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Supplementary Methods 
 
SLAM-seq 

Statistical analysis of half-life fold changes 

The influence of chromosome type on log2-transformed fold changes in mRNA half-
lives upon m6A depletion (Fig. 1G) or Mettl3 KO (Fig. 1H) was analysed using a 
categorical Gaussian linear mixed model. Distributional assumptions (normal 
distribution and homoscedasticity) were checked with Q-Q plots and by comparing 
empirical standard deviations. The factor chromosome type (autosome / X 
chromosome) was implemented as a fixed effect. To account for differences between 
individual chromosomes, the factor chromosome number (1 - 19, X) was included as 
a random effect. We used the R packages lme4 (v1.1.29) and lmerTest (v3.1.3). In 
both datasets, the fits of the random effect's variance were singular, meaning that the 
effect of individual chromosomes was negligible compared to the effect of 
chromosome type and that autosomal log2-transformed fold changes could be pooled 
to form one group. Inference using Wald tests in the resulting models is equivalent to 
unpaired Student’s t-tests for autosomal and X-chromosomal log2-transformed fold 
changes. 

 

Analysis of expression changes (RNA-seq)  

For comparison of expression changes between groups, log2-transformed fold 
changes were used. Only genes with a mean RPKM > 1 over all samples were 
considered. Effect sizes between groups were calculated as follows: The median log2-
transformed fold change of all autosomal genes was subtracted from the median log2-
transformed fold change of all X-chromosomal genes. This value was divided by the 
mean interquartile range (IQR) of both distributions, reported as the corresponding 
IQR of the median shift. The median shifts and IQR values for all datasets are 
summarised in Table S5. 

Median X:A expression ratios were calculated using the pairwiseCI package in R using 
’Median.ratio’ with 10,000 bootstrap replications as described before1. We used 
categorical weighted mixed-effect Gaussian models for the analysis of RPKM levels 
in different cell lines (mESC male / XX / X0 and human fibroblasts / HEK293T / C643 
/ RPE1). We fitted the models with the R package lme42 (v1.1.29) and performed 
statistical inference with the R packages lmerTest3 (v3.1.3) and emmeans (v1.8.0). A 
separate model was fitted for each cell line. The response variable was log-
transformed mean RPKM values, filtered for mean values > 1. The factors treatment 
(DMSO and STM2457) and chromosome type (autosomal and X) were implemented 
as fixed effects. The factor gene ID was implemented as a random effect to account 
for the correlation of RPKM values belonging to the same gene. We used inverse 
variance weighting to account for heteroscedasticity. We used tests based on the 
multivariate t-distribution to assess for both treatments if the RPKM log-ratio between 
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X-chromosomal and autosomal genes was different from 1 and if the ratios were 
different between treatments. The P values are adjusted for multiple testing per model. 

 

miCLIP2 to map m6A sites 

miCLIP2 experiment 

miCLIP2 experiments in female mESC were performed as described in 4 using 1 µg 
of input material per replicate. For all experiments, the m6A-specific polyclonal 
antibody from SynapticSystems (cat. 202 003) was used. 6 µg m6A-specific antibody 
was used per 1 µg of RNA. 

The miCLIP2 libraries were sequenced on an Illumina NextSeq 500 sequencing 
machine as 92-nt single-end reads including a 6-nt sample barcode as well as 5+4-nt 
unique molecular identifiers (UMIs) yielding between 32 and 46 million reads. Basic 
quality controls were done using FastQC (v0.11.8) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and reads were filtered 
based on sequencing qualities (Phred score) in the barcode and UMI regions using 
the FASTX-Toolkit (v0.0.14) (http://hannonlab.cshl.edu/fastx_toolkit/) and seqtk (v1.3) 
(https://github.com/lh3/seqtk/). Flexbar5 (v3.4.0) was used to de-multiplex reads based 
on the sample barcode on positions 6 to 11 of the reads. Subsequently, UMI and 
barcode regions as well as adapter sequences were trimmed from read ends using 
Flexbar requiring a minimal overlap of 1 nt of read and adapter and adding UMIs to 
the read names. Reads shorter than 15 nt were removed from further analysis. The 
downstream analysis was done as described in Chapters 3.4 and 4.1 of Busch et al.6 
with an additional step to remove reads directly mapped to the chromosome ends. 
Those reads do not have an upstream position and, thus, no crosslink position can be 
extracted. Genome assembly and annotation of GENCODE7 (release M23) were used 
during mapping with STAR8 (v2.7.3a). Information on possibly occurring mutations 
was collected through the MD tag by running STAR with option "--outSAMattributes 
All". 

After removing duplicates, all mutations found in reads were extracted using the Perl 
script parseAlignment.pl of the CLIP Tool Kit9 (CTK, v1.1.3). The list of all found 
mutations was filtered for C-to-T mutations using basic Bash commands and kept in 
BED file format as described in 10. Reads in this list (i.e., reads with C-to-T mutations) 
were removed from the de-duplicated BAM file using SAMtools11 (v1.9) and basic 
Bash commands. The resulting BAM file with the truncation reads (noC2T) was 
transformed to a BED file using bedtools bamtobed12 (BEDTools v2.27.1) considering 
only the 5′ mapping position of each read. Afterwards, the BED file was sorted and 
summarised to strand-specific bedGraph files, which were shifted by one base pair 
upstream (since this nucleotide is considered as the cross-linked nucleotide) using 
bedtools genomecov (BEDtools v2.27.1). All bedGraph files were transformed to 
bigWig track files using bedGraphToBigWig of the UCSC tool suite13 (v365). 
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m6A sites were predicted as described in 4. In brief, peaks were called on noC2T reads 
(BAM files) using PureCLIP14 (v1.3.1) and filtered for the presence in 3 out of 4 
replicates. Then, m6A sites were predicted using the machine learning model 
m6Aboost which we previously trained to discriminate m6A sites from background in 
miCLIP2 data, based on data from Mettl3 KO and control mESC. A detailed description 
of the method can be found in 4. 

Statistical analysis of m6A sites in transcripts 

To analyse the m6A sites in autosomes and the X chromosome, stratified by 
expression bins, a categorical generalized linear model for negative binomial data was 
fitted using the core R routine glm.nb (R version 4.1.2). The factors chromosome type 
(autosome / X chromosome) and expression bin (#3-8), as well as their interaction, 
were implemented. Based on visual assessment of the fits and on chi-squared tests 
for goodness of fit, the negative binomial model was selected in preference to a 
Poisson model. For each expression bin, Wald tests were used to test the difference 
between autosomes and the X chromosome. The P values were corrected for multiple 
testing (FWER-control) using the single step method implemented in the R package 
multcomp (v1.4.19). 

To analyse the general influence of the factor chromosome type on m6A sites, 
categorical generalized linear mixed models for negative binomial data were fitted 
using the R packages lme4 (v1.1.29) and lmerTest (v3.1.3). The factor chromosome 
type was implemented as a fixed main effect. The influences of expression bins and 
chromosome number were included as random effects. For the analysis of the mouse 
data sets, expression bins #3-8 were considered (Figs. 3D,F and 4G). Bins #4-9 were 
analysed in the HEK293T data set and bins #5-10 were analysed in the C643 data set 
(Fig. 3G). For each data set, the negative binomial models were preferable to Poisson 
models (visual assessment and chi-squared tests for fit of distribution). For the mouse 
heart data set, the likelihood ratio test and AIC comparison showed that the random 
effect chromosome number was not necessary to explain the data. The model was 
therefore fitted for the factors chromosome type and expression bin. The influence of 
the factor chromosome type on the m6A counts was tested with Wald tests. The fitted 
values and 95% confidence intervals (Wald type) of the fold changes (log2) of expected 
m6A counts in X-chromosomal over autosomal transcripts for all figures are reported 
in Table S6. 

Estimation of methylation levels 

Transcript annotations were taken from GENCODE (genome release M23, release 
31), selecting one transcript per gene with the following hierarchy: (i) highest transcript 
support level, (ii) highest gene support level, and (iii) longest transcript. GGACH motifs 
were identified in each transcript using the R/Bioconductor package Biostrings 
(v2.59.2) and grep. To take into account only GGACH motifs in transcript regions with 
sufficient expression, we calculated the local read coverage in the miCLIP2 data. For 
this, the truncation reads from miCLIP2 data (noC2T reads) were converted into a 
single nucleotide coverage using bamCoverage (v3.5.1) from the deepTools suite15. 
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The local read coverage was estimated as the median single nucleotide coverage in 
a 21-nt window centred on each GGACH motif. The GGACH motifs were binned by 
their log2-transformed local coverage, adding a pseudo-count of 1 before log2 
transformation. Within each bin, the percentage of GGACH motifs harbouring high-
confidence m6A sites predicted by m6Aboost was calculated. Since m6A detection 
partly depends on expression, this value increases steadily with increasing expression 
bins and then levels off at a certain methylation level. To determine this, a local linear 
regression curve was fitted using loess.smooth and used to identify the point at which 
the slope drops below 0.01 (Extended Data Fig. 7E,F,G). The corresponding 
percentage of GGACH motifs with an m6A site was used as an estimate of the 
methylation level on a given chromosome. If the slope for a given chromosome did not 
drop below 0.01 due to coverage limitations, the percentage of methylated GGACH 
motifs at the transition point between bins #11 and #12 was taken to estimate the 
methylation level for this chromosome. 

DNA-seq to determine chromosome copy numbers 

DNA isolation 

Cells were washed twice with ice-cold 1x PBS and collected on ice. For DNA isolation, 
the PureLink Genomic DNA MINI Kit (Invitrogen, 10593245) was used following the 
manufacturer’s instructions.  

DNA-seq library preparation 

DNA-seq library preparation was performed by using genomic DNA, which was 
sheared with a Covaris E220 focused ultrasonicator. NGS library preparation was 
performed using half of the reaction of NEBNext Ultra II DNA Library Prep Kit for 
Illumina Version 6.0, 3/20 following the manufacturer’s recommended protocol. 
Libraries were profiled on a 2100 Bioanalyzer (Agilent technologies) and quantified 
using the Qubit dsDNA HS Assay Kit, in a Qubit 2.0 Fluorometer (Life technologies). 
All samples were pooled in equimolar ratio and sequenced on an Illumina NextSeq500 
sequencing device using a Mid Output flow cell as 159-nt single-end reads. 

DNA-seq data processing 

Basic quality controls were done for all DNA-seq samples using FastQC (v0.11.8) 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Possibly remaining 
adapter sequences were trimmed using Cutadapt16 (v2.4) prior to mapping. A minimal 
overlap of 3 nt between reads and adapter was required and only reads with a length 
of at least 20 nt after trimming (--minimum-length 20) were kept for further analysis. 
Reads were mapped from start to end (--end-to-end) using Bowtie217 (v2.3.4.3) 
without allowing any mismatches in a seed alignment (-N 0) of length 31 (-L 31). 
Additional parameters specifying the behaviour of multi-seed alignments were set as 
-i S,1,0.50 -D 20 -R 3. Genome assembly of GENCODE7 release 31 (human) or 
release M23 (mouse) were used during mapping. Subsequently, multi-mapping or low-
quality alignments were removed using SAMtools11 (v1.9). Since sequencing of DNA 
samples was very shallow, detected duplicates are very likely PCR duplicates rather 
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than real duplicates. Thus, they were removed using Picard (v2.20.3) 
(https://github.com/broadinstitute/picard). 

To determine copy number variations, mapped reads were counted in 100 kilobase 
bins for each chromosome and normalised by library size. The ratio for each bin was 
calculated by dividing the number of mapped reads per bin by the median of mapped 
reads of all bins and chromosomes. Only the canonical chromosomes 1-19 and X 
were considered. 

 
Supplementary Tables 
 
Table S1. Half-lives measured by SLAM-seq in male mESC under m6A-depleted 
(STM2457) and control conditions. Half-lives for control and m6A-depleted 
conditions are given for each gene with the corresponding residual standard error 
which indicates the goodness of the fit (see Methods). Additionally, the mean T 
coverage over all replicates and samples which was used for expression estimations 
is given for each condition. 
 
Table S2. Summary of SLAM-seq, RNA-seq, and DNA-seq experiments 
conducted in this study. Table summarises the numbers of reads for all high-
throughput sequencing experiments conducted in this study. For RNA-seq and DNA-
seq experiments, the numbers of total sequenced reads and uniquely mapped reads 
are given. For SLAM-seq, the numbers of sequenced and retained read (SLAM-
DUNK) are given. For miCLIP2, the numbers of uniquely mapped reads and reads 
after duplicate removal are given.  
 
Table S3. Identified m6A sites for miCLIP2 data on bulk female mESC. Table 
provides information on all m6Aboost-predicted m6A sites (n = 33,371) in the miCLIP2 
data performed on bulk female mESC. Coordinates are given in a bed file-compatible 
format, i.e., as 0-based, right-open intervals. 
 
Provided as worksheets in Excel file Supplementary Tables. 
  

https://github.com/broadinstitute/picard
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Table S4. List of qPCR primers used to validate RNA expression upon m6A 
depletion in male mESC. Oligonucleotides used as primers for qPCR experiments in 
Extended Data Figs. 1D and 4C are given. For each oligonucleotide, the sequence 
and target transcript are given together with the primer orientation (forward or reverse).  
 

Name Sequence 5' - 3' Transcript Orientation 

qPCR_mNanog-for CCTCCAGCAGATGCA
AGAACTC 

Nanog Forward 

qPCR_mNanog-rev CTTCAACCACTGGTTT
TTCTGCC 

Nanog Reverse 

qPCR_mSox2-for ACAGATGCAACCGAT
GCACC 

Sox2 Forward 

qPCR_mSox2-rev TGGAGTTGTACTGCA
GGGCG 

Sox2 Reverse 

Plp1_qPCR_for CCAGAATGTATGGTG
TTCTCCC 

Plp1 Forward 

Plp1_qPCR_rev GGCCCATGAGTTTAA
GGACG 

Plp1 Reverse 

Fmr1_qPCR_for GGTCAAGGAATGGGT
CGAGG 

Fmr1 Forward 

Fmr1_qPCR_rev AGTTCGTCTCTGTGG
TCAGAT 

Fmr1 Reverse 

Ssr4_qPCR_for ACCACAGATCACCCC
TTCTTAC 

Ssr4 Forward 

Ssr4_qPCR_rev CCACTAACGTCGGCA
TAAAGAG 

Ssr4 Reverse 

Hnrnph2_qPCR_for GGAGGGGTTCGTGGT
GAAG 

Hnrnph2 Forward 

Hnrnph2_qPCR_rev GAACACCTGATGTGC
CATTTTG 

Hnrnph2 Reverse 

Itm2a_qPCR_for TTGCCTCATACTTATG
TGGTTCG 

Itm2a Forward 

Itm2a_qPCR_rev GCGGAAGGATTTTCG
GTTGTTG 

Itm2a Reverse 

(Continued on next page) 
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Table S4. List of qPCR primers used to validate RNA expression upon m6A 
depletion in male mESC. (Continued from previous page) 
 

Name Sequence 5' - 3' Transcript Orientation 

Rab11fip5_qPCR_for CTCTGGACGAGGTCT
TCCG 

Rab11fip5 Forward 

Rab11fip5_qPCR_rev TGTTCCGTGTGAACT
GGATGG 

Rab11fip5 Reverse 

Tubb3_qPCR_for TAGACCCCAGCGGCA
ACTAT 

Tubb3 Forward 

Tubb3_qPCR_rev GTTCCAGGTTCCAAG
TCCACC 

Tubb3 Reverse 

Phax_qPCR_for CGATGACGATTGCTC
TCTTTGG 

Phax Forward 

Phax_qPCR_rev CGCATCTTGATTCTGT
TCCTGG 

Phax Reverse 

Faap100_qPCR_for GGACGCGAGTTCGTC
TATGTG 

Faap100 Forward 

Faap100_qPCR_rev ACAGGACGTAGAGTG
CCCT 

Faap100 Reverse 

Tpst2_qPCR_for CGTGCTGTGTAACAA
GGACC 

Tpst2 Forward 

Tpst2_qPCR_rev CGTCACGCACCATTA
GCAG 

Tpst2 Reverse 

qPCR_mGapdh-for TCACCACCATGGAGA
AGGC 

Gapdh Forward 

qPCR_mGapdh-rev CCCTTTTGGCTCCAC
CCT 

Gapdh Reverse 
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Table S5. Additional information for estimated effect sizes. Effect sizes for 
comparisons of fold changes between groups, e.g., differences in expression fold 
changes upon m6A depletion between X-chromosomal and autosomal transcripts 
(Fig. 2A) are reported as the difference in medians of both distributions, divided by the 
mean interquartile range (IQR) of both distributions (see Methods). This table 
summarises the corresponding values for all effect sizes reported in this study, 
including the corresponding figure, the dataset analysed, the median shift between X-
chromosomal and autosomal transcripts, the effect size, and the IQRs of distributions. 
 
Figure Dataset Effect 

size 
Median 
shift 

IQR 
Chr X 

IQR 
autosomes 

Fig. 2A mESC male RNA-
seq  

34% 0.11 0.31 0.35 

Fig. 2D Human primary 
fibroblasts RNA-seq 

19% 0.08 0.4 0.47 

Extended 
Data Fig. 
4B 

mESC male (3 h 
STM2457) RNA-seq 

2% 0.0045 0.21 0.25 

Extended 
Data Fig. 
4B 

mESC male (6 h 
STM2457) RNA-seq 

27% 0.09 0.29 0.34 

Extended 
Data Fig. 
4B 

mESC male (9 h 
STM2457) RNA-seq 

22% 0.08 0.36 0.35 

Extended 
Data Fig. 
4B 

mESC male (12 h 
STM2457) RNA-seq 

21% 0.07 0.35 0.35 

Extended 
Data Fig. 
5B 

Human HEK293T 
RNA-seq 

17% 0.07 0.4 0.46 

Extended 
Data Fig. 
5B 

Human C643 RNA-
seq 

19% 0.097 0.52 0.49 

Extended 
Data Fig. 
5B 

Human RPE1 RNA-
seq 

18% 0.08 0.44 0.43 

Extended 
Data Fig. 
9D 

mESC female X0 
RNA-seq 

24% 0.08 0.33 0.33 

Extended 
Data Fig. 
9D 

mESC female XX 
RNA-seq 

26% 0.08 0.31 0.32 
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Table S6. Additional information for statistical analyses of m6A sites in 
transcripts. To analyse the general influence of the chromosome type on the number 
of m6A sites in transcripts, categorical generalised linear mixed models for negative 
binomial data were fitted to the data (see Methods “Statistical analyses of m6A sites in 
transcripts”). This table summarises the fitted values and 95% confidence intervals 
(Wald type) of the fold changes (log2) of expected m6A counts in X-chromosomal over 
autosomal transcripts as well as the two-tailed Wald test P values. The confidence 
intervals and P values in this table are not corrected for multiple testing. 
 
Figure Fold change 

(log2) 
95% confidence 
interval 

P value 

Fig. 3D 
(male mESC) 

-0.8178638 [-1.0904474, -0.5452803] 4.1e-09 

Fig. 3F (heart) -1.586387 [-2.065105, -1.107670] 8.34e-11 
Fig. 3F 
(macrophages) 

-1.0423472 [-1.4023045, -0.6823898] 1.38e-08 

Fig. 3G 
(HEK293T) 

-0.5777994 [-0.8826179, -0.2729808] 0.000203 

Fig. 3G (C643) -0.6506555 [-1.0391719, -0.2621391] 0.001030 
Fig. 4H 
(bulk female 
mESC) 

-0.6324775 [-1.0297596, -0.2351954] 0.0018 
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