1		Supporting Information
2		
3	Guid	elines for Optimizing Type S Non-Ribosomal Peptide Synthetases
4	Nadya	Abbood ^{1,2} , Juliana Effert ¹ , Kenan A. J. Bozhueyuek ^{1,2,3,7*} , Helge B. Bode ^{1,2,4,5,6*}
5 6	1	Max-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043, Marburg, Germany.
7 8	2	Molecular Biotechnology, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
9	3	Myria Biosciences AG, Mattenstrasse 26, 4058 Basel, Switzerland
10 11	4	Chemical Biology, Department of Chemistry, Philipps-University Marburg, 35043, Marburg, Germany
12	5	Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt am Main, Germany
13 14	6	Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
15 16 17	7	Present address: Synthetic Biology of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
18		
19	*	Corresponding author: kenan.bozhueyuek@myria.bio; helge.bode@mpi-marburg.mpg.de

20	1. Supplementary tables4
21	Table S1. ESI-MS data of all produced peptides. 4
22	Table S2. Strains used in this work. 4
23	Table S3. Plasmids used in this work. 4
24	Table S4. Oligonucleotides used in this work
25	2. Supplementary Figures10
26	Figure S1. Advantages of Type S NRPS10
27	Figure S2. Other splicing positions11
28	Figure S3. HPLC/MS data (Figure 2) of compound 1 produced in <i>E. coli</i> DH10B::mtaA
29	Figure S4. HPLC/MS data (Figure 3) of compounds 1 produced in <i>E. coli</i> DH10B:: <i>taA</i>
30	Figure S5. HPLC/MS data (Figure 4) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
31	Figure S6. HPLC/MS data (Figure 5) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
32	Figure S7. HPLC/MS data (Figure 5) of compound 2 produced in E. coli DH10B::mtaA
33	Figure S8. HPLC/MS data (Figure 5) of compound 2 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
34	Figure S9. HPLC/MS data (Figure 5) of compound 3 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
35	Figure S10. HPLC/MS data (Figure 5) of compounds 4 and 5 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> 18
36	Figure S11. HPLC/MS data (Figure 5) of compound 4 produced in <i>E. coli</i> DH10B::mtaA
37	Figure S12. HPLC/MS data (Figure 5) of compounds 1 and 6 produced in E. coli DH10B::mtaA 19
38	Figure S13. HPLC/MS data (Figure 5) of compounds 2, 7 and 8 produced in E. coli DH10B::mtaA 20
39 40	Figure S14. HPLC/MS data (Figure 5) of compounds 2, 8, 9 and 10 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> . 21
41	Figure S15. HPLC/MS data (Figure 5) of compounds 3 and 11 produced in E. coli DH10B::mtaA 22
42 43	Figure S16. HPLC/MS data (Figure 5) of compounds 4, 12, 5 and 13 produced in <i>E. coli</i> DH10B:: <i>mtaA</i> .
44	Figure S17. HPLC/MS data (Figure 5) of compounds 4 and 12 produced in E. coli DH10B::mtaA 24
45	Figure S18. HPLC/MS data (Figure 6) of compound 14 produced in E. coli DH10B::mtaA
46 47	Figure S19. HPLC/MS data (Figure 5) of compounds 14, 15, 16, 17 and 18 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
48	Figure S20. HPLC/MS data (Figure S25) of compound 1 produced in E. coli DH10B::mtaA
49	Figure S21. HPLC/MS data (Figure S26) of compound 1 produced in E. coli DH10B::mtaA
50	Figure S22. HPLC/MS data (Figure S27) of compound 1 produced in E. coli DH10B::mtaA
51	Figure S23. HPLC/MS data (Figure S28) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
52	Figure S24. HPLC/MS data (Figure S29) of compound 1 produced in <i>E. coli</i> DH10B:: <i>mtaA</i>
53	Figure S25. More GS-optimized chimeric tri-partite XtpS NRPSs split at the A-T position
54	Figure S26. SZ1:2 truncation of chimeric di-partite XtpS NRPSs split at the A-T position
55	Figure S27. SZ2:19 truncation of chimeric di-partite XtpS NRPSs split at the A-T position
56	Figure S28. SZ17:18 truncation of chimeric di-partite XtpS NRPSs split at the C-A position
57	Figure S29. SZ4:21 truncation of chimeric di-partite XtpS NRPSs split at the A-T position

58	Figu	ure S30. Overview of truncated SYNZIPs43
59	3.	References
60		
61		
62		
63		
64		
65		
66		
67		
68		
69		
70		
71		
72		
73		
74		
75		
76		
77		
78		
79		
80		
81		
82		
83		
84		
85		
86		
87		

1. Supplementary tables

Peptide (#)	mass-to-charge	Molecular	AA sequence	Reference
	ratio (<i>m/z</i>)	formula		
1	411.29	$C_{21}H_{38}O_4N_4$	cyclo(vLvV)	1
2	459,30	$C_{25}H_{38}N_4O_4$	cylco(<i>v</i> LfV)	2
3	778,45	$C_{41}H_{59}N_7O_8$	vLvvYW	2
4	826.45	C45H59N7O8	vLfvYW	2
5	792.47	C42H61N7O8	<i>v</i> L/ <i>v</i> YW	2
6	425.31	$C_{22}H_{40}N_4O_4$	cyclo(<i>I</i> L <i>v</i> V)	2
7	425,31	$C_{22}H_{40}N_4O_4$	cyclo(<i>v</i> LN)	2
8	472.31	$C_{26}H_{40}N_4O_4$	cyclo(/LfV)	2
9	476.62	$C_{25}H_{40}N_4O_5$	vLfV	2
10	490.65	$C_{26}H_{42}N_4O_5$	ILf∨	2
11	792.47	C42H61N7O8	<i>ILvv</i> YW	2
12	840.47	$C_{46}H_{61}N_7O_8$	<i>ILfv</i> YW	2
13	806.48	C43H63N7O8	<i>ILIv</i> YW	2
14	538.40	$C_{28}H_{51}O_5N_5$	cyclo(<i>v</i> L <i>vl</i> L)	2
15	470.35	$C_{24}H_{46}O_5N_4$	<i>v</i> //L	this study
16	655.47	C33H62O7N6	<i>v</i> LV <i>v/</i> L	this study
17	637.46	C33H60O6N6	cyclo(<i>v</i> LV <i>vI</i> L)	this study
18	754.54	C ₃₈ H ₇₁ O ₈ N ₇	<i>v</i> LVV <i>vI</i> L	this study

Table S1. ESI-MS data of all produced peptides.

Table S2. Strains used in this work.

Strain	Genotype/ NRPS	Reference
E. coli DH10B	F_mcrA (<i>mrr-hsd</i> RMS- <i>mcr</i> BC),	3
	80 <i>lac</i> ΖΔ, M15, Δ <i>lac</i> X74 <i>rec</i> A1	
	<i>end</i> A1 <i>ara</i> D 139∆(<i>ara, leu</i>)7697	
	galU galK λ rpsL (Strr) nupG / -	
<i>E. coli</i> DH10B:: <i>mta</i> A	DH10B with <i>mtaA</i> from	4
	pCK_ <i>mtaA∆entD</i> / -	
P. luminescens TTO1	- / gxpS	DSMZ
X. nematophila ATCC 19061	- / xtpS	ATCC
X. szentirmaii DSM 16338	- / szeS	DSMZ

Table S3. Plasmids used in this work.

Plasmids	Genotype	Reference
pCOLA_ara/tacl	ori ColA, kan ^R , <i>araC-P_{BAD}</i> and <i>tac</i> l	unpublished
pCK_0402	ori p15A, cm ^R , <i>araC-P_{BAD}</i> and <i>tacl-araE</i>	5

pCOLA_ara_xtpS_tacl_JW	ori ColA, kan ^R , <i>araC-P_{BAD} xtpS</i> and <i>tac</i> l	5
pCOLA_ara_gxpS_tacl_JW	ori CoIA, kan ^R , <i>araC-P_{BAD} gxpS</i> and <i>tac</i> I	5
pNA2	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ T ₂ -SYNZIP17 und <i>tacl-araE</i>	2
pNA3	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	2
pNA4	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ -SYNZIP17 und tacl-araE	2
pNA5	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtp</i> S_T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> l	2
pNA8	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -(GS) ₅ -SYNZIP17 and <i>tacl-araE</i>	this study
pNA9	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -(GS) ₄ -SYNZIP17 and <i>tac</i> I- <i>araE</i>	this study
pNA10	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -(GS) ₂ -SYNZIP17 and <i>tac</i> I- <i>araE</i>	this study
pNA15	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ -SYNZIP1 and <i>tac</i> I	2
pNA16	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2- <i>xtpS</i> _T ₃ C/E₄A₄T₄TE and <i>tac</i> I	2
pNA17	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _C ₃ A ₃ T ₄ -SYNZIP1 and <i>tac</i> I	2
pNA18	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2- <i>xtpS</i> _C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	2
pNA26	ori p15A, cm ^R , <i>araC-P_{BAD} gxpS</i> _A ₁ T ₁ C/E ₂ A ₂ -SYNZIP17 and <i>tac</i> I- <i>araE</i>	2
pNA27	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>gxpS</i> _T ₂ C ₃ A ₃ -SYNZIP1 and <i>tac</i> I	2
pNA30	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>szeS</i> _T ₂ C ₃ A ₃ -SYNZIP1 and <i>tac</i> I	2
pNA31	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP2- <i>szeS</i> _T ₃ C/E ₄ A ₄ T ₄ C/E ₅ A ₅ T ₅ C ₆ A ₆ T ₆ TE and <i>tac</i> l	2
pNA40	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ -SYNZIP2 und tacl-araE	this study
pNA41	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP19- <i>xtpS</i> _T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> l	this study
pNA42	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ -SYNZIP21 und <i>tacl-araE</i>	this study
pNA43	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP4- <i>xtpS</i> _T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	this study
pNA72	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ -N-terminally truncated SYNZIP2 (-9 AA) und <i>tacI-araE</i>	this study
pNA73	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP19 (-2 AA)- <i>xtpS_</i> T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> l	this study
pNA145	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -N-terminally truncated SYNZIP17 (-7 AA) and <i>tac</i> I- <i>araE</i>	this study
pNA146	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP18 (-7 AA)- <i>xtpS_</i> A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA147	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ - N-terminally truncated SYNZIP17 (-14 AA) and <i>tacl-araE</i>	this study
pNA148	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP18 (-14 AA)- <i>xtpS_</i> A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study

pNA149	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtp</i> S_T ₂ C ₃ A ₃ - N-terminally	this study
	truncated SYNZIP1 (-14 AA) and tacl	l
pNA150	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP2 (-14 AA)-	this study
	<i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> l	1
pNA151	ori CoIA, kan ^R , araC-P _{BAD} N-terminally truncated SYNZIP4 (-14 AA)-	this study
	xtpS_T2C3A3T3C/E4A4T4TE und tacl	1
pNA152	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₂ C ₃ A ₃ -SYNZIP17 and <i>tac</i> l	this study
pNA153	ori CloDF13, spec ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	this study
pNA154	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18-(GS) ₅ - <i>xtp</i> S_A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and	this study
pNA155	ori ColA, kan , <i>araC-P_{BAD}</i> SYNZIP18-(GS) ₂ - <i>xtpS</i> _A ₃ T ₃ C/E₄A₄T₄TE and <i>tac</i> l	this study
pNA156	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -SYNZIP17-	this study
provide	(NATETVYPES) and tacl-araE	tine etaay
nNA157	ori ColA kan ^R araC-P _{BAD} SYNZIP18-xtpS T ₂ C ₃ A ₃ -(GS) ₅ -SYNZIP1 and	this study
pix 137		this study
	ori Cold kan ^R araC Paus SVNZIP18 vtnS TaCaAs (CS)s SVNZIP1 and	this study
PNA 158	OII COIA, Kali , arac-rBAD STINZIF 10-XIPS_12C3A3-(GS)2-STINZIF 1 and	this study
pNA159	ori CIODF13, spec", arac-PBAD SYNZIP2-(GS)5-xtpS_13C/E4A4141E and	this study
pNA160	ori CloDF13, spec ^k , <i>araC-P_{BAD}</i> SYNZIP2-(GS) ₂ - <i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and	this study
	tacl	1
pNA161	ori p15A, cm ^R , <i>araC-P_{BAD} xtpS</i> _A ₁ T ₁ C/E ₂ A ₂ -N-terminally truncated	this study
	SYNZIP2 (-14 AA) und tacl-araE	1
pNA162	ori ColA, kan ^R , <i>araC-P_{BAD}</i> N-terminally truncated SYNZIP19 (-7 AA)-	this study
	<i>xtp</i> S_T ₂ C ₃ A ₃ T ₃ C/E ₄ A ₄ T ₄ TE und <i>tac</i> I	1
pNA163	ori p15A, cm ^R , <i>araC-P_{BAD} xtp</i> S_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ - C-terminally truncated	this study
	SYNZIP17 (-7 AA) and tacl-araE	1
pNA164	ori CoIA, kan ^R , araC-P _{BAD} C-terminally truncated SYNZIP18 (-7 AA)-	this study
	<i>xtpS</i> _A ₃ T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	1
pNA165	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>xtp</i> S_T ₂ C ₃ A ₃ -N-terminally truncated	this study
	SYNZIP1(-28 AA) and tacl	-
pNA166	ori CloDF13, spec ^R , araC-P _{BAD} N-terminally truncated SYNZIP2 (-28 AA)-	this study
P	<i>xtpS</i> _T ₃ C/E ₄ A ₄ T ₄ TE and <i>tac</i> I	····· ·
nNA167	ori ColA, kan ^R , <i>araC-P_{BAD}</i> SYNZIP18- <i>axp</i> S_T ₂ C ₃ A ₃ -N-terminally	this study
	truncated SYNZIP1 (-14 AA) and <i>tac</i> l	this study
pNIA169	ori ColA kan ^R araC-Peto SYNZIP18-szeS ToCoA-N-terminally	this study
pina 100	truncated SYNZIP1 (-14 AA) and tacl	this study
	ori CloDE13 space are P_{clo} N terminally truncated SVNZIP2 (14 AA)	this study
PNA 169		this study
NIA 470	szes_13C/E4A414 C/E5A515C6A6161E and laci	
ριλά 170	OT PUCTS, KANT, ARAC-PBAD SYNZIPTS-XTDS_12C3A3-SYNZIP17 and tacl	this study
pJW61	ori p15A, cm ^R , araC-P _{BAD} xtpS_A ₁ T ₁ C/E ₂ A ₂ T ₂ C ₃ -SYNZIP17 and tacl-araE	5
n IW/62	ori ColA, kan ^R , araC-P _{RAD} SYNZIP18-xtnS_A3T3C/F₄A₄T₄TF and tacl	5
P0 # # 02		I

95 **Table S4.** Oligonucleotides used in this work.

Plasmids	Oligo-	Sequence (5' \rightarrow 3'; <u>overlapping ends</u>)	Template
	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61
pNA8	na17_RV	CGATTTTAATTCCTCCTTCTCGTT CAGACCCCCAGGTTTTTAACAACAATGTGC	pJW61
	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61
pNA9	na19_RV	<u>CGATTTTAATTCCTCCTTCTCGTT</u> CGAACCTGAGCCGGATCCAGACC CCCAGGTTTTTAACAACAATGTGC	pJW61
	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61
pNA10	na20_RV	<u>CGATTTTAATTCCTCCTTCTCGTT</u> GGATCCAGACCCCCAGGTTTTTA ACAACAATGTG	pJW61
	na3	TGGGCTAACAGGAGGAATTCCATG <u>AAAGATAGCATGGCTAAAAAGG</u>	X. nematophila
	na87	CTTACGCAGATACGCGTTACGCGC <u>ATAAATCTGGCGGGCGAA</u>	X. nematophila
pNA40	na85	GCTGGAACGTGATGAACAGAACCTGGAAAAAATCATCGCGAACCTG CGTGACGAAATCGCGCGCTCTCGAAAACGAAGTTGCGTCTCACGAAC AGTGACAATTAATCATCGGCTCG	ATCC 19061 pCK_0402
	na43	CATGGAATTCCTCCTGTTAGCC	pCK_0402
	na86	GCGCGTAACGCGTATCTGCGTAAGAAAATCGCACGTCTGAAAAAAG	pNA40_BB1_SZ2 balf
	na43	CATGGAATTCCTCCTGTTAGCC	pNA40_BB1_SZ2 half
	na90	GACGCGTACAAAAACCGTCTG <u>GTTGCGCCACAAGGAGAA</u>	X. nematophila
	na7	CGAGCCGATGATTAATTGTCA <u>CAGCGCCTCCACTTCG</u>	X. nematophila ATCC 19061
nNIA/1	jw61	TGACAATTAATCATCGGCTCG	pCOLA_ara/tacl
pincer	na88	GTTTCTGTTTCAGCTGTTCACGTTTCTGCTTCAGCTCTTCGTTACGG TTCTTCAGTTCTTCTTTTTTTTTT	pCOLA_ara/tacl
	jw61	TGACAATTAATCATCGGCTCG	pNA41_BB1_SZ1 9half
_	na89	CAGACGGTTTTTGTACGCGTCCAGTTTGTTACGCAGAGCCGCCA <u>GT</u> <u>TTCTGTTTCAGCTGTTCACG</u>	pNA41_BB1_SZ1 9half
	na3	TGGGCTAACAGGAGGAATTCCATG <u>AAAGATAGCATGGCTAAAAAGG</u> G	X. nematophila ATCC 19061
	na93	TTCCAGCTGCGCAACTTCGTT <u>ATAAATCTGGCGGGCGAA</u>	X. nematophila ATCC 19061
nNA42	na91	GCGTACCTGGAGAAGGAGATCGCGCGTCTGCGTAAAGAAATTGCG GCGCTGCGTGACCGTCTGGCGCACAAAAAA <u>TGACAATTAATCATCG</u> GCTCG	pCK_0402
phatz	na43		pCK_0402
	na92	AACGAAGTTGCGCAGCTGGAAAACGACGTTGCGGTTATCGAAAATG	pNA42_BB1_
	na43	CATGGAATTCCTCCTGTTAGCC	SZ21half pNA42_BB1_ SZ21half
	na96	TGGAAAACGACGTTGCAGAAGTTGCGCCACAAGGAGAA	X. nematophila
	na7	CGAGCCGATGATTAATTGTCACAGCGCCTCCACTTCG	X. nematophila ATCC 19061
	jw61	TGACAATTAATCATCGGCTCG	pCOLA_ara/tacl
pNA43	na102	CGTTACGATTCAGTTTAACCGCAACACGGTTTTTGAGTTCCGCAACT TTCTG <u>CATGGAATTCCTCCTGTTAGCC</u>	pCOLA_ara/tacl

	jw61	TGACAATTAATCATCGGCTCG	pNA41_BB1_SZ4
	na103	GCGTTACGGTTCTTCAGCTCTTCAACTTTGTTTTCAGCTGTT <u>CGTTA</u> CGATTCAGTTTAACCGC	pNA41_BB1_SZ4 half
	jw61	TGACAATTAATCATCGGCTCG	pNA41_BB2_SZ4
	na95	TTCTGCAACGTCGTTTTCCAGACGCGCAACCTCGTTCTCCAGGGTC GCCAGTTCGTTCTTGAGGTAA <u>GCGTTACGGTTCTTCAGCTC</u>	pNA41_BB2_SZ4 half
nNA72	na141	ATCGCACGTCTGAAAAAAGAC	pNA40
provid	na144	GTCTTTTTTCAGACGTGCGAT <u>ATAAATCTGGCGGGCGAA</u>	pNA40
	na143	CTGGAATCTCTGGAGAACAAAAAAG	pNA41
pinA75	Na145	CTTTTTGTTCTCCAGAGATTCCAG <u>CATGGAATTCCTCCTGTTAGCC</u>	pNA41
	na304	CATTGTTGTTAAAAACCTGG <u>TCGAAAAAGGCTGAATTGC</u>	pJW61
μικά 145	jw62	CCAGGTTTTTAACAACAATGTGC	pJW61
	na305	CTAACAGGAGGAATTCCATG <u>CTGAAAGCCTTGGACCGC</u>	pJW62
pinA 146	jw64	CATGGAATTCCTCCTGTTAGCC	pJW62
	na306	CATTGTTGTTAAAAACCTGG <u>AATCGCATCGAACAGTTAAAACAG</u>	pJW61
pNA147	jw62	CCAGGTTTTTAACAACAATGTGC	pJW61
	na307	CTAACAGGAGGAATTCCATG <u>TTAAATGCCATTGACAAAGAGCTG</u>	pJW62
pNA148	jw64	CATGGAATTCCTCCTGTTAGCC	pJW62
	na308	GTTTGCCCGGCAGGTCTAT <u>AATGAGAACGAAACCCTGAAGAAAAAG</u>	pNA125
pNA149	na286	ATAGACCTGCCGGGCAAAC	pNA125
	na309	CTAACAGGAGGAATTCCATG <u>AAAGACAACCTGCAGCTGGAAC</u>	pNA126
ρινΑ150	na43	CATGGAATTCCTCCTGTTAGCC	pNA126
	na310	CTAACAGGAGGAATTCCATG <u>AATCGTAACGAACAGCTGAAAAAC</u>	pNA43
PNA151	jw64	CATGGAATTCCTCCTGTTAGCC	pNA43
	jw61	TGACAATTAATCATCGGCTCG	pNA15
pNIA152	na286	ATAGACCTGCCGGGCAAAC	pNA15
pNA152	na311	GTTTGCCCGGCAGGTCTAT <u>AACGAGAAGGAGGAATTAAAATCG</u>	pJW61
	na312	CGAGCCGATGATTAATTGTCA <u>CTTGTAGGCTTCGATCTCCTTACG</u>	pJW61
	na315	CAAGCGCCACAAGGGGA	pNA28
nNA153	na43	CATGGAATTCCTCCTGTTAGCC	pNA28
pinA 155	na313	GGCTAACAGGAGGAATTCCATG <u>TTCTATGCTGAAGAGCGTGAACTG</u>	pJW62
	na314	TTCCCCTTGTGGCGCTTG <u>TGAGATAGCTGCAGTCAGCTCG</u>	pJW62
	na316	AACGAGCTGACTGCAGCTATCTCAGGGTCTGGATCCGGCTCAGGTT	pJW62
pNA154	na317	TGAGATAGCTGCAGTCAGCTC	pJW62
	na318	AACGAGCTGACTGCAGCTATCTCAGGTTCGGGATCA <u>TTATGTATTCA</u>	pJW62
pNA155	na317	<u>ICAACTITITGAACAGC</u> TGAGATAGCTGCAGTCAGCTC	pJW62
pNA156	KB-pACYC-II- FW	AACGAGAAGGAGGAATTAAAATCG	pJW61

	na319	CGATTTTAATTCCTCCTTCTCGTTCGATTCAGGATACACGGTTTCAG TGGCATTCCAGGTTTTTAACAACAATGTGC	pJW61
DNA157	na320	GTTTGCCCGGCAGGTCTATGGGTCTGGATCCGGCTCAGGTTCGGG	pNA15
pinA 157	na286	ATAGACCTGCCGGGCAAAC	pNA15
pNA158	na321	GTTTGCCCGGCAGGTCTATGGTTCGGGATCA <u>AACCTGGTTGCGCAG</u>	pNA15
ρινΑ156	na286	ATAGACCTGCCGGGCAAAC	pNA15
- 114450	na322	GAAGTTGCGTCTCACGAACAGGGGTCTGGATCCGGCTCAGGTTCG	pNA16
pina 159	na290	CTGTTCGTGAGACGCAACTTC	pNA16
	na323	GAAGTTGCGTCTCACGAACAGGGTTCGGGATCA <u>GCGGCTCCGCAG</u>	pNA16
ρινά του	na290	CTGTTCGTGAGACGCAACTTC	pNA16
	na324	TTCGCCCGCCAGATTTAT <u>AAAGACAACCTGCAGCTGGAAC</u>	pNA44
PNA161	na142	ATAAATCTGGCGGGCGAA	pNA44
NIA 400	na325	GGCTAACAGGAGGAATTCCATGAACAAAAAAGAAGAAGAACTGAAGAAC	pNA45
pNA162	na43		pNA45
	jw61	TGACAATTAATCATCGGCTCG	pJW61
pNA163	na326	CGAGCCGATGATTAATTGTCA <u>ACGCAGATTGGCGATCTTTTG</u>	pJW61
	jw63	TTATGTATTCATCAACTTTTTGAACAGC	pJW62
PNA 164	na327	GCTGTTCAAAAAGTTGATGAATACATAA <u>GTTATCAAGGGCGCGAAGT</u>	pJW62
	na329	GTTTGCCCGGCAGGTCTATGACCTGATCGCGTACCTGG	pNA15
pNA 105	na286	ATAGACCTGCCGGGCAAAC	pNA15
	na330	GGCTAACAGGAGGAATTCCATG <u>AAAATCATCGCGAACCTGC</u>	pNA16
PINA 100	na43	CATGGAATTCCTCCTGTTAGCC	pNA16
	na331	AATGAGAACGAAACCCTGAAGAAAAAG	pNA27
PNA 167	na333	CTTTTTCTTCAGGGTTTCGTTCTCATT <u>GTAAGCTTGGCGAGCAAAGG</u>	pNA27
	na331	AATGAGAACGAAACCCTGAAGAAAAAG	pNA30
ρινΑΊ68	na332	CTTTTTCTTCAGGGTTTCGTTCTCATT <u>ATAATGCTGACGGGCAAACG</u>	pNA30
- 114.400	na309	CTAACAGGAGGAATTCCATG <u>AAAGACAACCTGCAGCTGGAAC</u>	pNA31
PNA169	na43	CATGGAATTCCTCCTGTTAGCC	pNA31

2. Supplementary Figures

104

Figure S1. Advantages of Type S NRPS. 1) Simplified bioengineering: Splitting NRPS into two or three 105 106 independently expressed SYNZIP linked subunits enables easier and faster cloning. Traditional NRPS engineering often requires elaborated cloning strategies (yeast cloning,⁶ LLHR⁷ or ExoCET⁸) which are 107 108 frequently accompanied with technical problems and limitation. By breaking NRPSs into smaller subunits, cloning can be simplified, making standard strategies such as Gibson⁹, HiFi and Hot Fusion¹⁰ assembly 109 110 sufficient. 2) Increased bio-combinatorial potential: With SYNZIPs, type S NRPSs can be created faster and to a greater extent than before, as the number of artificial NRPSs increases exponentially with the 111 112 number of subunits. Once generated, subunits can be reused at any time and for any experimental 113 approaches without any additional cloning efforts.

Figure S2. Other splicing positions. SZ17:18 Introduction at three different positions within the C-A, T-C and A-T linker region to create two protein type S XtpS variants. AS sequences and exact SZ17:18 introduction sites are highlighted with a vertical dashed line. Initially, for the introduction of SYNZIPs into the C-A position, 10 AAs were deleted (highlighted in red) to meet the distance between the C- and Adomain. Re-insertion of the 10 AAs (highlighted in green) and shifted fusion site restored peptide production. Production of 1 (cyclo (vLvV)) relative to WT level are indicated on the right hand site.

S12

128Figure S4. HPLC/MS data (Figure 3) of compounds 1 produced in *E. coli* DH10B::*taA.* EIC/MS² of 1129 $(m/z [M+H]^+ = 411.29)$ produced by NRPS-13 to -15.

S15

Figure S5. HPLC/MS data (Figure 4) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 1
 (m/z [M+H]⁺ = 411.29) produced by NRPS-16 to -24.

138 (m/z [M+H]+ = 411.29) produced by NRPS-24. EIC of 1 produced by NRPS-16.

- 139
- 140
- 141
- 142

Figure S7. HPLC/MS data (Figure 5) of compound 2 produced in E. coli DH10B::mtaA. EIC/MS2 of 2
 (m/z [M+H]+ = 459.30) produced by NRPS-36. EIC of 1 produced by NRPS-25.

148 Figure S8. HPLC/MS data (Figure 5) of compound 2 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 2

149 (m/z [M+H]⁺ = 459.30) produced by NRPS-37. EIC of 1 produced by NRPS-26.
 150

(m/z $[M+H]^+$ = 778,45) produced by NRPS-38. EIC of 3 produced by NRPS-27.

173 **Figure S11. HPLC/MS data (Figure 5) of compound 4 produced in** *E. coli* **DH10B**::*mtaA*. EIC/MS² of 4 174 $(m/z [M+H]^+ = 826.45)$ produced by NRPS-38. EIC of 4 produced by NRPS-28.

176 Figure S12. HPLC/MS data (Figure 5) of compounds 1 and 6 produced in E. coli DH10B::mtaA.

177 EIC/MS² of 1 (m/z $[M+H]^+$ = 411.29) and 6 (m/z $[M+H]^+$ = 425.31) produced by NRPS-41. EIC of 1 and 6 178 produced by NRPS-30.

181 Figure S13. HPLC/MS data (Figure 5) of compounds 2, 7 and 8 produced in *E. coli* DH10B::*mtaA*.

182 EIC/MS² of 2 (m/z [M+H]⁺ = 459.30), 7 (m/z [M+H]⁺ = 425.31) and 8 m/z [M+H]⁺ = 472.31) produced by 183 NRPS-42. EIC of 2, 7 and 8 produced by NRPS-31.

184

191 Figure S15. HPLC/MS data (Figure 5) of compounds 3 and 11 produced in E. coli DH10B::mtaA.

192 EIC/MS² of 3 (m/z [M+H]⁺ = 778.45) and 11 (m/z [M+H]⁺ = 792.47) produced by NRPS-44. EIC of 3 and 11 193 produced by NRPS-33.

194

196 Figure S16. HPLC/MS data (Figure 5) of compounds 4, 12, 5 and 13 produced in *E. coli* DH10B::*mtaA*.

197 EIC/MS² of 4 (m/z [M+H]⁺ = 826.45), 12 (m/z [M+H]⁺ = 840.47), 5 (m/z [M+H]⁺ = 792.47) and 13 m/z [M+H]⁺

198 = 806.48) produced by NRPS-45. EIC of 2, 12, 5 and 13 produced by NRPS-34.

- 209Figure S19. HPLC/MS data (Figure 5) of compounds 14, 15, 16, 17 and 18 produced in *E. coli*210DH10B::*mtaA.* EIC/MS² of 14 (m/z [M+H]⁺ = 538.40) produced by NRPS-47 and -48a. EIC/MS² of 15 (m/z211[M+H]⁺ = 470.35) produced by NRPS-47. EIC/MS² of 16 (m/z [M+H]⁺ = 655.47) produced by NRPS-48c.212EIC/MS² of 17 (m/z [M+7]⁺ = 637.46) produced by NRPS-48c. EIC/MS² of 18 m/z [M+H]⁺ = 754.54)
- 213 produced by NRPS-48d.
- 214

Figure S20. HPLC/MS data (Figure S25) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-16 and NRPS-49 to -56.

Figure S21. HPLC/MS data (Figure S26) of compound 1 produced in E. coli DH10B::mtaA. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-16 and NRPS-57.

S29

Figure S22. HPLC/MS data (Figure S27) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-14 and NRPS-58 to NRPS-65.

Figure S23. HPLC/MS data (Figure S28) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS² of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-1 and NRPS-66 to NRPS-80.

233

Figure S24. HPLC/MS data (Figure S29) of compound 1 produced in *E. coli* DH10B::*mtaA*. EIC/MS²

240 of 1 (m/z [M+H]⁺ = 411.29) produced by NRPS-15 and NRPS-81.

243 Figure S25. More GS-optimized chimeric tri-partite XtpS NRPSs split at the A-T position. (a) Between 244 each experimental approach, the production of non-optimized NRPS-16 varies, but is on average at ~30% of WT level. A set of modified subunit B and C variants were constructed by inserting GS stretches of 245 246 varying length (4 AAs or 10 AAs) between subunit 2 and SZ1 and subunit 3 and SZ2. (b) Generated 247 modified subunits were re-combined with non-modified subunits and transformed into E. coli DH10B:: MtaA 248 to obtain NRPS-49 to -56. Production titres of NRPS-49 to -56 were compared with each other and rated 249 with from -, -, -, - - to O, +, ++, +++. Corresponding peptide yields (mg/L) and standard deviations are 250 obtained from biological triplicate experiments. For domain assignment, the following symbols are used: (A, large circles), (T, rectangle), (C, triangle), (C/E, diamond), (TE, small circle); substrate specificities are 251 252 assigned for all A domains and indicated by capital letters. 253

255

Figure S26. SZ1:2 truncation of chimeric di-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-16 varies, but is on average at ~30% of WT level. Subunit B and C variants were N-terminally truncated by 28 AA, respectively. (b) Generated modified subunits were re-combined with non-modified subunits and transformed into *E. coli* DH10B::*MtaA* to obtain NRPS-16 and -57.Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

S37

Figure S27. SZ2:19 truncation of chimeric di-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-14 varies, but is on average at ~10% of WT level. A set of modified subunit A and B variants were constructed by N-terminally truncating SZ2 by 9 AAs and 14 AAs and SZ19 by 2 AAs and 7 AAs, respectively. (b) Generated modified subunits were recombined with non-modified subunits and transformed into E. coli DH10B::MtaA to obtain NRPS-14, -59 to -66. Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

273 Figure S28. SZ17:18 truncation of chimeric di-partite XtpS NRPSs split at the C-A position. (a) 274 Between each experimental approach, the production of non-optimized NRPS-1 varies, but is on average 275 at ~30% of WT level. A set of modified subunit A and B variants were constructed by N- terminally truncating SZ17 and SZ18 by 7 AAs and 14 AAs, respectively and C-terminally truncating SZ17 and SZ18 by 7 AAs. 276 277 (b) Generated modified subunits were re-combined with non-modified subunits and transformed into E. coli 278 DH10B::MtaA to obtain NRPS-1, -67 to -81. Corresponding peptide yields (mg/L) and standard deviations 279 are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as 280 described before. 281

Figure S29. SZ4:21 truncation of chimeric di-partite XtpS NRPSs split at the A-T position. (a) Between each experimental approach, the production of non-optimized NRPS-15 varies, but is on average at ~30% of WT level. Modified subunit A was constructed by N- terminally truncating SZ4 by 14 AAs. (b) Generated modified subunits were re-combined with non-modified subunits and transformed into E. coli DH10B::MtaA to obtain NRPS-1, -67 to -81. Corresponding peptide yields (mg/L) and standard deviations are obtained from biological triplicate experiments. Rating of production titres and domain assignment is as described before.

290

Figure S30. Overview of truncated SYNZIPs. Left row: schematic representation of SYNZIPs and their
 corresponding AAs sequences. Right row. Truncated SYNZIPs variants and corresponding AAs sequence.
 Impact of truncated SYNZIPs on type S NRPSs is indicated and rated from -, - -, - - to O, +, ++, +++.

297

298 **3. References**

1. Kegler, C.; Nollmann, F. I.; Ahrendt, T.; Fleischhacker, F.; Bode, E.; Bode, H. B., Rapid determination of the amino acid configuration of xenotetrapeptide. *Chembiochem* **2014**, *15* (6), 826-8.

Abbood, N.; Duy Vo, T.; Watzel, J.; Bozhueyuek, K. A. J.; Bode, H. B., Type S Non-Ribosomal Peptide
 Synthetases for the Rapid Generation of Tailormade Peptide Libraries. *Chemistry* **2022**, *28* (26), e202103963.

303 3. Hanahan, D., Studies on transformation of Escherichia coli with plasmids. *J Mol Biol* **1983**, *166* (4), 557-80.

4. Schimming, O.; Fleischhacker, F.; Nollmann, F. I.; Bode, H. B., Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin. *Chembiochem* **2014**, *15* (9), 1290-4.

5. Bozhueyuek, K. A. J.; Watzel, J.; Abbood, N.; Bode, H. B., Synthetic Zippers as an Enabling Tool for Engineering of Non-Ribosomal Peptide Synthetases*. *Angew Chem Int Ed Engl* **2021**, *60* (32), 17531-17538.

308 6. Shao, Z.; Zhao, H.; Zhao, H., DNA assembler, an in vivo genetic method for rapid construction of biochemical 309 pathways. *Nucleic Acids Res* **2009**, *37* (2), e16.

Yin, J.; Hoffmann, M.; Bian, X.; Tu, Q.; Yan, F.; Xia, L.; Ding, X.; Stewart, A. F.; Müller, R.; Fu, J.; Zhang,
 Y., Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus
 DSM41398 in Streptomyces coelicolor A3(2). *Sci Rep* 2015, *5*, 15081.
 Wang, H.; Li, Z.; Jia, R.; Yin, J.; Li, A.; Xia, L.; Yin, Y.; Müller, R.; Fu, J.; Stewart, A. F.; Zhang, Y.,

8. Wang, H.; Li, Z.; Jia, R.; Yin, J.; Li, A.; Xia, L.; Yin, Y.; Müller, R.; Fu, J.; Stewart, A. F.; Zhang, Y.,
ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning
from complex genomes. *Nucleic Acids Res* 2018, *46* (5), e28.

316 9. Gibson, D. G.; Young, L.; Chuang, R. Y.; Venter, J. C.; Hutchison, C. A., 3rd; Smith, H. O., Enzymatic 317 assembly of DNA molecules up to several hundred kilobases. *Nat Methods* **2009**, *6* (5), 343-5.

10. Fu, C.; Donovan, W. P.; Shikapwashya-Hasser, O.; Ye, X.; Cole, R. H., Hot Fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. *PLoS One* **2014**, *9* (12), e115318.