
Supplemental Information 
Supplement to:   

“Circulating cell-free methylated DNA reveals tissue-specific cellular damage from 

radiation treatment.” McNamara et al. 2023.   

 Contents: 

Supplemental Materials and Methods 

Supplemental References 

Supplemental Figures and Legends 

Legends for Supplemental Tables 



Supplemental Materials and Methods 

Processing of human serum and plasma samples 

Circulating cell-free DNA was extracted from 3 to 4 mL human serum or plasma or 0.5 mL 

mouse serum, using the QIAamp Circulating Nucleic Acid kit (Qiagen) according to the 

manufacturer’s instructions. Cell-free DNA was quantified via Qubit fluorometer using the 

dsDNA High Sensitivity Assay Kit (Thermo Fisher Scientific). Additional size selection 

using Beckman Coulter beads was applied to remove high-molecular weight DNA 

reflective of cell-lysis and leukocyte contamination as previously described (1). The same 

bead-based size selection was applied to all samples that were acquired through 

standardized serum isolation and cfDNA extraction protocols. This method also served to 

concentrate the samples to the desired input volume before bisulfite conversion. 

Fragment size distribution of isolated cfDNA was validated on the 2100 Bioanalyzer 

TapeStation (Agilent Technologies).  

Control human serum and plasma from healthy adult donors was purchased from 

Innovative Research (SKU#ISERS10ML and SKU#IPLASK2E10ML) to compare results 

from our analyses across sample preparations. While plasma is produced when whole 

blood is collected in tubes that are treated with anticoagulant, serum is obtained after 

allowing blood to clot for 30 minutes at room temperature and then centrifuging the 

samples to remove the cellular component (2, 3). Studies demonstrate that cellular 

components significantly increase in samples that sit longer than 60 minutes while 

clotting; however, adherence to standard operating procedures for preparation of serum 

and plasma have been found to greatly reduce contamination and sources of error (4). 

We took extra steps to address these concerns by ensuring timely processing of blood 



samples and performing an additional bead purification after cfDNA isolation to remove 

high-molecular weight DNA, likely derived from contaminating blood cell lysis 

(Supplemental Figure 13A and B). We found that taking this approach, cfDNA 

methylation status at the block level is highly correlated when comparing cfDNA derived 

from serum or plasma (Supplemental Figure 13C;  Pearson r = 0.95). In addition, 

deconvolution analysis verified that the %immune and %solid organ origins of cfDNA does 

not vary across the two sample types (Supplemental Figure 13D). In fact, there appears 

to be slightly less variation across donors in the predicted cell type proportions composing 

cfDNA extracted from serum compared to plasma. Thus, despite an overall higher Geq 

Immune found in serum due to the overall higher cfDNA concentrations, this background 

signal is consistent from sample-to-sample allowing for accurate comparison of changes 

over time in serial samples collected from the same individuals (Supplemental Figure 

13D and E).   

RNA isolation, RNA-sequencing, and RT-qPCR analysis  

RNA was isolated from tissues or sorted cells using the RNeasy Kit (Qiagen) following 

homogenization using the MagNA Lyser (Roche) according to the manufacturer’s protocol 

and quantified by Qubit RNA BR assay (Thermo Fisher Scientific). Total RNA was 

validated using an Agilent RNA 6000 nano assay on the 2100 Bioanalyzer TapeStation  

(Agilent Technologies). The resulting RNA Integrity number (RIN) of samples selected for 

downstream qPCR or RNAseq analysis was at least 7. Reverse transcription (RT) was 

done using the iScript cDNA Synthesis Kit (Bio-Rad) according to the manufacturer’s 

protocol. Real-time quantitative RT–PCR was performed with iQ SYBR Green Supermix  



(Bio-Rad). Primers used for RT–qPCR were purchased from Integrated DNA 

Technologies, and their sequences are provided in Supplemental Table 9. Fold change 

was calculated as a percentage normalized to housekeeping gene actin (Actb) using the 

delta-Ct method. All RT–qPCR assays were done in triplicate. RNA-sequencing libraries 

were prepared using TruSeq Total RNA library Prep Kit (Illumina) at Novogene 

Corporation Inc., and 150bp paired-end sequencing was performed on an Illumina HiSeq 

4000 with a depth of 50 million reads per sample. A reference index was generated using 

GTF annotation from GENCODEv28. Raw FASTQ files were aligned and assembled to 

GRCh38 and GRCh37 with HISAT2 / Stringtie (V 2.1.0) (5). The differential expression 

was analyzed in R with packages EdgeR (V 3.32.1) and Rsubread (V1.6.3) (6, 7). Derived 

counts per million and p-values were used to create a rank ordered list, which was then 

used for subsequent integrative analysis. Expression levels at known cell type markers 

from single cell expression databases were used to validate the identity of isolated cell 

type populations for methylome analysis (8).  

Reference DNA methylation data from healthy tissues and cells 

Controlled access to reference WGBS data from normal human tissues and cell types 

was requested from public consortia participating in the International Human Epigenome 

Consortium (IHEC) (9) and upon approval downloaded from the European 

GenomePhenome Archive (EGA), Japanese Genotype-phenotype Archive (JGA), 

database of Genotypes and Phenotypes (dbGAP), and ENCODE portal data repositories 

(Supplemental Table 1) (10–12). Reference mouse WGBS data from normal tissues and 

cells were downloaded from selected GEO and SRA datasets (Supplemental Table 2) 



(13–26). We required that all reference methylomes included for analysis be sequencing 

libraries made from bisulfite-converted DNA that we could process starting from the raw 

sequencing data. Downloaded FASTQs were processed and realigned in a similar 

manner as the locally generated bisulfite-sequencing libraries described above. However, 

parameters were adjusted to account for each respective WGBS library type. Methylation 

bias was assessed using the diagnostic tool as part of the Bismark package and read 5’ 

and 3’ trimming, mapping, and deduplication were performed based on the 

recommendations in the Bismark user guide for working with different library types and 

commercial kits (http://felixkrueger.github.io/Bismark/Docs/). WBGS libraries were 

deduplicated using deduplicate_bismark (V 0.22.3)  All studies used purified DNA from 

cells or tissues as starting material, except for a subset of immune cell WGBS data 

generated by Blueprint epigenomics that performed bisulfite conversion directly on lysed 

cells (μWGBS protocol).  Special consideration of bisulfite conversion efficiency was given 

to samples prepared by the µWGBS protocol and reads with a bisulfite conversion rate 

below 90% or with fewer than three cytosines outside a CpG context were removed (27).  

For these cell-types with multiple data sources, we provide additional results in 

Supplemental Figures 2 and 3 to show that samples cluster by cell-type and not by 

library preparation method when performing unsupervised clustering analysis of the top 

~30,000 variable blocks amongst all of the samples in the human and mouse datasets, 

respectively. Of note, for the reference methylation data that we generated ourselves in 

the lab, we validated the identity of the starting cell population through either RNA-

sequencing or FACS analysis. The human cardiopulmonary- and liver sinusoidal- 

endothelial methylation sequencing data that we generated clustered closely with liver 



endothelial data generated by a separate study (25) and with HUVEC methylation data 

generated by Blueprint Epigenomics (EGAD00001002294). Likewise, the mouse 

immune cell-type methylation data that we generated clustered closely with other Bcell 

(17) and Tcell WGBS data (15) generated by other studies. 

Identification of cell-type specific methylation blocks 

We reduced the original 297 human WGBS samples to a final set of 104 samples 

to identify differentially methylated cell-type specific blocks. First, samples were split 

into training and testing groups for model validation (80% train and 20% test). 

The unsupervised hierarchical clustering analysis in Figure 1 and Supplemental 

Figure 1 were performed using the training human and mouse WGBS data 

detailed in Supplemental Tables 1 and 2 through being assigned to a UMAP group 

(Column C). We further excluded samples from bulk tissues and those that did not 

have sufficient coverage (missing values in >50% of methylation blocks). Outlier 

replicates, or those clustering with fibroblasts or stromal cell types were 

excluded, due to possible contamination. Only immune cell methylomes that 

were reprocessed from raw sequencing data to PAT files were used to identify 

DMBs. We organized the final 104 human reference samples into groupings of 20 

cell types (Supplemental Table 1). Similarly, the starting 109 mouse WGBS 

samples were reduced to a final set of 43 samples that were organized into a 

final grouping of 9 cell types and tissues (Supplemental Table 2). The final 

samples used to identify DMBs are designated by having an ‘X’ in Column E titled 

“Included in Atlas” in Supplemental Tables 1 and 2. 



Tissue and cell-type specific methylation blocks were identified from reference WGBS 

data using custom scripts (Supplemental code). We performed a one-vs-all comparison 

to identify differentially methylated blocks unique for each group. This was done 

separately for human and mouse. From this we first identified blocks covering a minimum 

of three CpG sites, with length less than 2Kb and at least 10 observations. Then, we 

calculated the average methylation per block/sample, as the ratio of methylated CpG 

observations across all sequenced reads from that block. Differential blocks were sorted 

by the margin of separation, termed “delta-beta”, defined as the minimal difference 

between the average methylation in any sample from the target group vs all other 

samples. Then, we computed the “soft margin” between target samples and background 

samples, allowing for some outliers using percentiles (Supplemental Figure 15). For all 

markers we calculated the difference between the 80th percentile of the methylation status 

in the target group (target.quant) and the 10th percentile of the methylation status in the 

background group (bg.quant). We selected blocks with a soft margin  0.4 for human and 

 0.35 for mouse. This resulted in a variable number of cell-type specific blocks available 

for each tissue and cell type. Blocks with a (-) direction are hypomethylated and (+) 

direction are hypermethylated, defined as a as a direction of methylation in the target cell-

type relative to all other tissues and cell-types included in the atlas. We also used a 

magnitude threshold where all hypomethylated blocks have an Average Methylation 

Fraction (AMF) <0.5 and hypermethylated blocks have an AMF >0.5. However, the vast 

majority of cell-type specific differentially methylated blocks are much more diverged 

(mean AMF hypo = <10% methylation and mean AMF hyper = > 80%). Identified cell-type 

specific hypomethylated blocks in humans had a mean AMF of 0.081 ± 0.082 STDEV 



(median = 0.06; mode = 0.0). In mouse, hypomethylated blocks had a mean AMF of 0.079 

± 0.083 STDEV (median = 0.05; mode = 0.0). Likewise, identified cell-type specific 

hypermethylated blocks in humans had a mean AMF of 0.83 ± 0.10 STDEV (median = 

0.85; mode = 0.9). In mouse, hypermethylated blocks have a mean AMF of 0.83 ± 0.083 

STDEV (median = 0.85; mode = 0.89).  

Additional separation of endothelial cell populations from different tissues was 

performed to identify unique markers for liver endothelial versus cardiopulmonary 

endothelial blocks that do not overlap. Separately, pan-endothelial blocks were identified 

with methylation status in common to all endothelial cell populations. Similarly, individual 

immune cell-type specific methylation blocks were identified for purified cell populations. 

In addition, bulk immune blocks were identified with methylation status in common to all 

hematopoietic cell populations. The bulk immune methylation blocks were found to 

separate all hematopoietic cell types from solid organ cell types of different lineages and 

were used for deconvolution in the circulation. The solid organ compartment was then 

further parsed into individual cell-type contributors as specified in Column F titled “Atlas 

Groups” in Supplemental Tables 1 and 2. For some solid organ cell-types, a reduced 

subset of blocks (ie. top 200) were used for deconvolution in the circulation if the original 

number identified was greater than one standard deviation above the mean. The reduced 

subset of blocks were prioritized based on the margin of separation taking into account 

the quantile variation amongst all samples in target and background groups as described 

above. In addition, blocks were prioritized that consistently met our designated thresholds 

for cell-type specificity following iterative leave-one-out analysis of repeated segmentation 

and marker selection. Selected human and mouse blocks for cell types of interest that 



were used for deconvolution of cell-free DNA in the circulation can be found in 

Supplemental Tables 3 and 4. Extended cell-type specific blocks for purified populations 

of endothelial and immune cell-types can be found in Supplemental Tables 8 and 15. 

For multiple cell-types in both human and mouse, we analyzed samples sourced from 

multiple consortiums using different library construction methods and still found the 

identified cell-type specific DMBs to be representative of all samples (Supplemental 

Tables 1 and 2). In addition, when forming groups to identify cell-type specific DMBs we 

required at least 3 or more samples be present for each group to ensure DMBs were 

reproducible across biological replicates.  

Methylation score and visualization of cell-type specific methylation atlas  

Each DNA fragment was characterized as U (mostly unmethylated), M (mostly 

methylated) or X (mixed) based on the fraction of methylated CpG sites as previously 

described (28). We used thresholds of ≤33% methylated CpGs for U reads and ≥66% 

methylated CpGs for M. We then calculated a methylation score for each identified 

celltype specific block based on the proportion of U/X/M reads among all reads. The U 

proportion was used to define hypomethylated blocks and the M proportion was used to 

define hypermethylated blocks. Heatmaps were generated using the pretty heatmap 

function in the RStudio Package for the R bioconductor (RStudioTeam, 2015).  

In-silico simulations and WGBS deconvolution  

In silico mix-in simulations were performed using wgbstools (V 0.1.0) (29) to validate the 

fragment-level deconvolution algorithm at the identified cell-type specific blocks 



(Supplemental Figures 9, 10, 11 and 12). Reference data with greater than three 

replicates per cell type were split into independent training and testing sets, leaving at 

least one replicate out for testing. Since the mouse lung endothelial reference WGBS 

data had only three replicates, sequenced fragments were merged across replicates 

for this cell type and then randomly split into training (80%) and testing (20%) sets 

(using wgbstools merge and then wgbstools pat_splitter). The cell-type specific blocks 

included in the human and mouse methylation atlases were constructed using 

training set fragments only. For each cell type profiled, we mixed known 

proportions of target fragments into a background of leukocyte fragments using 

wgbstools mix_pat. The leukocyte fragments were obtained from n=4 buffy coat 

samples in mouse and n=5 buffy coat samples in human. We performed three replicates 

for each admixture ratio assessed (0.05%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%), which 

were analyzed as described above, and present the average predicted proportion and 

standard deviation across all replicates. Model accuracy was assessed through correct 

classification of the actual percent target mixed.  

Each mixture was analyzed using our WGBS atlas and fragment-level 

deconvolution model in contrast to the 450K array atlas and NNLS model described in 

Moss et al(30). Array based 450K data were simulated using wgbstools beta_to_450k 

function (V0.1.0) and deconvolution performed as in Moss et al. 

(github.com/nloyfer/meth_atlas). Our sequencing-based approach allowed for 

fragment-level cfDNA analysis of CpG methylation patterns, as opposed to relying on the 

use of single CpG sites from methylation array data (31).  From the in-silico mix-in 

simulations, we found that our probabilistic fragment-level deconvolution model 



outperforms traditional array-based analysis for each tissue and cell type of interest to 

validate the prediction accuracy and sensitivity (Supplemental Figure 12). However, 

there are inherent differences in the 450K array meth-atlas and NNLS model that 

prohibited a direct one-to-one comparison. First, the test WGBS data used to generate 

the in silico mixed samples has limited depth compared to the effective number of 

molecules measured by DNA methylation arrays. In addition, the meth-atlas is a complete 

deconvolution NNLS model and thus target fragments were admixed with leukocyte 

fragments across all features in the 450K array meth-atlas, which may have had variable 

coverage at informative features specific for each cell-type. Also, many of the features in 

the 450K array atlas were identified for tissues and not the purified cell-type WGBS data 

used in this study (ie. left atrium heart tissue as opposed to cardiomyocytes and lung 

tissue as opposed to lung epithelial cells). However, we found that pattern analysis at the 

cell-type specific methylation blocks identified here allowed for accurate detection of 

cfDNA from a given source when present in less than 0.1% of a mixture, a marked 

improvement in comparison to current 450K approaches (Supplemental Figure 12).   

Functional annotation and pathway analysis   

Cell-type specific methylation blocks were provided as input for analysis in HOMER  

(V4.11.1) (http://homer.ucsd.edu/homer/)  (32). Each block was associated with its closest 

nearby gene and provided a genomic annotation using the annotatePeaks.pl function, 

with “-size given -CpG” parameters. By default, TSS (transcription start site) was defined 

from -1 kb to +100 bp, TTS (transcription termination site) was defined from -100 bp to +1 

kb, and CpG islands were defined as a genomic segment with GC content ≥50%, genomic 



length >200 bp and the ratio of observed/expected CpG number >0.6. Prediction of known 

and de-novo transcription factor binding motifs were also assessed by HOMER using the 

findMotifsGenome.pl function. The top 5 motifs based on p-value were selected from each 

analysis. Pathway analysis of identified tissue and cell-type specific methylation blocks 

was performed using Ingenuity Pathway Analysis (IPA) (33) (Qiagen) and 

Genomic Regions Enrichment of Annotations Tool (GREAT) (34). GeneSetCluster 

was used to cluster identified gene-set pathways based on shared genes 

(35). Canonical pathways/functional annotations were grouped into clusters by 

calculating the similarity of pathways/annotations using the relative risk (RR) of each 

pathway appearing based on the genes enriched within the pathway. RR scores 

were clustered into groups using kmeans. Over-representation analysis was 

implemented in the WebgestaltR (ORAperGeneSet) plugin to interpret and 

functionally label identified gene-set clusters (36). Integration of methylome and 

transcriptome data generated from tissue-specific endothelial cells was performed 

using an expanded set of cell-type specific blocks (--bg.quant 0.2) compared to the 

more restricted set of blocks used for deconvolution analysis in the circulation (--

bg.quant 0.1). The extended endothelial-specific methylation blocks can be found in 

Supplemental Table 8.  

Cross-species comparison and human and mouse cell-type specific DMBs 

For cell-types represented in both human and mouse atlases we performed cross-species 

mapping using the UCSC Genome Browser LiftOver tool and the 

hg19ToMm9.over.chain.gz file. Only 24% of human cell-type specific blocks were 

mapped completely to the mouse genome, with the majority of human blocks having been 



deleted or partially deleted in the mm9 genome. The lower mapability rate of epigenetic 

regions (mostly within introns and intergenic regions) has been demonstrated by others 

(37, 38). This also reflects previous findings that only 40% of the nucleotides in the human 

genome can be aligned to mouse (39) and also the difference that there are only ~21 

million CpG sites in the mouse mm9 genome relative to the ~28 million CpG sites in the 

human hg19 genome.  Of the blocks that fully mapped, 100% were captured on both of 

the separately designed human and mouse hybridization capture panels. On average, 

18% of these captured and mapped regions were identified as being cell-type specific 

methylation blocks in both species (Supplemental Table 14). Of note, 100% of 

overlapping cell-type specific methylation blocks had the same methylation status in both 

human and mouse (ie. human hepatocyte-specific hypomethylated blocks were 

hypomethylated specifically in mouse hepatocytes too). To circumvent limited cross-

species mapability, we also compared overlapping genes associated with identified cell-

type specific DMBs in cell-types represented in both human and mouse atlases 

(Supplemental Table 14). However, this is likely an underestimate due to limited overlap 

of regions captured from the separate human and mouse hybridization panels utilized. 

We expanded on analysis of genomic distribution to compare the distribution of hypo- and 

hyper- methylated percentages between human and mouse species on a cell/organ basis. 

We depict the distribution of cell-specific hypo- and hyper- methylated DMBs on a 

cell/organ basis in Supplemental Figure 5. Within all hypomethylated blocks, there 

wasn’t a significant difference in genomic distribution for the same cell-type between 

human and mouse species, taking into account the distribution differences at baseline 

comparing captured regions (Chi-square, df=4, p>0.05). The same was true within 



hypermethylated blocks (Chi-square, df=4, p>0.05). However, there were differences in 

overall hypo- and hyper- methylated percentages between human and mouse samples 

across cell-types. Interestingly, all solid organ derived cell-type specific DMBs in mouse 

were hypomethylated, whereas all immune-cell specific DMBs were hypermethylated. In 

contrast, most human cell-types had both hypo- and hyper- methylated DMBs identified, 

with the large majority being hypomethylated. Despite this difference, the human bulk 

immune cell-type specific DMBs were 47% hypermethylated, suggesting that a higher 

percentage of hypermethylated markers is common to cell types comprising 

hematopoietic lineages in both human and mouse species. This was further supported by 

the 30% of immune cell-specific methylation blocks that overlapped between the human 

and mouse capture panels that were 100% correlated in methylation status and found to 

be hypermethylated in both species (Supplemental Table 14).  
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Supplemental Figures and Legends 

Supplemental Figure 1. Characterization of mouse cell-type specific reference methylation 

data.  (A) Tree dendrogram depicting relationship between mouse reference Whole Genome 

Bisulfite Sequencing (WGBS) datasets from different tissues and cell types included in the analysis. 

Methylation status of the top 30,000 variable blocks across all samples was used as input data 

for the unsupervised hierarchical clustering.  (B) Schematic diagram depicting location of mouse 

cell-type specific hypo- and hyper-methylated blocks. Genomic annotations of cell-type specific 

methylation blocks were determined by analysis using HOMER.
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Supplemental Figure 2. Unsupervised clustering of human cell-type specific reference 

methylation data reflects developmental lineage. (A, B) Average methylation was calculated 

within blocks of at least three CpGs and the top 30,000 blocks were selected showing the highest 

variability across all samples. UMAP coordinates of the human reference WGBS samples were 

clustered based on similarity in methylation status at these highly variable blocks. Colors indicate 

cell type group in (A) and library construction methodology in (B). This analysis systematically 

grouped biological samples of the same cell type and library construction method did not influence 

clustering. Abbreviations: CAEC = coronary artery endothelial cell, CMEC = cardiac microvascular 

endothelial cell, CPEC = joint cardio-pulmonary endothelial cell, HUVEV = human umbilical vein 

endothelial cell, LSEC = liver sinusoidal endothelial cell, MK = megakaryocyte, NK = natural killer 

cell, PAEC = pulmonary artery endothelial cell, PMEC = pulmonary microvascular endothelial cell. 
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Supplemental Figure 3. Unsupervised clustering of mouse cell-type specific reference 

methylation data reflects developmental lineage. (A, B) Average methylation was calculated 

within blocks of at least three CpGs and the top 30,000 blocks were selected showing the highest 

variability across all samples. UMAP coordinates of the mouse reference WGBS samples were 

clustered based on similarity in methylation status at these highly variable blocks. Colors indicate 

cell type group in (A) and library construction methodology in (B). This analysis systematically 

grouped biological samples of the same cell type and library construction method did not influence 

clustering. Abbreviations: GI = colon + intestine, Immune1 = hematopoietic cell types, Immune2 = 

lymphoid tissues (bone marrow, spleen, and thymus).  
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Supplemental Figure 4. Biological validation of cell-type specific DNA methylation blocks 

in human and mouse. (A, B) Heatmap of distance scores between gene-set pathways identified 

from GeneSetCluster. Genes adjacent to human (A) and mouse (B) cell-type specific methylation 

blocks were identified using HOMER and pathway analysis was performed using both Ingenuity 

Pathway Analysis (IPA) and GREAT. Significantly enriched gene-set pathways (p<0.05) from 

differentially methylated blocks identified in immune, cardiomyocyte, hepatocyte, and endothelial 

cell types were analyzed using GeneSetCluster. Cluster analysis was performed to determine the 

distance between all identified gene-set pathways based on the degree of overlapping genes from 

each individual gene set compared to all others. Over-representation analysis was implemented 

in the WebgestaltR (ORAperGeneSet) plugin to interpret and functionally label identified geneset 

clusters.   
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Supplemental Figure 5. Genomic distribution of human and mouse cell-type specific 

methylation blocks.  (A) Distribution of mouse hypomethylated blocks for cell-types in common 

between the human and mouse atlases compared to the distribution of all mouse hypomethylated 

cell-type specific blocks (All). (B) Average distribution of hypomethylated cell-type specific blocks 

shown in A. (C) Distribution of human hypomethylated blocks for cell-types in common between the 

human and mouse atlases compared to the distribution of all human hypomethylated cell-type 

specific blocks. (D) Average distribution of hypomethylated cell-type specific blocks shown in C. (E) 

Distribution of human and mouse hypermethylated blocks for cell-types in common. (F) Average 

distribution of hypermethylated cell-type specific blocks shown in E. (A-E) Genomic annotations of 

cell-type specific methylation blocks were determined by analysis using HOMER. 
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Supplemental Figure 6. Indicators of damage from radiation in mouse tissues. qPCR 

analysis of markers of apoptosis and radiation damage (Trp53, Gadd45a, Aifm3, and Bad) in 

mouse lung, heart, and liver tissues treated with 3Gy and 8Gy radiation compared to sham control. 

The gene expression in each sample was normalized to the expression of Actb (beta- actin). Data 

presented as mean ± SD; N = 3. Kruskal-Wallis test was used for comparisons amongst groups 

and results were considered significant when *p < 0.05; ns, p  0.05.   
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Supplemental Figure 7. Radiation-induced effects on immune and other solid organ cell-
types in human (A-E) and mouse (F-H) samples. (A) Predicted human immune-derived cfDNA 

in Geq. Immune cfDNA was assessed at n = 222 methylation blocks found to separate immune 

cell types from solid organ cell types. (immune = Bcell, CD4Tcell, CD8Tcell, NK, MK, 

Erythroblast, Monocyte, Macrophage, Neutrophil; solid organ = breast basal/luminal epi, lung epi, 

hepatocyte, kidney podocyte, pancreas islet, colon epi, cardiomyocyte, LSEC, CPEC, HUVEC, 

neuron, and skeletal muscle). (B) Predicted human solid organ-derived cfDNA in Geq where %

solid organ is defined as 100-%immune using the above n=222 methylation blocks. (C) Breast 

basal epithelial cfDNA (in Geq/mL). Fragment-level deconvolution used top breast basal 

epithelial specific methylation blocks (n=200). (D) Breast luminal epithelial cfDNA (in Geq/mL). 

Fragment-level deconvolution used breast luminal epithelial specific methylation blocks (n=330). 

(E) Predicted total endothelial cfDNA (in Geq/mL). Fragment-level deconvolution was assessed at 

n =  131 methylation blocks found to separate endothelial cells from all other cell types. 

(endothelial = CPEC, LSEC, HUVEC; non-endothelial = Bcell, CD4Tcell, CD8Tcell, NK, MK, 

Erythroblast, Monocyte, Macrophage, Neutrophil, breast basal/luminal epi, lung epi, hepatocyte, 

kidney podocyte, pancreas islet, colon epi, cardiomyocyte, neuron, and skeletal muscle). (A-E) 

Friedman test was performed for comparisons amongst groups. ns, p > 0.05; *, p < 0.05; immune 

p=0.07, solid organ p=0.008, breast basal epithelial p=0.002, breast luminal epithelial p=0.02, total 

endothelial p=0.01. Mean fold change relative to baseline is presented as mean ± SEM; N = 15. 

(F) Predicted mouse immune-derived cfDNA in Geq. Immune cfDNA was assessed at n = 148 

methylation blocks found to separate immune cell types from solid organ cell types. (immune 

= Bcell, CD4Tcell, CD8Tcell, Neutrophil; solid organ = mammary epi, cardiomyocyte, 

hepatocyte, lung endothelial, cerebellum, hypothalamus, colon, intestine, kidney). (G) 

Predicted mouse solid organ-derived cfDNA (in Geq/mL). (H) Mammary epithelial cfDNA (in 

Geq/mL). Fragment-level deconvolution used mouse mammary epithelial specific methylation 

blocks (n=874). (F-H) Mean ± SD; N = 3 independent methylome preparations. Kruskal-

Wallis test was used for comparisons amongst groups. ns, p > 0.05; *, p < 0.05; immune p = 

0.20, solid organ p = 0.01, mammary epithelial p=0.19. 



0 10 20 30 40
0

5

10

15

20

Lung V20 (%)

EO
T/

B
as

el
in

e

Endothelial Geq

0 5 10 15 20
0

5

10

15

20

mean lung (Gy)

EO
T/

B
as

el
in

e

Endothelial Geq

q = 0.036
r = 0.602

0 5 10 15
0

5

10

15

20

Total Body Mean (Gy)

EO
T/

B
as

el
in

e

Endothelial Geq

0 20 40 60
0

10

20

30

Hepatocyte Geq

Liver Dmax (Gy)

EO
T/

B
as

el
in

e

p = 0.067
r = 0.489

0 10 20 30 40 50
0

400

800

1200

1600

Liver Dmax (Gy)
EO

T

Liver Endo Geq

p = 0.048
r = 0.534

0 5 10 15 20 25
0

200

400

600

800

Cardiomyocyte Geq

Heart Max Dose (Gy)

EO
T

p = 0.05
r = 0.517

A

Supplemental Figure 8.

p = 0.049
r = 0.534

p = 0.067
r = 0.489

B C

p = 0.036
r = 0.517

D E F

p = 0.016
r = 0.695

p = 0.054
r = 0.517



Supplemental Figure 8. Correlation of methylated DNA in the circulation with human 

dosimetry data. (A) Correlation of cardiomyocyte cfDNA at end-of-treatment (EOT) with the 

maximum dose to the heart (Gy). (B) Correlation of liver endothelial cfDNA at EOT with the maximum 

dose to the liver (Gy). (C) Correlation of hepatocyte cfDNA with the maximum dose to the liver (Gy). 

EOT/Baseline represents the fraction of hepatocyte cfDNA post-radiation at end-of-treatment (EOT) 

relative to baseline levels. (D-F) Correlation of total endothelial cfDNA with the mean dose to the lung 

(D), total body mean dose (E) and Lung V20 (%). The volume of the lung receiving 20 Gy dose is 

represented by Lung V20 (%). EOT/Baseline represents the fraction of endothelial cfDNA post-

radiation at end-of-treatment (EOT) relative to baseline levels. *(c, e, g) Spearman correlation r was 

calculated, and linear correlation was considered significant when *p < 0.05; ns, p ≥ 0.05. 
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Supplemental Figure 9. Sensitivity and specificity of identified mouse cell-type specific 

differentially methylated blocks. (A-D) (Left) Heatmap of all cell-type specific methylation blocks 

selected for each target cell type. All blocks contain >3 CpG sites and have a margin of beta 

difference greater than or equal to 0.35 separating the target cell type from all others included in 

the reference maps. All identified methylation blocks for lung endothelial (n=1,546), hepatocyte 

(n=616), and cardiomyocyte (n=2,917) mouse cell types were hypomethylated. In contrast, all 

identified immune cell-specific blocks (n=148) were hypermethylated relative to other solid organ 

cell types in mouse. (Right) In-silico mix-in validation using a fragment-level probabilistic 

deconvolution model. Target cell-type read-pairs were in-silico mixed into a background of 

lymphocyte or buffy coat read-pairs at various known percentages (0.5%, 1%, 2%, 5%, 10%, 

15%). The deconvolution model was validated on these in-silico mixed samples of known celltype 

proportions at the blocks selected. The average predicted %target is shown relative to the known 

%mixed to assess sensitivity and specificity of the identified cell-type specific blocks and 

deconvolution model. Data presented as mean ± SD; N=3 replicates per proportion. Reference 

WGBS samples with less than 3 replicates were split into “0.8 train” to select methylation blocks 

and “0.2 test” to generate in-silico mixed samples. When available, in-silico mixed samples of the 

same cell type derived from differently aged mice were also tested (infant < 6 weeks old). In 

addition, bulk tissue containing the respective cell type was tested as well.   
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Supplemental Figure 10. Sensitivity and specificity of identified human cell-type specific 

differentially methylated blocks. (A-D) (Left) Heatmap of all cell-type specific methylation blocks 

selected for each target cell type. All blocks contain >3 CpG sites and have a margin of beta 

difference greater than or equal to 0.4 separating the target cell type from all others included in the 

reference maps. (Right) In-silico mix-in validation from the fragment-level probabilistic deconvolution 

model. Target cell-type read-pairs were in-silico mixed into a background of lymphocyte or buffy coat 

read-pairs at various known percentages (0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%). The deconvolution 

model was validated on these in-silico mixed samples of known cell-type proportions at the blocks 

selected. The average predicted %target is graphed relative to the known %mixed to assess 

sensitivity and specificity of the identified cell-type specific blocks and deconvolution model. Data 

presented as mean ± SD; N=3 replicates per proportion.  
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Supplemental Figure 11. Sensitivity and specificity of identified human endothelial specific 

differentially methylated blocks. (A, C, E) Heatmap of cell-type specific methylation blocks 

selected for each target cell type. All blocks contain >3 CpG sites and have a margin of beta 

difference greater than or equal to 0.4 separating the target cell type from all others included in the 

reference maps. (B, D, F) Enlarged heatmap of cardiopulmonary (B) or liver endothelial (D) specific 

methylation blocks that are unique relative to other liver or cardiopulmonary endothelial blocks 

respectively; (F) pan-endothelial specific methylation blocks with common methylation status 

amongst cardiopulmonary, liver, and HUVEC endothelial cell populations. Methylation status is 

represented by M-values (Logit transformation of !-values) to limit heteroscedasticity in visual 

representation of methylation differences across regions. (G) In-silico mix-in validation from a 

fragment-level probabilistic deconvolution model. Target cell-type read-pairs were in-silico mixed 

into a background of lymphocyte or buffy coat read-pairs at various known percentages (0.1%, 0.5%, 

1%, 2%, 5%, 10%, 15%). The deconvolution model was validated on these in-silico mixed samples 

of known cell-type proportions at the blocks selected. The average predicted %target is graphed 

relative to the known %mixed to assess sensitivity and specificity of the identified cell-type specific 

blocks and deconvolution model. Data presented as mean ± SD; N=3 replicates per proportion.   
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Supplemental Figure 12. Performance of the probabilistic fragment-level deconvolution 

algorithm using WGBS data relative to NNLS MethAtlas from 450K array data. Cell type 

specific markers outperform the array-based atlas and achieve <0.1% resolution. Shown are in 

silico simulations for four cell types, computationally mixed within leukocytes at various known 

percentages (0.05%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15%). Each mixture was analyzed using our 

WGBS atlas and fragment-level deconvolution model (red), compared to Moss et al. 2018 (gray). 

Data presented as mean ± SD; N=3 replicates per proportion.   
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Supplemental Figure 13. Comparison of methylation status and cellular origins of cfDNA 

isolated from serum and plasma of healthy human controls. (A, B) Representative 

bioanalyzer trace of freshly isolated cfDNA extracted from healthy control human serum before 

(A) and after (B) removal of high-molecular weight (HMW) DNA. (C) Density scatter plot

comparing methylation status across blocks in cfDNA isolated from control human serum (n=4) 

versus control human plasma (n=4). Methylation levels are highly correlated at the block-level 

with Pearson’s r =0.95 and R2=0.89. (D) Predicted %Immune versus %Solid Organ derived cfDNA 

extracted from either serum or plasma. Origins were assessed at n = 222 methylation blocks 

found to separate immune cell types from solid organ cell types. (E) Immune and solid organ Geq 

from cfDNA isolated from serum versus plasma. (D, E) Data presented as mean ± SD; N=4 

samples per group.  Mann-Whitney test was used for comparisons amongst groups. ns, p 0.05; 

*, p < 0.05.  
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Supplemental Figure 14. Individual sample correlation of sequencing parameters and 

coverage amongst cell-free DNA sequencing libraries. Sample correlation of methylation 

sequencing libraries comparing distribution of aligned and filtered high-quality paired-end reads from 

(A) Breast Cancer cell-free DNA methylome data and (B) Mouse cell-free DNA methylome data.

Correlation heatmap was generated using deepTools plotCorrelation (--corMethod spearman) 

based on the output of multiBamSummary collapsed over the bed file of captured probe regions.  
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Supplemental Figure 15. Representative diagram of the feature selection process 

implemented to identify cell-type specific blocks (DMBs). Briefly, the Average Methylation 

Fraction (AMF) was calculated for each block in every sample (with ≥3 CpGs and length less than 

2Kb). Differential blocks were sorted by the margin of separation, termed “delta-beta”, defined as 

the minimal difference between the average methylation in any sample from the target group vs all 

other samples. Then, we computed the “soft margin” between target samples and background 

samples, allowing for some outliers using percentiles. For example, at the hepatocyte-specific DMB 

shown below, the AMF of individual hepatocyte samples (n=9) ranged from 0.03-0.11. In contrast, 

the AMF at this block for all other samples (n=95) ranged from 0.81-1.0. We calculated the difference 

between the 80th percentile of the methylation status in the target group of all hepatocyte samples 

(0.09) and the 10th percentile of the methylation status in the background group (0.88) and used this 

to compute the “soft margin” of separation at 0.79 that is plotted below using dotted lines. We 

required all cell-type specific blocks identified to have a “soft margin”  0.4 for human and  0.35 

for mouse.  



Legends for Supplemental Tables 

Supplemental Table 1. Human reference methylation data from healthy tissues and cell 
types.   

Supplemental Table 2. Mouse reference methylation data from healthy tissues and cell 
types.   

Supplemental Table 3. Identified human cell-type specific methylation blocks used to 
identify origins of cell-free DNA (margin 0.4;bg.quant 0.1). Annotation was performed 
using Homer. The margin of separation represents the delta-beta (maximum higher – 
minimum lower) across all samples. Blocks with a (-) direction are hypomethylated and 
(+) direction are hypermethylated. AMF (average methylation fraction) indicated as a 
fraction.  

Supplemental Table 4. Identified mouse tissue and cell-type specific methylation blocks 
used to identify origins of cell-free DNA (margin 0.35). Annotation was performed using 
Homer. The margin of separation represents the delta-beta (maximum higher – minimum 
lower) across all samples. Blocks with a (-) direction are hypomethylated and (+) direction 
are hypermethylated. AMF (average methylation fraction) indicated as a fraction.  

Supplemental Table 5. Summary of identified human (A) and mouse (B) cell-type specific 
methylation blocks.   

Supplemental Table 6. Significantly enriched biological pathways and functions for 
genes associated with differential methylation in each cell-type.  

Supplemental Table 7. Genomic annotation of identified human and mouse cell-type 
specific hypomethylated and hypermethylated blocks relative to all captured blocks.   

Supplemental Table 8. Extended endothelial-specific methylation blocks (margin 
0.4;bg.quant 0.2) used for pathway analysis and validation of cell identity through 
integration with paired RNA expression data.  

Supplemental Table 9. Primers used for RT–qPCR in radiation-treated mouse tissues. 

Supplemental Table 10. Characteristics of breast cancer patients enrolled in this study. 
Individual patient characteristics described in Supplemental Table 11. 

Supplemental Table 11. Extended clinical data and characteristics of individual breast 
cancer patients enrolled in this study.  

Supplemental Table 12. Mouse cfDNA sample concentrations and predicted cell-type 



proportions from deconvolution analysis at identified cell-type specific blocks for target 
cell types.   

Supplemental Table 13. Human cfDNA sample concentrations and predicted cell-type  
proportions from deconvolution analysis at identified cell-type specific blocks for target 
cell types.   

Supplemental Table 14. Cross-species comparison of cell-type specific DMBs 
(differentially methylated blocks) in human and mouse species. 

Supplemental Table 15. Extended immune and endothelial-specific methylation blocks 
(margin 0.4;bg.quant 0.1). from purified cell populations that were not used to identify 
origins of cell-free DNA.  




