Variables	Young donators	Old donators	P value (Y/O)
Number	14	15	NA
Age	8.14 ± 2.82	54.20 ± 3.82	<0.0001****
Prefemoral fat	11	11	NA
Abdominal fat	3	4	NA
BMI	19.13 ± 3.57	22.02 ± 2.61	0.04*
SBP	115 ± 11.67	126.54 ± 8.30	0.03*
DBP	75 ± 7.39	80 ± 6.15	0.14
FBG	4.87 ± 0.35	5.00 ± 0.69	0.60
TG	1.15 ± 0.43	1.53 ± 0.46	0.29
TC	3.68 ± 0.53	4.44 ± 0.80	0.20
HDL	1.23 ± 0.18	1.19 ± 0.31	0.83
LDL	1.98 ± 0.55	2.65 ± 0.71	0.01*
Cr	36.5 ± 5.00	51.08 ± 16.26	0.02*
BUN	3.89 ± 1.16	4.13 ± 0.87	0.40

Table S1. Basic characteristics of different groups included in the study.

BMI (kg/m²): body mass index; SBP (mm Hg): systolic blood pressure; DBP (mm Hg): diastolic blood pressure; FBG (mmol/L): fasting blood glucose; TG (mmol/L): triglyceride; TC (mmol/L): total cholesterol; HDL-C (mmol/L): high-density lipoprotein cholesterol; LDL-C (mmol/L): low-density lipoprotein cholesterol; Cr (µmol/L): creatinine; BUN (mmol/L): blood urea nitrogen. Data are expressed as Mean \pm SEM and were statistically analyzed by the un-paired Student's t test. *p< 0.05, **p< 0.01.

Gene	Primer sequences
NONHSAT035482.2	Forward 5'-CGCAGTCTTGGATGATGGGTTC-3'
	Reverse 5'-GCTCCAGCTACTTTGGGGGCTTA-3'
ADD3	Forward 5'-TTCACCTCCTCTCAGTCTTGGC-3'
	Reverse 5'- GTGTGCCCATCCAAACAAGTC-3'
VEGFA	Forward 5'- GTTCGAGGAAAGGGAAAGGGGC-3'
	Reverse 5'- TGAGCAAGGCCCACAGGGAAC-3'
FGF2	Forward 5'- GAGAAGAGCGACCCTCACATCA-3'
	Reverse 5'- TGCCCAGTTCGTTTCAGTGCC-3'
U3	Forward 5'- TGTAGAGCACCGAAAACCACG-3'
	Reverse 5'- CAGCCAAGCAACGCCAGA -3'
GAPDH	Forward 5'- AAAATCAAGTGGGGGGGATGCT-3'
	Reverse 5'- TGGTTCACACCCATGACGAAC-3'
β-ACTIN	Forward 5'-CAGCCTTCCTTCCTGGGCAT-3'
	Reverse 5'-GGGCAGTGATCTCCTTCTGCAT-3'
hsa-miR-143-3p	Forward 5'- TGAGATGAAGCACTGTAGCTC-3"
U6	Forward 5'- CTCGCTTCGGCAGCACA-3'
	Reverse 5'- AACGCTTCACGAATTTGCGT-3'

 Table S2. RNAs' primers used for real-time polymerase chain reaction.

 Table S3. Sequences of mimics, inhibitors.

	Sequences
hsa-miR-143-3p mimic	5'- UGAGAUGAAGCACUGUAGCUC -3"
	3'- ACUCUACUUCGUGACAUCGAG -5'
mimic NC	5'- UUUGUACUACACAAAAGUACUG -3'
	3'- AAACAUGAUGUGUUUUCAUGAC -5'
hsa-miR-143-3p inhibitor	5'- GAGCUACAGUGCUUCAUCUCA -3'
inhibitor NC	5'- CAGUACUUUUGUGUAGUACAAA-3'

Gene	Target sequences
sh-SAN#1	5'- GCTCTCAACATCTCTTCTT -3'
sh-SAN#2	5'- GCAGGAACTTGATTACTTT -3'
sh-SAN#3	5'- GCAACTTTGTTCAACATTA -3'
sh-ADD3#1	5'- GCTGTATCCTCCATGAAAT -3'
sh-ADD3#2	5'- GCCACCTTCTACTATGCAA -3'
sh-ADD3#3	5'- GCTCCTCCTAACCCATTTA -3'
sh-NC	5'- CCTAAGGTTAAGTCGCCCTCG -3'

 Table S4. Target sequences of lentiviral vector containing shRNA.

Table S5. The gene-specific primers used for the RACE analysis ofNONHSAT035482.2.

Gene Specific Primers	Sequences
5'RACE GSP	
Out Primer	5'- ACAGTGGCAGAAGAAGTCCAGCAAGG -3"
Inner Primer	5'- GGAACCCATCATCCAAGACTGCGGCAC -3"
3'RACE GSP	
Out Primer	5'- AGGAGGCAGGTCTCCGCGGTTCATCT -3"
Inner Primer	5'- TGCCGCAGTCTTGGATGATGGGTTCC -3"

Figure S1. Identification of fibroblast. Images of vimentin-stained cells (red) in fibroblast; nuclei were stained blue. Scale bar = $50 \mu m$.

Figure S2. Evaluation of the cellular function of ASCs obtained from old and young volunteer donors. (a) Representative images of SA- β -gal staining and quantitative analysis of SA- β -gal-positive cells in Y-ASCs and O-ASCs. Scale bar = 100 μ m. (b) Images and quantitative analysis of migrated cells in Y-ASCs and O-ASCs. Scale bar = 100 μ m. (c) Representative images of EdU-stained cells (green) in ASCs and analysis of proliferative rate in those two groups; nuclei were stained blue. Scale bar = 100 μ m. (d) Images of tube formation and quantitative analysis of capillaries in HUVECs treated with CM from Y-ASCs and O-ASCs. Scale bar = 100 μ m. (e) Images and quantitative analysis of migrated fibroblasts that received the above treatments. Scale bar = 200 μ m. All experiments were performed in triplicate (n = 5. *p < 0.05, **p < 0.01, ***p < 0.001).

Figure S3. Evaluation of the cellular senescence and proliferation of ASCs obtained from old and young volunteer donors. (a) Representative images of H2AX stained cells (green) in Y-ASCs and O-ASCs; nuclei were stained blue. (b) Quantitative analysis of H2AX positive cells rates in Y-ASCs and O-ASCs. (c) Cell growth curves of O-ASCs and Y-ASCs. Scale bar = 50 μ m. All experiments were performed in triplicate (n = 4. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Figure S4. Sequence structure of NONHSAT035482.2. (a, b) 5'-RACE and 3'-RACE were conducted to harvest the 5'-end and 3'-end cDNA sequences of NONHSAT035482.2. (c, d) Amplicons were then sequenced. (e) The nucleotide sequence of the full-length NONHSAT035482.2 is shown red zone and underlined bases are the region of 5'-end (942 bp) and 3'-end (1301 bp) nucleotide sequences, respectively. A polyadenylation sequence was detected at the 3'-end of NONHSAT035482.2.

Figure S5. Examination of sh-SAN and oe-SAN vector efficiencies. (a) The expression of SAN in HEK-293T cells after transfection with sh-SAN plasmids. (b) qPCR analysis of SAN expression in ASCs transduced sh-SAN or sh-NC. (c) qPCR analysis of SAN expression in ASCs transduced oe-SAN or oe-NC. (d) qPCR analysis of the expression of vascular endothelial growth factor and fibroblast growth factor in ASCs transduced with sh-SAN or sh-NC. All experiments were performed in triplicate (n = 3. * p < 0.05, **p < 0.01, ***p < 0.001).

Figure S6. (a) β -gal staining and quantitative analysis of SA- β -gal-positive cells were detected in ASCs that had been stably transduced with SAN mutant type vector, SAN wild type or NC. Scale bar = 100 μ m. (b) Images of migrated cells and quantitative analysis of ASCs that had been stably transduced with SAN mutant type vector, SAN wild type or NC. Scale bar = 100 μ m. (c) Representative images and quantitative analysis of EdU-stained cells (green) in ASCs that received the above treatment; nuclei were stained blue. Scale bar = 100 μ m. (d) Mutations in the sequence of SAN mutant type vector. All experiments were performed in triplicate (n = 3. *p < 0.05, **p < 0.01, ***p < 0.001).

Figure S7. Examination of mimic and inhibitor transfection efficiencies. (a) Representative images of ASCs treated with mimic-NC labeled with cy3 (red) in different concentration. Scale bar = 100 μ m. (b) qPCR was conducted to detect miR-143-3p expression in ASCs transfected with 50nM miR-143-3p mimic. (c) Representative images of ASCs treated with inhibitor-NC labeled with 5-FAM (green) in different concentration. Scale bar = 100 μ m. (d) qPCR was conducted to detect miR-143-3p expression in ASCs transfected with 200nM miR-143-3p inhibitor. All experiments were performed in triplicate (n = 3. ***p < 0.001).

Figure S8. SAN knockdown or overexpression could reduce or accelerate ADD3 expression. (a) Western blotting and quantitative analysis of the expression levels of ADD3 in ASCs transduced with sh-SAN or sh-NC. (b) Western blotting and quantitative analysis of the expression levels of ADD3 in ASCs transduced with NC vector or SAN. All experiments were performed in triplicate (n = 3. *p < 0.05).

Figure S9. Examination of sh-ADD3 and oe-ADD3 vector efficiencies. Western blotting analysis of the expression levels of ADD3 in ASCs transduced with sh-ADD3 or sh-NC and oe-ADD3 or oe-NC.

Figure S10

Figure S10. SAN knockdown promotes ASC survival. (a) Representative images of wound sections that underwent injection of PBS, Y-ASCs, O-ASCs, or sh-SAN-O-ASCs at day 14 post-wounding. Cell nuclei (DAPI) were stained blue. Survival of implanted cells was detected by mCherry (red) expression and DAPI (blue) staining in the subcutaneous region of the wound; non-specific fluorescent staining was excluded. Arrows indicate surviving ASCs. Scale bar, 50 μ m. (b) Enumeration of surviving ASCs. All experiments were performed in triplicate (n = 4–5. **p < 0.01, ns, not significant).