
Supplementary Material for “Spin-orbit driven superconducting proximity effects in
Pt/Nb thin films” by M. G. Flokstra et al.

This supplementary materials contains additional information about 1) the theoretical framework used to describe
our data and 2) the experimental techniques used: LEM, STS, TEM and transport. While not essential to the
understanding or conclusions of the manuscript, specialist readers may find the additional information useful and
informative.

A. Quasiclassical Theory

To compare our experimental results with theory we make use of the quasiclassical framework in the dirty limit
(coherence length much longer than the mean free path), where the Green functions obey the Usadel equation [1]. To
simulate our scanning tunneling spectroscopy data we require the electronic density of states, which follows directly
from the obtained Green functions. For our muon experiments, where we measure local flux, we apply the linear
response theory to calculate the screening current in response to a small externally applied field.

We use realistic material parameters for our sample layouts, which where possible we determine directly from
independent measurements. The parameters required to describe the interfaces between two materials are tuned such
that the predicted superconducting transition temperature matches the experimentally observed value. Furthermore,
we initially omit spin-orbit interaction as well as additional pair-breaking mechanisms. We find this describes our
system well as long as the Pt layers are very thin (≤ 10 nm), but for our sample using ∼ 50 nm thick Pt layers
a clear discrepancy between the flux expulsion observed in our muon experiments and the prediction from theory
emerges. For this system with thick Pt, we use a detailed theoretical approach including spin-orbit interactions which
is able to explain the muon data. Below follows first the theory modeling omitting spin-orbit interactions, and its
application to the STS data (which requires the self-consistent solution for ∆(x)) and the LEM data (which requires
the solution for B(x)). The theory including spin-orbit is tailored for sample SM3 and is detailed under the section:
Triplet correlations induced by impurity spin-orbit interaction.

We take the x-axis normal to the metallic layers and assume translational invariance in the y,z plane. The Usadel equa-
tion for s-wave superconductivity then takes the form i~D∂x (ǧ∂xǧ) =

[
Ȟ, ǧ

]
with ǧ the 4×4 matrix Green function in

the Nambu ⊗ spin-space, ~ the reduced Planck constant and D the diffusion constant (see e.g. [2]). The Hamiltonian
can be described by Ȟ = i~ωn(τ3⊗σ0)+∆̌ with ωn the Matsubara frequencies defined by ~ωn = πkBT (2n+1) with kB
the Boltzmann constant, n integer and the maximum allowed frequency given by the Debye frequency. Furthermore,
σi and τi are the Pauli matrices of the spin space and Nambu space respectively. The matrix Green function and
∆̌ only have non-zero elements on their main and anti-diagonals with diag(ǧ) =

(
G↑↑, G↓↓, G↑↑, G↓↓

)
, anti-diag(ǧ) =(

F↑↓, F↓↑, F ↑↓, F ↓↑
)
and anti-diag(∆̌) = (−∆,∆,−∆∗,∆∗), where G and F are the quasiclassical normal and anoma-

lous Green functions respectively, both being functions of (x, ωn), ∆(x) is the order parameter and where up/down
arrows indicate spin-up/spin-down. The matrix Green function satisfies the normalization condition ǧ2 = 1̌ and the
order parameter must be solved self-consistently satisfying the gap equation:

i∆(x) =
πkBT

ln
(

T
Tc0

)
+
∑

n

(
1

|2n+1|

) ∑
ωn

F↑↓(x, ωn) (1)

with Tc0 the bulk critical temperature. We use the interface boundary conditions as formulated by Nazarov[3],
which for the interface between two materials with labels l, r for the layer on the left and right side of the interface
respectively can be written as: σlǧl∂xǧl = σr ǧr∂xǧr and σlǧl∂xǧl =

2
Rb

ǧlǧr−ǧr ǧl
4+Γ(ǧlǧr+ǧr ǧl−2) , with σi the conductivity of

layer i, 0 ≤ Γ ≤ 1 the interface transparency and Rb the interface resistance times the interface area.

When the Green functions are known one can calculate the response of the superconductor to a (small) external field.
Within the linear response theory, the shielding current density jy(x) in response to the vector potential Ay(x) is
written as[4]:

jy = −N0e
2D

~
AyπkBT

∑
ωn

Real
(
F↑↓F ↓↑ + F↓↑F ↑↓

)
(2)
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with N0 the normal state density of states near the Fermi energy. The vector potential is defined by B = ∇ × A
and using Maxwell’s equation ∇ × B = µ0j, the current density must thus satisfy µ0j = ∇ × (∇×A). Using both
expressions for the current density the vector potential (and thus the magnetic flux B) can be solved.
To obtain the electronic density of states, one needs to determine the real-time, energy (ϵ) dependent Green functions
rather than the imaginary-time ones. Using the Keldysh technique, the matrix Green function and Hamiltonian (used
in the Usadel equation) are now written as:

ğ =

(
ǧR ǧK

0 ǧA

)
, H̆ =

(
Ȟ 0
0 Ȟ

)
(3)

Here, ǧR and ǧA are the retarded and advanced components describing equilibrium properties and ǧK is the Keldysh
component which describes the non-equilibrium properties. Each component is a 4× 4 matrix Green function in the
Nambu ⊗ spin-space and a function of (x, ϵ). As long as the system is in equilibrium it is fully determined by the
retarded component and it is thus sufficient to calculate the retarded equation, which effectively replaces ǧ(x, ω) by
ǧR(x, ϵ) and i~ωn by ϵ. Once the retarded Green functions are obtained, the electronic density of states (N(x, ϵ))
follows from taking the real part of the (retarded) normal Green function.

B. STS

The scanning tunneling microscopy/spectroscopy (STM/S) measurements were performed using a home-built, cryo-
pumped low temperature STM machine operating at a base temperature below 2 K. The samples were placed in the
entry-lock chamber of the machine and pumped at a vacuum pressure of 8×10−6 mbar overnight, before they were
introduced to the STM image. The STM tip was made from PtIr wire, which before use was conditioned by field
emission on a Au single crystal target. Bias voltage (V ) was applied to the sample with the STM tip at virtual ground.
Differential conductance (dI/dV ) versus V spectroscopy data were recorded using the standard lock-in technique, with
the frequency and amplitude of voltage modulation set at 413 Hz and 0.2 mV, respectively.
The differential conductance of the STS spectra are modeled as [5]:

dI

dV
= G0

∫
N(ϵ)

(
−∂f(ϵ+ eV )

∂(eV )

)
dϵ, (4)

with G0 the differential conductance at eV >> ∆, N the (normalized) density of states (DOS) at the sample surface,
f the quasiparitcle distribution function and V the applied voltage bias (with respect to the grounded sample) to the
STM tip. For the N we use the results obtained from the quasiclassical theory and also make a comparison with the
phenomenological Dynes theory [6] which approximates the DOS by:

NDy(ϵ,∆,Γ) = Real

(
z√

z2 −∆2

)
, with z = |ϵ|+ iΓ (5)

where ∆ is a measure of the (induced) superconducting gap and Γ the effective pair-breaking strength.
Figure S1 shows in more detail the analysis presented in Fig. 1 of the manuscript and includes a direct comparison
to fitting the data with the Dynes model. The latter predicts stronger smearing of the peak features than what is
actually measured and gives less compelling fits compared to using a more realistic DOS obtained from quasiclassical
simulations. Figure S2 shows ∆(T ) obtained from both approaches, where for the quasiclassical approach (where ∆ is
solved as function of position) ∆(T ) is shown both at the sample surface and at the Nb/Pt interface. Note that ∆ as
used in the quasiclassical theory itself is zero outside the superconductor and what is actually shown is the imaginary
part of

∑
F↑↓, scaled such that for bulk Nb it gives the correct bulk value for the gap (∆0). The obtained full spatial

dependence of ∆ (normalized to ∆0) for each temperature is shown in Fig. S3. Figure S4 shows the STM topographic
image for the Au(5 nm)/Pt(2 nm)/Nb(50 nm) sample.

C. LEM

All low-energy muon-spin rotation (LE-µSR) measurements were performed on the µE4 beamline at the Paul
Scherrer Institut [7]. The positive muon is an unstable spin- 12 lepton of charge +e with a lifetime τµ = 2.197µs and on
decay emits a positron preferentially along its momentary spin direction. Upon implantation into a material a muon
will rapidly thermalize, while maintaining its spin direction, after which its spin precesses around the local field making
it a local magnetic probe. By monitoring the decay positrons of implanted, 100% spin polarized muons, information
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about the precession frequency (and thus the local field) can be obtained. The implantation depth profile (or stopping
profile) of the muon is energy dependent and can be calculated by a well-proven Monte-Carlo simulation[8, 9]. This
allows the average probing depth to be tuned from about 10 to 100 nm below the surface. For a typical measurement
several million counting events are collected at a rate of about 1 k/s and errors as small as 0.1 G can be achieved[10].
All our muon measurements were undertaken in transverse field geometry (applied field orthogonal to the muon spin
direction) with the applied field direction in the plane of the sample. From the measurement data taken at a particular
muon energy E (and thus a particular probing depth profile) one can determine the average flux ⟨B⟩(E), which can
also be presented as ⟨B⟩(⟨x⟩) with ⟨x⟩ the average probing depth of the muons at energy E. However, in cases where
the shape of the flux profile is known, either analytically including free fit parameters or numerically, one can treat the
measurement data imposing this B(x) to find best fits to the data. To compare this to the conventional approach it is
necessary to convolute B(x) with the muon stopping profiles in order to estimate which ⟨B⟩(E) the profile corresponds
to.
An example measurement of a muon experiment is shown in Fig. S5 (including the corresponding muon stopping pro-
files) where NL(t) and NR(t) are the measured positron detector histograms of the left and right detector respectively
and t is the time at which a positron is detected. The two detectors are placed on opposite sides of the sample and
the implanted muons have their initial spin direction pointing towards the left detector, with the result that from all
the muons that decay at t = 0 a bigger fraction hits the left detector compared to the right detector. As a function
of time, the muon-spin precesses around the local field which results in the muon-spin direction alternating between
the left and right detector. The main exponential decay of the measurement signal reflects the muon life-time and the
superimposed damped oscillations contain the information about the local field and define the asymmetry A(t) of the
signal. The histograms can be fitted using NL,R(t) = N0

L,R (1±A(t)) exp (−t/τµ)+KL,R with N0 the amplitude of the

signal, K the time-independent background contribution and A(t) the asymmetry of the signal which carries all the in-
formation concerning the field distributions. It can generally be modeled as A(t) =

∫
dxA0p(x) cos (γµB(x)t+ ϕ)G(t),

with A0 the (setup dependent) maximum asymmetry that can be measured, p(x) the muon stopping profile, γµ = 851
Mrad·s−1 the gyromagnetic ratio for the muon, B(x) the local flux density, ϕ the starting angle of the muon-spin
direction and G(t) the depolarization function (G ≤ 1), where the integral runs over the full width of the stopping
profile
In Fig. S6 we present muon data obtained on a Pt(60nm)/Nb(50nm). The results are similar to those obtained on
sample SM3 of the main manuscript, but due to the superconductor being much thinner (50 nm instead of 96 nm for
SM3), the effect (e.g. difference between the measurement in the normal state compared to the superconducting state)
is also much reduced and only just visible. In Fig. S7 we present muon data obtained on a Pt(94nm)/Nb(96nm),
which compared to sample SM3 has a thicker Pt layer. Up to the highest muon energy used, where muons reach up
to some 20-25 nm into the Nb layer (see Fig. S7), no signs of a net Meissner screening is observed. This apparent
lack of Meissner screening is consistent with our experimental findings on SM3 and related theory modeling. Due to
the Pt layer being thicker (94 nm compared to 56 nm for SM3), higher muon energies are required in order for them
to reach the Pt/Nb interface, which also results in a more spread-out stopping profile.

D. Triplet correlations induced by impurity spin-orbit interaction

For sample SM3 we use a detailed quasi-classical simulation including spin-orbit interaction in order to find a
realistic solution for the local magnetic flux density, and from that, using the muon stopping profiles, the average flux
density that would be observed during a muon experiment.

For the theoretical explanation of the experimental results we make use of the quasiclassical framework with
extrinsic spin-orbit coupling (SOC) in the dirty limit [11–13] (coherence length much longer than mean free path),
where the Green functions obey the Usadel equation. It is known that both intrinsic and extrinsic SOC induce
singlet-triplet conversion at hybrid interfaces of usual singlet superconductors with nonsuperconducting materials,
even in the absence of the exchange field [11, 12, 14–19]. In the framework of the considered model triplets are
generated by the Meissner currents in the presence of the impurity SOC, quantified by the spin Hall angle θ. The
triplets are small and their amplitude relative to the singlet component is controlled by the parameter psξθ, where ps
is the condensate momentum and ξ is the superconducting coherence length. This parameter is very small and our
estimates give psξ ∼ 0.05 for the system under consideration (at the applied field B = 300 G and the Nb thickness
96 nm). Therefore, we can consider the triplet correction as a small perturbation. Then the general Usadel equation
[11–13] can be simplified and up to the first order with respect to the parameter psξθ takes the form:[

ωnτ̂z − i∆̌, ǧ
]
+ ∂̂kJ̌k = 0, (6)

where ǧ is the quasiclassical Green’s function, which is a 4× 4 matrix in the direct product of particle-hole and spin
spaces. We use Pauli matrices τ̂i for the particle-hole space and σ̂i for the spin space. Eq. (6) is written in the
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Matsubara representation and ωn is the Matsubara frequency. ∆̌ = |∆|τ̂3eiτ3χτ1, where |∆| is the absolute value of
the superconducting order parameter and χ is its phase, which in our case can be set equal to zero.

∂̂k = ∂k − ie

c

[
Ak τ̂z, ...

]
, (7)

where Ak is the k-coordinate component of the vector potential of the magnetic field.

J̌k = −D
(
ǧ∂̂kǧ +

θ

2
εakj

{
∂̂j ǧ, σ̂a

})
, (8)

where D is the diffusion constant and θ is the spin Hall angle of the material. The main generator of the triplets
is the second term in the round brackets in Eq. (8). The applied magnetic field generates Meissner currents in the
superconductor, which lead to the appearance of the triplets via this term. Please note that the sign of θ is changed
with respect to Ref. [12]. In this case the parameter θ exactly coincides with the spin Hall angle, defined as in the
limit of the nonsuperconducting system. Below we consider the process in detail.

If the magnetic field is applied along the z axis, the only nonzero component of the vector potential is Ay and

nonzero ∂̂y ǧ appears accounting for the Meissner currents along the y direction. Then the second term in the round

brackets in Eq. (8) results in nonzero spin component ∝ σz of the matrix current J̌x. Further it serves as a generator
of the opposite-spin triplets with Sz = 0, which are described by the anomalous Green’s function (fs + ftσz).

For the problem under consideration it is convenient to calculate the Green’s function via the Θ-parametrization
[20]. The matrix structure in the particle-hole space is written explicitly:

ǧ =

(
coshΘ sinhΘ
− sinhΘ − coshΘ

)
+

δΘ

(
sinhΘ coshΘ

− coshΘ − sinhΘ

)
σ̂z (9)

The singlet contribution to the anomalous Green’s function is contained in the first term of Eq. (9) and is represented
by sinhΘ. The triplet contribution is contained in the second term and is represented by δΘcoshΘ. The both
quantities depend on the coordinate x along the direction perpendicular to the S/N interface. δΘ ∝ psξθ, as it is
demonstrated below, and, therefore, small. Further we substitute the ansatz Eq. (9) into the Usadel equation Eq. (6)
and up to the first order with respect to the parameter psξ obtain the following equations for Θ(x) and δΘ(x):

−D∂2
xΘ+ 2

(
i∆(x) coshΘ + ωn sinhΘ

)
= 0, (10)

−D∂2
xδΘ+ 2δΘ

(
i∆(x) sinhΘ + ωn coshΘ

)
+

2ie

c
DθB sinhΘ = 0. (11)

Eq. (11) contains the term depending on the spin Hall angle θ, which could be a generator of the triplet correlations.
However this term is typically small for type-II superconductors being of the order of ξ/λ with respect to all the other
terms. The main generator of the triplets appears via the boundary conditions at the S/N interface. The boundary
conditions [12] represent the generalized Kupriyanov-Lukichev boundary conditions and take the form:

J̌x,N =
DN

2RbσN

[
ǧS , ǧN

]
, (12)

NN J̌x,N = NS J̌x,S , (13)

where J̌x,N(S) and ǧN(S) are the values of the x-component of the matrix current Eq. (8) and the Green’s function,
respectively, at the normal x = −0 (superconducting x = +0) side of the interface. NN(S) is the normal state density
of states at the Fermi level in the normal (superconducting) part of the hybrid structure, σN(S) are the conductivities
and Rb is the interface resistance per unit area. In terms of the Θ-parametrization Eqs.(12)-(13) take the form:

∂xΘN =
1

RbσN
sinh(ΘS −ΘN ) (14)

σN∂xΘN = σS∂xΘS , (15)

∂xδΘN + ipsθN sinhΘN =
1

RbσN
(δΘS − δΘN ) cosh(ΘS −ΘN ) (16)

σN [∂xδΘN + ipsθN sinhΘN ] =

σS [∂xδΘS + ipsθS sinhΘS ]. (17)
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Here ps = −2(e/c)Ay is the condensate momentum due to the Meissner currents and θN,S are the spin Hall angles in
the normal and superconducting parts of the structure. Eqs. (16) and (17), which represent boundary conditions for
δΘ, contain terms ∝ psθN,S , which are generators for the triplets.
The superconducting order parameter should be calculated self-consistently according to:

∆(x) = πiλT
∑
ωn

sinhΘ(x). (18)

The spatial distribution and the amplitude of the triplet anomalous Green’s function ft = δΘcoshΘ is presented in
Fig. S9 for the Pt/Nb system for several Matsubara frequencies. As it should be for dirty samples, ft is an example of
odd-frequency s-wave superconducting correlations. The lengths of layers are chosen to fit the experimental sample
SM3. The resistance of the Pt/Nb interface is Rb = 2 · 10−15 Ωm2, the diffusion constants are DNb = 3.6 · 10−4 m2/c
and DPt = 1.1 ·10−3 m2/c, the conductivities are σNb = [1.5 ·10−7 Ωm]−1 and σPt = [1.1 ·10−7 Ωm]−1. In agreement
with the structure of Eqs. (16) and (17) the amplitude of the triplet component at the interface should be of the order
of ft(x = 0) ∼ θpsξfs(x = 0). In our case fs(ω1) ∼ 1 and psξ ∼ 0.05 at B = 300 G. Taking θPt = 0.096 (see below)
we obtain that the numerical value of ft,P t(ω1, x = 0) is in reasonable agreement with these rough estimates.

In principle, the triplet component contributes to the measured magnetic field in two different ways: (i) it results
in the spin splitting of the quasiparticle DOS caused by the spin-triplet pairs. Although the triplet pairs have zero
spin projection onto the z-axis, they are inevitably accompanied by the appearance of the spin dependence of the
normal Green’s function, as it is suggested by Eq.(9). In its turn, the spin-dependent correction to the normal Green’s
function leads to the spin splitting of the DOS, giving rise to the magnetization; (ii) it leads to the paramagnetic
contribution to the Meissner currents. The distribution of the magnetic field in the system can be found making use
of the Maxwell’s equation:

rot rotA =
4π

c

(
js + c rotM

)
, (19)

In the considered geometry Eq. (19) can be rewritten in the form:

−d2Ay

dx2
= −4π

dMz

dx
+

4π

c
QAy. (20)

The first term in the right-hand side of Eq. (20) accounts for the the magnetization created by the triplet pairs and the
second one describes paramagnetic contribution to the Meissner currents. We consider the both effects and have to
conclude that the second one is negligibly small. The paramagnetic contribution to js can be estimated in terms of the
paramagnetic correction to the kernel Q = Qs(1+ δQ), where Qs is the singlet contribution to the Meissner response.
The magnitude of δQ ∝ (psξ)

2θ2, in fact it is even smaller because of additional reducing factors coming from the
exact solution. From the numerical calculation it is obtained that in the framework of the considered mechanism it
cannot account for the observed paramagnetic response and even does not make a visible contribution to it. Therefore,
we focus only on the magnetization, induced by the triplet pairs. It can be calculated as

Mz =
2iπµBNFT

1 + F a
0

∑
ω

sinhΘδΘ, (21)

where Fa is the Landau Fermi liquid parameter [21] and can be expressed via the experimentally accessible normal
state susceptibility χ = 2µ2

BNF /(1 + F a
0 ). Then the magnetization takes the form

Mz =
iπTχ

µB

∑
ω

sinhΘδΘ. (22)

The direct measurements of the low temperature normal state susceptibility of a Pt(40nm) film grown on a Si substrate
give the result 4πχ = 0.104/(T + 0.652) in Gaussian units (dimensionless).
The spatial profile of the corresponding paramagnetic field contribution δB = 4πMz, calculated according to

Eqs. (20) and (22), is presented in Fig.4(c) of the manuscript. To compare the calculated profile with the muon
results it is necessary to convolute δB(x) with the energy-dependent muon stopping profile. In order to compare
δB(x = 0) at the interface with the experimental results presented in Fig.4(b) of the manuscript, we convolute δB(x)
with the muon stopping distribution corresponding to 19(54)keV (nm) (approximately at the interface). Fitting the
result of the convolution, which is denoted by ⟨B+⟩ to the experimental value we obtain θPt = 0.096. We also assume
nonzero value of the impurity SOC in Nb θNb = −0.2θPt. Under this assumption we obtain small nonzero value of the
triplet component in the depth of Nb, which is maintained by the Meissner currents, that is decays over the length
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scale of the magnetic field penetration depth. It results in the nonzero negative magnetization deep in Nb in Fig.4(c)
of the manuscript. However, the small spin Hall effect in Nb does not influence the result qualitatively.

In order to compare the temperature of δB(T ) at a given x with the experimental results presented in Fig.5(a)-
(b) of the manuscript we convolute B(x) with the muon stopping distribution corresponding to 19(54) keV(nm)
(approximately at the interface) and 27(82) keV(nm) (in the depth of Nb). The result of the convolution of δB,
which is denoted by ⟨B+⟩, is presented in Fig. S10 as a function of temperature. The green curve corresponds to
the convolution of δB with the muon distribution 19(54) keV(nm) and the black curve is for the convolution with
27(82) keV(nm) distribution. It is seen that ⟨B+⟩ is strongly suppressed with increasing temperature. We see three
reasons for this suppression. The strongest effect comes from the temperature suppression of the triplet correlations,
the second reason is the temperature dependence of the normal state susceptibility χ. The third reason is associated
to the fact that the decay length of δB in Pt, which is, roughly speaking, nothing but the normal state coherence
length ξN =

√
Dpt/2πT declines with increasing temperature. After the convolution procedure it leads to smaller

⟨B+⟩. Fig.5(c) of the manuscript represents the result of the convolution of the total magnetic field, which is a sum
of the diamagnetic response of the singlet component and the paramagnetic contribution of the triplet component.

The paramagnetic contribution becomes smaller with shortening the Pt layer. It is connected to the fact that the
triplets generated at the opposite interfaces of the Pt layer have opposite signs if the directions of ps are the same
at those interfaces. The same effect has been discussed in Ref. [11]. The paramagnetic contribution should become
stronger in case of further increase of the Nb length. Roughly speaking, the effect is proportional to the Nb length
unless it reaches 2 magnetic field penetrating depths of Nb. The point is that the triplet ft is proportional to the value
ps(x = 0) at the Nb/Pt interface. For the structures under consideration the dependence ps(x) is nearly linear with
the zero crossing point corresponding approximately to the middle of the Nb layer. Then ps(x = 0) = (2e/c)BL/2,
where L is the Nb length.

E. Transport

Transport measurements were performed in a commercial 7 T helium flow cryostat using a He-3 insert (Cryogenic
Mini Cryogen Free System). A standard four-point geometry was used to measure resistance (R) as function of
temperature (T ) and applied field (H). Figure S11 shows the results obtained on the Cu/Pt/Nb (SM2) sample.
The R(H) curves are measured both for decreasing and increasing field but no significant hysteresis was observed.
From the field decreasing branches, at fixed temperature, and always starting from fields above the critical field to
ensure normal state, the upper (perpendicular) critical fields are determined (Hc2,perp). The obtained Hc2,perp(T ) are
fitted to µ0Hc2,perp(T = 0)(1 − (T/Tc(H = 0))α)β and the Ginzburg-Landau coherence length is determined from

ξGL =
√
~/(2eµ0Hc2,perp(T = 0)).

F. SEM/TEM

Samples for transmission electron microscopy (TEM) were prepared by a focused ion beam technique using a FEI
Scios Dualbeam FIB. Sites of interest were identified by SEM imaging and protected from the damaging effects of the
gallium ion beam by the electron-deposition of a carbon layer followed by the application of a thicker gallium ion-
deposited platinum layer. Thin foils were then prepared by ion milling and transferred in-situ to a copper TEM grid
for final thinning and ion-polishing. TEM and scanning transmission electron microscopy (STEM) were carried out
using a FEI Titan Themis S/TEM operated at 200 kV equipped with a Super-X windowless x-ray energy dispersive
spectrometer (EDS). Bruker Esprit software was used for analysis and quantification of EDS spectra. Figure S12
shows the EDS analysis of the Pt/Nb sample (SM3).
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FIG. S4: STM topographic image of the Au(5)/Pt(2)/Nb(50)/Si Sample.
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FIG. S5: Top: Example of measured detector histograms NL,R(t) for the left (L) and right (R) positron detector, taken on
the Pt(56nm)/Nb(96nm)/Si (SM3) sample at T = 2.7 K, a muon implantation energy of 27 keV, and at an applied field of
approximately 300 G. Inset shows the asymmetry A(t) of the signal which carries all the information about the local field
distribution. Bottom: muon stopping profile as function of muon implantation energy.
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FIG. S13: SQUID magnetometry measurement results to determine the low temperature magnetic susceptibility of a Pt film
with a thickness of 40 nm and a surface area of approximately 25 mm2. Left: obtained low temperature dependence of the Pt
moment in a measurement field of 0.5 T. Measurements were taken for both increasing and decreasing temperature and the data
(circles) are fit (solid line) using a A/(T +B) dependence. Right: the fit results on all the measurements, taken at measurement
fields of ±0.5 T, ±0.1 T and ±0.03 T, and normalized to the respective measurement field to obtain the susceptibility. The
average of the fits is shown by the dashed line.
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