 614 38. Neth, B.J., et al., <i>The Role of Intermittent Fasting in Parkinson's Disease</i> . Front			57.	
⁵⁹ 615 Neurol 2021 12 : p. 682184			38	
60			50.	
	60			, - p


1 ว			
2 3	616	39.	Cignarella, F., et al., Intermittent Fasting Confers Protection in CNS Autoimmunity by
4	617	39.	Altering the Gut Microbiota. Cell Metab, 2018. 27 (6): p. 1222-1235.e6.
5 6	618	40.	Mesnage, R., et al., Changes in human gut microbiota composition are linked to the
7	619		energy metabolic switch during 10 d of Buchinger fasting. J Nutr Sci, 2019. 8: p. e36.
8	620	41.	Magne, F., et al., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut
9 10	621		Dysbiosis in Obese Patients? Nutrients, 2020. 12(5).
11	622	42.	Purchiaroni, F., et al., The role of intestinal microbiota and the immune system. Eur
12	623		Rev Med Pharmacol Sci, 2013. 17 (3): p. 323-33.
13	624	43.	Leeming, E.R., et al., Effect of Diet on the Gut Microbiota: Rethinking Intervention
14 15	625		<i>Duration.</i> Nutrients, 2019. 11 (12): p. 2862.
16	626	44.	Heintz-Buschart, A., et al., Integrated multi-omics of the human gut microbiome in a
17	627		<i>case study of familial type 1 diabetes.</i> Nature Microbiology, 2016. 2 (1): p. 16180.
18 19	628	45.	Narayanasamy, S., et al., IMP: a pipeline for reproducible reference-independent
20	629 620		integrated metagenomic and metatranscriptomic analyses. Genome Biology, 2016.
21	630 631	46.	17 (1): p. 260. Wilmes, P., A. Heintz-Buschart, and P.L. Bond, <i>A decade of metaproteomics: where</i>
22 23	632	40.	we stand and what the future holds. Proteomics, 2015. 15 (20): p. 3409-17.
25 24	633	47.	Gabel, K., et al., Effects of 8-hour time restricted feeding on body weight and
25	634	47.	metabolic disease risk factors in obese adults: A pilot study. Nutr Healthy Aging,
26	635		2018. 4 (4): p. 345-353.
27 28	636	48.	Hughes, A.J., et al., A clinicopathologic study of 100 cases of Parkinson's disease. Arch
29	637		Neurol, 1993. 50 (2): p. 140-8.
30	638	49.	Hoehn, M.M. and M.D. Yahr, <i>Parkinsonism.</i> onset, progression, and mortality, 1967.
31 22	639		17 (5): p. 427-427.
32 33	640	50.	Kay, J. and K.S. Upchurch, ACR/EULAR 2010 rheumatoid arthritis classification
34	641		criteria. Rheumatology (Oxford), 2012. 51 Suppl 6 : p. vi5-9.
35	642	51.	Feng, X., et al., Body Mass Index and the Risk of Rheumatoid Arthritis: An Updated
36 37	643		Dose-Response Meta-Analysis. Biomed Res Int, 2019. 2019: p. 3579081.
38	644	52.	Wells G, B.J., Teng J, et al, Validation of the 28-joint Disease Activity Score (DAS28)
39	645		and European League Against Rheumatism response criteria based on C-reactive
40	646		protein against disease progression in patients with rheumatoid arthritis, and
41 42	647		comparison with the DAS28 based on erythrocyte sedimentation rate. Annals of the
43	648		Rheumatic Diseases 2009. 68 : p. 954-960.
44	649	53.	Trenkwalder, C., et al., Parkinson's disease sleep scalevalidation of the revised
45 46	650	F 4	version PDSS-2. Mov Disord, 2011. 26 (4): p. 644-52.
40 47	651 652	54.	Bushnell, D.M. and M.L. Martin, <i>Quality of life and Parkinson's disease: translation</i>
48	653		and validation of the US Parkinson's Disease Questionnaire (PDQ-39). Qual Life Res, 1999. 8 (4): p. 345-50.
49	654	55.	Smolen, J.S., et al., A simplified disease activity index for rheumatoid arthritis for use
50 51	655	55.	<i>in clinical practice.</i> Rheumatology (Oxford), 2003. 42 (2): p. 244-57.
52	656	56.	Raspe, H.H., Hagedorn, U., Kohlmann, T., & Mattussek, S., <i>Der Funktionsfragebogen</i>
53	657	50.	Hannover (FFbH): Ein Instrument zur Funktionsdiagnostik bei polyartikulären
54	658		Gelenkerkrankungen, in Ergebnisse sozialwissenschaftlicher Evaluation eines
55 56	659		Modellversuchs (pp. 164-182). 1990, Schattauer Verlag.
50 57	660	57.	Goetz, C.G., et al., Movement Disorder Society-sponsored revision of the Unified
58	661		Parkinson's Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric
59 60	662		<i>testing plan.</i> Mov Disord, 2007. 22 (1): p. 41-7.
60			

Page 19 of 26

2			
3	663	58.	Chaudhuri, K.R., et al., International multicenter pilot study of the first
4 5	664		comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's
6	665		disease: the NMSQuest study. Mov Disord, 2006. 21 (7): p. 916-23.
7	666	59.	Chaudhuri, K.R., et al., The metric properties of a novel non-motor symptoms scale
8	667		for Parkinson's disease: Results from an international pilot study. Mov Disord, 2007.
9	668		22 (13): p. 1901-11.
10 11	669	60.	Wolfe, F., A brief clinical health assessment instrument clinhag. Arthritis and
12	670		Rheumatism, 1989. 32 (4 Suppl): p. S99-S99.
13	671	61.	Lewis, S.J. and K.W. Heaton, Stool form scale as a useful guide to intestinal transit
14	672		<i>time.</i> Scand J Gastroenterol, 1997. 32 (9): p. 920-4.
15 16	673	62.	Topp, C.W., et al., The WHO-5 Well-Being Index: a systematic review of the literature.
17	674		Psychother Psychosom, 2015. 84 (3): p. 167-76.
18	675	63.	Zigmond, A.S. and R.P. Snaith, The hospital anxiety and depression scale. Acta
19	676		Psychiatr Scand, 1983. 67 (6): p. 361-70.
20 21	677	64.	McNair DM, L.M., Droppleman LF, Edits Manual for the Profile of Mood States
21	678		(Poms). Rev ed San Diego: Educational and Industrial Testing Service, 1992.
23	679	65.	Harris, P.A., et al., Research electronic data capture (REDCap)a metadata-driven
24	680		methodology and workflow process for providing translational research informatics
25	681		<i>support.</i> J Biomed Inform, 2009. 42 (2): p. 377-81.
26 27	682	66.	Wilmes, P., Roume, H., Hiller, K. & Cordes, T., Method and kit for the isolation of
28	683		genomic DNA, RNA, proteins and metabolites from a single biological sample., in
29	684		World Intellectual Property Organization, C.D.R.PG.L. Université Du Luxembourg,
30	685		Editor. 2014: Switzerland.
31 32	686	67.	Roume, H., et al., A biomolecular isolation framework for eco-systems biology. The
33	687		ISME Journal, 2013. 7(1): p. 110-121.
34	688	68.	Locati, M.D., et al., Improving small RNA-seq by using a synthetic spike-in set for size-
35	689		range quality control together with a set for data normalization. Nucleic Acids Res,
36 37	690		2015. 43 (14): p. e89.
38	691	69.	Wampach, L., et al., Birth mode is associated with earliest strain-conferred gut
39	692		microbiome functions and immunostimulatory potential. Nature Communications,
40	693		2018. 9 (1): p. 5091.
41 42	694	70.	Albanese, D. and C. Donati, Strain profiling and epidemiology of bacterial species
42	695		from metagenomic sequencing. Nature Communications, 2017. 8(1): p. 2260.
44	696	71.	Vandeputte, D., et al., Quantitative microbiome profiling links gut community
45	697		variation to microbial load. Nature, 2017. 551(7681): p. 507-511.
46 47	698	72.	Tang, H., S. Li, and Y. Ye, A Graph-Centric Approach for Metagenome-Guided Peptide
47	699		and Protein Identification in Metaproteomics. PLoS Comput Biol, 2016. 12 (12): p.
49	700		e1005224.
50	701	73.	Tabb, D.L., C.G. Fernando, and M.C. Chambers, MyriMatch: highly accurate tandem
51 52	702		mass spectral peptide identification by multivariate hypergeometric analysis. J
52 53	703		Proteome Res, 2007. 6 (2): p. 654-61.
54	704	74.	Heintz-Buschart, A., et al., The nasal and gut microbiome in Parkinson's disease and
55	705		<i>idiopathic rapid eye movement sleep behavior disorder.</i> Mov Disord, 2018. 33 (1): p.
56	706		88-98.
57 58	707	75.	Chen, S.G., et al., Exposure to the Functional Bacterial Amyloid Protein Curli Enhances
59	708		Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans.
60	709		Scientific Reports, 2016. 6 (1): p. 34477.

710	76.	Wilmes, P., et al., Metabolome-proteome differentiation coupled to microbial
711		<i>divergence.</i> mBio, 2010. 1 (5).
712	77.	Kim, D.H., et al., LC-MS-based absolute metabolite quantification: application to
713		metabolic flux measurement in trypanosomes. Metabolomics, 2015. 11(6): p. 1721-
714		1732.
715	78.	Lei, Z., D.V. Huhman, and L.W. Sumner, Mass spectrometry strategies in
716		<i>metabolomics</i> . J Biol Chem, 2011. 286 (29): p. 25435-42.
717	79.	Immunophenotyping assessment in a COVID-19 cohort (IMPACC): A prospective
718		<i>longitudinal study</i> . Sci Immunol, 2021. 6 (62).
719	80.	Shah, P., et al., A microfluidics-based in vitro model of the gastrointestinal human–
720		microbe interface. Nature Communications, 2016. 7(1): p. 11535.
721	81.	Aho, V.T.E., et al., <i>SnapShot: The Expobiome Map.</i> Cell Host Microbe, 2022. 30 (9): p.
722		1340-1340.e1.
723	82.	Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to
724		the ionizing radiation response. Proc Natl Acad Sci U S A, 2001. 98(9): p. 5116-21.
725	83.	Finnell, J.S., et al., Is fasting safe? A chart review of adverse events during medically
726		supervised, water-only fasting. BMC Complementary and Alternative Medicine,
727		2018. 18 (1): p. 67.
728	84.	Chan, AW., et al., SPIRIT 2013 explanation and elaboration: guidance for protocols
729		of clinical trials. BMJ : British Medical Journal, 2013. 346 : p. e7586.
730		
731	Figu	Ire Legends
	711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730	711 712 77. 713 71. 714 71. 715 78. 716 79. 717 79. 718 80. 720 81. 722 82. 723 82. 724 83. 725 83. 726 72. 728 84. 729 730

Figure 1. Study design. This figure illustrates the study design with five different arms in total, two of which continue with the longitudinal part of the study. Visits take place at the clinical sites at each timepoint and include the collection of the displayed samples. This image was generated using Biorender software (http://www.biorender.com). T, timepoint; W, week; D, day; M, month.

Reporting checklist for protocol of a clinical trial.

Based on the SPIRIT guidelines.

Instructions to authors

Complete this checklist by entering the page numbers from your manuscript where readers will find each of the items listed below.

Your article may not currently address all the items on the checklist. Please modify your text to include the missing information. If you are certain that an item does not apply, please write "n/a" and provide a short explanation.

Upload your completed checklist as an extra file when you submit to a journal.

In your methods section, say that you used the SPIRITreporting guidelines, and cite them as:

Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin J, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jerić K, Laupacis A, Moher D. SPIRIT 2013 Explanation and Elaboration: Guidance for protocols of clinical trials. BMJ. 2013;346:e7586

			Page
		Reporting Item	Number
Administrative information			
Title	<u>#1</u>	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	<u>#2a</u>	Trial identifier and registry name. If not yet registered, name of intended registry	2
Trial registration: data set	<u>#2b</u>	All items from the World Health Organization Trial Registration Data Set	n/a
Protocol version	<u>#3</u>	Date and version identifier	n/a
Funding	<u>#4</u>	Sources and types of financial, material, and other support	13
Roles and responsibilities: contributorship	<u>#5a</u>	Names, affiliations, and roles of protocol contributors	1
	or peer re	eview only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3	Roles and responsibilities:	<u>#5b</u>	Name and contact information for the trial sponsor	1
4 5 6 7	sponsor contact information			
8 9 10 11 12 13 14 15	Roles and responsibilities: sponsor and funder	<u>#5c</u>	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	1, 13
16	Roles and	<u>#5d</u>	Composition, roles, and responsibilities of the coordinating	1, 13
17 18	responsibilities:		centre, steering committee, endpoint adjudication committee,	
19 20 21 22 23	committees		data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	
24 25 26	Introduction			
27	Background and	<u>#6a</u>	Description of research question and justification for undertaking	5
28 29 30 31	rationale		the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	
32	Background and	<u>#6b</u>	Explanation for choice of comparators	5
33 34	rationale: choice of			
35 36	comparators			
37 38 39	Objectives	<u>#7</u>	Specific objectives or hypotheses	5
40 41 42 43 44 45	Trial design	<u>#8</u>	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, non-inferiority, exploratory)	5
46 47	Methods:			
48	Participants,			
49 50	interventions, and			
51 52	outcomes			
53 54 55	Study setting	<u>#9</u>	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected.	6
56 57 58 59			Reference to where list of study sites can be obtained	
60		For peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5	Eligibility criteria	<u>#10</u>	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	6
6 7 8	Interventions: description	<u>#11a</u>	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	5,7
9 10 11 12 13 14	Interventions: modifications	<u>#11b</u>	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving / worsening disease)	5,7
15 16 17 18 19	Interventions: adherance	<u>#11c</u>	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return; laboratory tests)	7
20 21 22 23	Interventions: concomitant care	<u>#11d</u>	Relevant concomitant care and interventions that are permitted or prohibited during the trial	6,7
24 25 26 27 28 29 30 31 32 33	Outcomes	<u>#12</u>	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	10f
34 35 36 37 38	Participant timeline	<u>#13</u>	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	5
39 40 41 42 43	Sample size	<u>#14</u>	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	12
44 45 46 47	Recruitment	<u>#15</u>	Strategies for achieving adequate participant enrolment to reach target sample size	5
48 49 50 51 52 53	Methods: Assignment of interventions (for controlled trials)			
54 55 56 57 58 59 60	Allocation: sequence generation	<u>#16a</u> r peer rev	Method of generating the allocation sequence (eg, computer- generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	n/a

Page 25 of 26			BMJ Open	
1 2 3 4 5 6 7 8 9			provided in a separate document that is unavailable to those who enrol participants or assign interventions	
	Allocation concealment mechanism	<u>#16b</u>	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	n/a
10 11 12 13	Allocation: implementation	<u>#16c</u>	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	n/a
14 15 16 17 18 19 20 21 22 23 24	Blinding (masking)	<u>#17a</u>	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	n/a
	Blinding (masking): emergency unblinding	<u>#17b</u>	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	n/a
25 26	Methods: Data			
27 28	collection,			
29 30	management, and analysis			
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Data collection plan	<u>#18a</u>	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	10f
	Data collection plan: retention	<u>#18b</u>	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	7,12
	Data management	<u>#19</u>	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	12
	Statistics: outcomes	<u>#20a</u> For peer rev	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol /iew only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	12f

1 2 3	Statistics: additional analyses	<u>#20b</u>	Methods for any additional analyses (eg, subgroup and adjusted analyses)	12f
4 5 6 7 8 9	Statistics: analysis population and missing data	<u>#20c</u>	Definition of analysis population relating to protocol non- adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	12f
10 11	Methods: Monitoring			
12 13 14 15 16 17 18 19 20 21	Data monitoring: formal committee	<u>#21a</u>	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	12f
22 23 24 25 26	Data monitoring: interim analysis	<u>#21b</u>	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	n/a
27 28 29 30 31	Harms	<u>#22</u>	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	12
32 33 34 35 36 37	Auditing	<u>#23</u>	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	n/a
38 39	Ethics and			
40 41	dissemination			
42 43 44	Research ethics approval	<u>#24</u>	Plans for seeking research ethics committee / institutional review board (REC / IRB) approval	2
45 46 47 48 49 50 51	Protocol amendments	<u>#25</u>	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC / IRBs, trial participants, trial registries, journals, regulators)	2, 13
52 53 54 55 56 57 58 59	Consent or assent	<u>#26a</u>	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	6
60	Fo	r peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

1 2 3 4 5 6 7 8 9 10	Consent or assent: ancillary studies	<u>#26b</u>	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	6			
	Confidentiality	<u>#27</u>	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	12			
11 12 13 14	Declaration of interests	<u>#28</u>	Financial and other competing interests for principal investigators for the overall trial and each study site	13			
15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Data access	<u>#29</u>	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	12f			
	Ancillary and post trial care	<u>#30</u>	Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	n/a			
	Dissemination policy: trial results	<u>#31a</u>	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	2, 13			
	Dissemination policy: authorship	<u>#31b</u>	Authorship eligibility guidelines and any intended use of professional writers	13			
	Dissemination policy: reproducible research	<u>#31c</u>	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	n/a			
40 41	Appendices						
42 43 44 45 46 47 48 49 50 51 52	Informed consent materials	<u>#32</u>	Model consent form and other related documentation given to participants and authorised surrogatess	6			
	Biological specimens	<u>#33</u>	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	7			
	The SPIRIT Explanation and Elaboration paper is distributed under the terms of the Creative Commons						
53 54	Attribution License CC-BY-NC. This checklist was completed on 07. November 2022 using						
55 56 57 58	https://www.goodreports.org/, a tool made by the EQUATOR Network in collaboration with Penelope.ai						
59 60	Fo	or peer re	view only - http://bmjopen.bmj.com/site/about/guidelines.xhtml				