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Supplementary Research Objectives and Background 

The structure of the work described here, as well as the objectives that motivated it, are 

summarised in the following.   

i. We wanted to gain insight into AMR trends in the Chinese poultry industry. To do 

this, we conducted a comprehensive longitudinal study across three provinces, spanning 2.5 

years. Our primary objective was to collect metagenomics samples from chickens, carcasses, 

and their breeding and slaughtering environments in ten large-scale commercial poultry farms 

and connected abattoirs. Additionally, we sought to employ multi-scale analysis techniques to 

investigate the similarities, differences and spread of the resistome, microbiota and MGEs 

within and across the studied ecological contexts;  

ii. We wanted to search for correlations between resistance in the E. coli colonizing the 

gut (detected using AST) and the entire resistome and composition of the microbial 

community within the same gut, assessed by MGS.  We also wanted to explore how 

variations in resistome and composition of the microbial community would correlate to the 

susceptibility of E. coli to different antibiotics;  

iii. We wanted to investigate the correlations between temperature and humidity 

fluctuations within the barn, and variations of resistome and composition of the microbial 

community in the gut as detected by MGS, focusing in particular on the subset of variations 

previously found correlated with resistance in E. coli;  

iv. In performing the above analyses, we also wanted to develop and present our bespoke 

analysis method as a general-purpose tool for exploring correlations amongst phenotypic 

manifestations, MGS data, and external variables (in this case temperature and humidity), 

applicable beyond the specific subject illustrated here, and putatively superior or at least 

complementary to conventional analysis of MGS data, capable of providing a significant 

support to the development of surveillance solutions for AMR.  

From more effective solutions for surveillance, a better understanding of the mechanisms 

involved in AMR in livestock may arise. This understanding may in turn lead to the possible 

identification of a larger number of options in terms of what production and environmental 

variables should be kept under observation when monitoring for infection and AMR in 

livestock.  Importantly, this may lead to reducing the need for culture-based analysis, a key 

strategic milestone in particular for LMICs, due to lack of lab resources and the cost of on-

field analysis. 

 



An element of distinction, with respect to the state of the art, is the way metagenomics 

is used within our method. The conventional approach to metagenomics is to run comparisons 

between the MGS data and existing databases to identify ARGs and associated mobile genetic 

elements (MGEs)1. However, with the conventional approach, our knowledge on the putative 

functional role of the found genetic elements remains limited to what has been annotated in the 

databases.  On the contrary, many more functional interactions between ARGs and other 

relevant genetic traits and microbial species may be present and continuously changing in 

livestock, given the evolving nature of the microbiomes in the chicken gut and connected 

environments.  

We have recently demonstrated2 that, instead of limiting the analysis of MGS data to 

retrieving known matches between genetic elements and functional annotations within existing 

databases, we can encode information extracted from metagenomic data into a feature vector, 

and then search for statistical correlations between such feature vector and selected 

phenotypical manifestations (e.g. infection, development of a resistance trait to some antibiotic, 

etc.).  

Machine learning in particular can be used to identify elements of the feature vector 

most strongly correlated to observed phenotypical variation, which allows to identify additional 

potential involvement of genetic elements in phenotype-related mechanisms, beyond what 

currently annotated. Correlation alone does not necessarily demonstrate causal dependency. 

Nevertheless, the method allows to isolate interesting candidates for further investigation.  

Whilst recently there have been studies combining both metagenomic and culture-based 

analyses3-6, none of these have attempted to perform a comprehensive analysis to find 

correlations between metagenomic data and phenotypic manifestations. Two recent studies 

used metagenomic samples to predict AMR and virulence determinants (by comparison of 

known genes in public databases) of clinical infections; however, typically these samples were 

mono-or polymicrobial with at most two species7,8. 

 

Supplementary Results 

Sample collection campaign 

Sample collection was performed on farms located in the three Chinese provinces of 

Shandong, Henan and Liaoning (Supplementary Figure 1, Supplementary Tables 1 and 2, 

further information in the Methods section). Sample collection resulted in a total of 461 

viable biological samples, covering two time points in the bird life cycle within the farm (t1 

and t2) and one time point in the slaughterhouse (t3). Biological samples consisted of bird 



faeces (n = 223; 116 at t1, 107 at t2), feathers (n = 36; 17 at t1, 19 at t2), barn floors (n = 23; 

10 at t1, 13 at t2), carcasses (n = 94 at t3), abattoir wastewater (n = 21 at t3), abattoir 

processing lines (n = 12 at t3), and outdoor soil (n = 52; 25 at t1, 27 at t2).  

 

Bacteria communities and resistomes vary across farm sources  

Taxonomic profiling of the metagenomic samples revealed 19 bacterial phyla, 2 archaea 

phyla and 3 eukaryote phyla (Supplementary Fig. 2A and Supplementary Table 3). The 

microbial communities formed two clusters (Supplementary Fig. 2B) (PERMANOVA, p < 

0.001), clearly separating farm sources (faeces, feathers, barn floor and outdoor soil) from 

abattoir sources (carcasses, processing line and wastewater). Pairwise testing indicated that 

abattoir sources were not significantly separated from each other. However, farm sources 

were consistently separated from abattoir sources and from each other (adjusted p values < 

0.05). Comparison of individual phyla abundances (Wilcoxon Rank-sum test) highlighted 

nine phyla with differences across sources (Supplementary Fig. 3 and Supplementary Table 

4). As expected, typical soil phyla, Actinobacteria and Planctomycetes were more abundant 

in outdoor soil samples, and commensal gut species (Firmicutes, Protobacteria, and 

Bacteroidetes) were found in high abundances in most sample sources indicative of 

potentially contaminated environments. Chlamydiae, a phylum endemic in birds, was found 

in high abundance in abattoir samples. 

In the resistome of all samples, after rarefying to the minimum read depth, 260 ARGs were 

found, representative of 14 antibiotic classes. The ARG count patterns differed in all farm 

and abattoir sources (PERMANOVA, p < 0.05) except for wastewater and abattoir 

processing line, Supplementary Fig. 4. The analysis of pattern differentiation for ARGs 

belonging to each specific class (Wilcoxon Rank-sum test, Supplementary Fig. 5 and 

Supplementary Table 5) revealed that 13 of the 14 classes had significant differentiation at 

least in one pairwise comparison across sources, consistent across farms. Specifically, barn 

floor (t1 and t2) samples carried a greater number of aminoglycosides, amphenicol, 

macrolide-lincosamide-streptogramin B (MLSB) and tetracycline genes compared to 

wastewater, outdoor soil, carcasses and (for t2 only) processing line (adjusted p values < 

0.05). Chicken faeces carried a greater number of aminoglycoside, MLSB and amphenicol 

genes compared to outdoor soil, wastewater, processing line and carcasses (adjusted p values 

< 0.05), and beta lactam genes compared to outdoor soil, wastewater and carcasses (adjusted 

p values < 0.05). Additionally, chicken faeces collected at t1 carried a greater number of 



multi-drug resistant genes (MDR) and fosfomycin genes compared to outdoor soil, 

wastewater and carcasses (adjusted p values < 0.05). 

 

The microbiome linked to AMR correlates to antibiotic usage 

We investigated if the core chicken gut microbiome previously identified as predictors 

of resistance in E. coli (i.e., bacterial species and ARGs found in the ML to be correlated to 

resistant-susceptibility phenotypes for the antibiotic models with an AUC greater than 0.90), 

may in turn be associated with antibiotics usage on farms (measured by whether an antibiotic 

class was used or not used on the farm during the study period, Supplementary Table 12). We 

found statistically significant differences (measured by a Wilcoxon rank sum test) in the 

relative abundance of ARGs per antibiotic class (Supplementary Fig. 12), counts of ARGs 

(Supplementary Fig. 13) and relative abundances of microbial species (Supplementary Fig. 

14), between farms using and not using antibiotics (Supplementary Table 13). On the farms 

that received tetracycline antibiotics, the tetracycline class and tetracycline ARGs (tet(39), 

tet(B), and tet(Y)) were found to be significantly increased (adjusted p values < 0.05). In 

addition, in these farms there was also a significantly increased presence of genes from the 

classes: aminoglycoside, beta lactam, MLSB, MDR, phenicol, trimethoprim, fosfomycin, 

fluroquinolone, glycopeptide and nucleoside (adjusted p values < 0.05). All these, except 

fosfomycin, glycopeptide and nucleoside, had a greater than expected co-presence on contigs 

with tetracycline genes (Chi-square test, Holm correction adjusted p values < 0.0001). 

Similarly, on farms that received lincosamide antibiotics there was an increased presence of 

MLSB the gene erm(42). There was also an increased presence of genes in aminoglycoside, 

beta lactam, phenicol and MLSB classes. All had a greater than expected co-presence on 

contigs with MLSB genes (Chi square test, Holm correction adjusted p values < 0.0001). For 

the farms that received aminoglycoside there was a decrease in the counts of the gene ErmX 

and an increase in the presence of genes from the classes: nucleoside and trimethoprim. For the 

farms that received polypeptide there was an increase in the counts of the genes ErmC, MCR-

1, mphE and spd and an increase in the presence of genes from the classes: aminoglycoside, 

beta lactam, MLSB and tetracycline. 

 

 

 

 



Supplementary Methods 

Sample collection methods 

For faecal samples, each sample consisted of approximately 10 g fresh sample of mixed 

chicken faeces (2-3 chickens), collected from the bottom of the chicken cage/net using a 

sterilized spoon. Feather samples were collected from the birds and swabbed using cotton 

tipped swabs. Pooled carcass samples were collected in the abattoirs using a sponge swab 

(SS100NB, Hygiena International, Watford, UK) on the surface of the carcass. In addition, 

samples from four types of environmental sources (barn floor, soil outside the barn, wastewater 

and processing line in the abattoir) were also collected. Barn floor samples were taken using a 

sterilized spoon. Wastewater samples of no less than 20 mL were collected from the water pipe 

or by using pipettes. Abattoir processing line samples were collected from multiple surfaces, 

e.g., the cutting table and transfer belt of the cutting and deboning house. Soil samples consisted 

of about 10 g soil, collected outdoors at depth of 1-3cm, 5m from the external barn walls, to 

ensure sufficient separation from areas of human use. All biological samples were collected 

using aseptic techniques, and then stored in secure containers at 4℃ during transportation to 

the laboratory and extracted within 24h.  

 

Antibiotic susceptibility testing of E. coli isolates 

For each sample, E. coli strains were cultured as indicator organisms. 1g sample of 

faeces and outdoor soil was vortexed with 9 mL of sterile buffered peptone water tube (BPW; 

Luqiao Inc., Beijing, China) for 1 min. Broiler carcass sponge samples were homogenised with 

10 mL BPW for 1 min in a stomacher bag. Approximately 1 mL was added to 9 mL E. coli 

(EC) broth (Luqiao Inc.) and incubated at 37℃ for 16-20 h. A loopful of these solutions was 

then streaked onto an eosin-methylene blue (EMB) agar and MacConkey (MAC) Agar (Luqiao 

Inc.) and incubated at 37°C for 18-24 h. Typical E. coli colonies were counted and subsequently 

characterized by Bruker MALDI Biotyper (Germany).  

The antimicrobial susceptibility testing was carried out on the cultured E. coli isolates. 

Antimicrobial susceptibility to a panel of agents was determined by broth microdilution and 

interpreted according to the criteria based on the Clinical & Laboratory Standards Institute 

(CLSI) interpretive criteria (CLSI 2009). The minimum inhibitory concentrations (MIC) of 28 

antimicrobial compounds were measured for the E. coli isolates: ampicillin (AMP), 

ampicillin/sulbactam (AMS), tetracycline (TET), chloramphenicol (CHL), 

trimethoprim/sulfamethoxazole (SXT), cephazolin (CFZ), cefotaxime (CTX), ceftazidime 

(CAZ), cefoxitin (CFX), gentamicin (GEN), imipenem (IMI), nalidixic acid (NAL), 



sulfisoxazole (SUL), ciprofloxacin (CIP), amoxicillin/clavulanic acid (AMC), 

cefotaxime/clavulanic acid (CTX-C), ceftazidime/clavulanic acid (CAZ-C), polymyxin E 

(CT), polymyxin B (PB), minocycline (MIN), amikacin (AMI), aztreonam (AZM), cefepime 

(FEP), meropenem (MEM), levofloxacin (LEV), doxycycline (DOX), kanamycin (KAN), 

streptomycin (STR). The resistance/susceptibility profiles for each isolate were calculated 

(summarised in Supplementary Table 1). E. coli ATCC™25922 was used as a control 

bacterium for these experiments. 

 

Statistical Analysis 

Analysis of variance was done using PERMANOVA in R, with pairwise testing based on the 

adonis function with Holm correction for multiple comparisons. Statistical comparison for the 

mean number of potentially mobile ARGs was done in R, using the Kruskal Wallis test with 

pairwise comparisons using a two-sided Dunns test with Holm correction. Additional statistical 

comparisons were made using the SciPy package implementing: 1. For the ARGs analysis a 

two-sided Wilcoxon Rank-sum test, with Holm correction - adjusted p value 0.05 was used to 

compare the number of ARGs present per sample, the counts of individual ARGs and the 

relative ARG abundance per antibiotic class; 2. For the taxonomic composition  a two-sided 

Wilcoxon Rank-sum test, with Holm correction - adjusted p value 0.05 was used to compare 

the relative abundances of the phyla; and 3. a two-sided Friedman Statistical F-test (FF) with 

Iman-Davenport correction for statistical comparison of multiple datasets over the seven 

different classifiers used (p value 0.05). With 7 classifiers and 17 antibiotic models, the 

Friedman test is distributed according to the F distribution with 7−1 = 6 and (7−1)×(17−1) = 

96 degrees of freedom. The critical value of F(6,96) for p value = 0.05 is 2.19451621. The post-

hoc Nemenyi test was used to find if there is a single classifier or a group of classifiers that 

performs statistically better in terms of their average rank after the FF test has rejected the null 

hypothesis that the performance of the comparisons on the individual classifiers over the 

different datasets is similar. For the correlation analysis with temperature and humidity, a linear 

least-square regression analysis was used and a ARG or a microbial specie was found 

statistically correlated to the temperature or humidity if the slope of the regression line 

statistically differed from 0 (p value < 0.05 using a two-sided t-test). 

 

 

 

 



 



 

Supplementary Fig. 1: Summary of the collection of biological samples and environmental 

sensor data: (A) Map of mainland China9 showing the three provinces of China (Liaoning, 

Shandong and Henan) where the 10 farms are located. Three farms were located in Liaoning 

province, four farms were located in Shandong province and three farms in Henan province. 

(B) Source and collection time points for the biological samples collected within each farm. 

Biological samples consist of: i) farm samples (faeces and feather from chickens and barn floor 

and outdoor soil samples) collected at mid-life (t1: week 3) and at the end of life (t2: week 6) 

and ii) abattoir samples (chicken carcass, processing line and wastewater) collected on 

slaughtering day (t3: 1-5 days after week 6). The number of samples collected from each source 

type and collection timepoint is given; (C) Start dates of the collection campaign for each farm. 

Note the use of an underscore to distinguish the two collection campaigns executed to cover 

two breeding cycles at Shandong 1 (SD1_1 and SD1_2), which were sampled as part of a pilot 

study to optimise sampling and data analysis protocols.  



 

Supplementary Fig. 2. Abundance and diversity of the microbial community structure. (A) 

Taxonomy at phylum level of the metagenomes grouped by source (chicken carcasses, chicken 

faeces, chicken feathers, wastewater, processing line, barn floor and outdoor soil). (B) NMDS 

analysis based on Bray-Curtis dissimilarity of phylum relative abundances as calculated using 

MetaPhlan. The NMDS analysis depicts significant separation by source. Sample points are 

coloured according to source: outdoor soil (turquoise), carcasses (orange) feathers (violet), 

faeces (pink), barn floor (green) processing line (yellow) and wastewater (beige). The 

collection time point is given by shape: t1 (circle), t2 (triangle) and t3 (square).  



 

Supplementary Fig. 3. Relative abundance of nine phyla separated by sample source. 

Combined violin plot and categorical scatter plots showing the relative abundances of nine 

phyla which were found to have at least one case of statistically significant differentiation 

between sources. Each circle represents an individual sample. 

 

 

 

 

 

 

 



 

Supplementary Fig. 4. Occurrence of ARGs in environment, livestock and carcass samples in 

different sources and timepoints. (A) Abundance of the resistance genes in outdoor soil (t1 and 

t2), chicken carcass (t3), chicken feather (t1 and t2), chicken faeces (t1 and t2), barn floor (t1 and 

t2), processing line (t3) and wastewater (t3) samples across all ten farms. (B) NMDS analysis of 

the ARGs of rarefied reads in chicken carcasses (orange), chicken faeces (pink), chicken 

feather (purple), outdoor soil (green), barn floor (light green), Abattoir processing line (yellow) 

and wastewater (brown) based on Bray-Curtis dissimilarity at time points t1 (circles), t2 

(triangle), t3 (squares). 



 

Supplementary Fig. 5. Relative presence of ARG classes across sources. Combined violin and 

categorical scatter plot for the 13 (out of 14) antibiotic classes that resulted in at least one case 

of significant differentiation between each other when compared across any two sources. 

Relative presence expressed as percentage (ARGs in sample / Total number of ARGs in the 

respective antibiotic class x 100). Each circle represents an individual sample. 

 



 

Supplementary Fig. 6. Nemenyi post-hoc test. Comparison of the performance of the 7 

predictive functions, using their average ordinal rank over the 17 antibiotics analysed based on 

the performance metrics: (A) AUC, (B) accuracy, (C) sensitivity, (D) specificity, (E) precision 

and (F) Cohen’s kappa score. The x-axis indicates the average ordinal rank of the machine 

learning methods. The scale is from 1 (best rank) to 7 (worst rank). For each performance 

metric, the ordinal rank of a predictive function is defined as: the ML method with the best 

performance is given rank 1, the second-best performance rank 2 and the n-th performance 

rank n, with n being the number of machine learning methods used. For each antibiotic and 

performance metric, the methods are ranked between 1 (highest performance) and 7 (lowest 

performance), since in this case there are 7 machine learning methods used. Next, for each 

method, the ranks are averaged based on the 17 antibiotics studied. The critical distance (CD) 

is defined based on the Nemenyi two-sided post-hoc test (p value = 0.01), all the methods that 

fall in the same bold bar below the axis are considered statistically equivalent based on the CD 

value. 



 

Supplementary Fig. 7. Machine learning performance from correlations between the gut 

microbiome and resistome, and antibiotic resistance in E. coli. Performance of the ML-powered 

predictive functions of E. coli resistance to specific antibiotics (ML technology: extra-tree 

classifier – see Materials and Methods). Performance indicators (A) sensitivity, (B) specificity 

and (C) Cohen’s Kappa score were computed as the average of 30 iterations of nested cross-

validation (see Materials and Methods). The violin plots show the distribution of the data, with 

each datapoint representing one antibiotic model. Inside each violin plot, a box plot is indicate 

with the box showing the interquartile range (IQR), the whiskers showing the rest of the 

distribution as a proportion of 1.5 x IQR, and the white circle showing the median value. 

 



 

Supplementary Fig. 8. Bee swarm plot of SHAP-calculation for the ten highest ranking 

features for each of the antibiotic ML models with an AUC > 0.9. ARGs and microbial species 

are sorted by their mean absolute SHAP value in descending order with the most important 

features at the top. Each dot corresponds to one isolate in the study. The colour indicates either 

the ARG count or the microbial specie abundance normalized between 0 and 1. The bee swarm 

plot shows how the different feature in each isolate affects the prediction of the ML model 

towards resistance to the respective antibiotic. 



 

Supplementary Fig. 9. Daily average (A) Temperature and (b) Humidity measurements taken 

nine farms over the breeding cycles. LN1 is not shown as technical issues resulted in not data 

being collected.  



 

Supplementary Fig. 10. Categorical scatter plot of the statistically significant features selected 

by the regression analysis for the humidity and temperature. Each point on the plot represents 

a feature (ARG or microbial species) for which a regression analysis was performed. The R2 

value of the linear least-square regression analysis indicates the correlation between 

presence/absence of the ARGs and abundance of microbial species against temperature or 

humidity. The ARGs features are grouped by antibiotic class. R2 ranges from -1 (negative 

correlation) to 1 (positive correlation).  



 

Supplementary Fig. 11. Gene structure of contigs carrying the mobile ARG pattern IS15-

NDM1 found in three chicken faeces samples and one barn floor sample. MGEs are represented 

by blue arrows, ARGs by green arrows and other genes by yellow arrows. 

 

 

 

 

 

 



 

 

Supplementary Fig. 12. Antibiotic Usage analysis based on the ARGs’ antibiotic class. 

Comparison of the ARGs’ antibiotic classes, based on the ARGs selected by the machine 

learning framework (phase I and phase II, as described in the Materials and Methods) for the 

antibiotic models with an AUC > 0.9, across farms depending on antibiotic usage, i.e., the 

antibiotic was used or not. The antibiotic was considered present and labelled ‘Yes’ if it was 

used in the shed under study during the chicken production cycle, otherwise it was labelled 

‘No’. The y-axis refers to the percentage of ARGs from each class that were found in any 

individual sample relative to all the ARGs of that class found in the cohort. Only the statistically 

significant (two-sided Wilcoxon Rank-sum test with Holm Correction and adjusted p value < 

0.05) ARGs’ antibiotic classes are shown. 



 

Supplementary Fig. 13. Antibiotic usage analysis based on count of ARGs. Comparison of 

the ARGs’ count, selected by the machine learning framework, across the different farms 

depending on antibiotic usage, i.e. the antibiotic was used or not. Only the statistically 

significant (two-sided Wilcoxon Rank-sum test with Holm Correction and adjusted p value < 

0.05) ARGs are shown. 

 



 

Supplementary Fig. 14. Antibiotic usage analysis based on relative abundance of microbial 

species. Comparison of microbial species abundances, selected by the machine learning 

framework, across the different farms depending on antibiotic usage, i.e. the antibiotic was 

used or not. Only the statistically significant (two-sided Wilcoxon Rank-sum test with Holm 

Correction and adjusted p value < 0.05) microbial species are shown. 
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