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Supplementary Research Objectives and Background

The structure of the work described here, as well as the objectives that motivated it, are
summarised in the following.

I. We wanted to gain insight into AMR trends in the Chinese poultry industry. To do
this, we conducted a comprehensive longitudinal study across three provinces, spanning 2.5
years. Our primary objective was to collect metagenomics samples from chickens, carcasses,
and their breeding and slaughtering environments in ten large-scale commercial poultry farms
and connected abattoirs. Additionally, we sought to employ multi-scale analysis techniques to
investigate the similarities, differences and spread of the resistome, microbiota and MGEs
within and across the studied ecological contexts;

ii. We wanted to search for correlations between resistance in the E. coli colonizing the
gut (detected using AST) and the entire resistome and composition of the microbial
community within the same gut, assessed by MGS. We also wanted to explore how
variations in resistome and composition of the microbial community would correlate to the
susceptibility of E. coli to different antibiotics;

iii. We wanted to investigate the correlations between temperature and humidity
fluctuations within the barn, and variations of resistome and composition of the microbial
community in the gut as detected by MGS, focusing in particular on the subset of variations
previously found correlated with resistance in E. coli;

(2 In performing the above analyses, we also wanted to develop and present our bespoke
analysis method as a general-purpose tool for exploring correlations amongst phenotypic
manifestations, MGS data, and external variables (in this case temperature and humidity),
applicable beyond the specific subject illustrated here, and putatively superior or at least
complementary to conventional analysis of MGS data, capable of providing a significant
support to the development of surveillance solutions for AMR.

From more effective solutions for surveillance, a better understanding of the mechanisms
involved in AMR in livestock may arise. This understanding may in turn lead to the possible
identification of a larger number of options in terms of what production and environmental
variables should be kept under observation when monitoring for infection and AMR in
livestock. Importantly, this may lead to reducing the need for culture-based analysis, a key
strategic milestone in particular for LMICs, due to lack of lab resources and the cost of on-

field analysis.



An element of distinction, with respect to the state of the art, is the way metagenomics
is used within our method. The conventional approach to metagenomics is to run comparisons
between the MGS data and existing databases to identify ARGs and associated mobile genetic
elements (MGEs)!. However, with the conventional approach, our knowledge on the putative
functional role of the found genetic elements remains limited to what has been annotated in the
databases. On the contrary, many more functional interactions between ARGs and other
relevant genetic traits and microbial species may be present and continuously changing in
livestock, given the evolving nature of the microbiomes in the chicken gut and connected
environments.

We have recently demonstrated? that, instead of limiting the analysis of MGS data to
retrieving known matches between genetic elements and functional annotations within existing
databases, we can encode information extracted from metagenomic data into a feature vector,
and then search for statistical correlations between such feature vector and selected
phenotypical manifestations (e.g. infection, development of a resistance trait to some antibiotic,
etc.).

Machine learning in particular can be used to identify elements of the feature vector
most strongly correlated to observed phenotypical variation, which allows to identify additional
potential involvement of genetic elements in phenotype-related mechanisms, beyond what
currently annotated. Correlation alone does not necessarily demonstrate causal dependency.
Nevertheless, the method allows to isolate interesting candidates for further investigation.

Whilst recently there have been studies combining both metagenomic and culture-based
analyses®®, none of these have attempted to perform a comprehensive analysis to find
correlations between metagenomic data and phenotypic manifestations. Two recent studies
used metagenomic samples to predict AMR and virulence determinants (by comparison of
known genes in public databases) of clinical infections; however, typically these samples were

mono-or polymicrobial with at most two species’?®,

Supplementary Results

Sample collection campaign

Sample collection was performed on farms located in the three Chinese provinces of
Shandong, Henan and Liaoning (Supplementary Figure 1, Supplementary Tables 1 and 2,
further information in the Methods section). Sample collection resulted in a total of 461
viable biological samples, covering two time points in the bird life cycle within the farm (t1

and t2) and one time point in the slaughterhouse (t3). Biological samples consisted of bird



faeces (n = 223; 116 at t1, 107 at t2), feathers (n = 36; 17 at t1, 19 at t2), barn floors (n = 23;
10 att1, 13 at t2), carcasses (n = 94 at t3), abattoir wastewater (n = 21 at t3), abattoir
processing lines (n = 12 at t3), and outdoor soil (n =52; 25 at t1, 27 at t2).

Bacteria communities and resistomes vary across farm sources

Taxonomic profiling of the metagenomic samples revealed 19 bacterial phyla, 2 archaea
phyla and 3 eukaryote phyla (Supplementary Fig. 2A and Supplementary Table 3). The
microbial communities formed two clusters (Supplementary Fig. 2B) (PERMANOVA, p <
0.001), clearly separating farm sources (faeces, feathers, barn floor and outdoor soil) from
abattoir sources (carcasses, processing line and wastewater). Pairwise testing indicated that
abattoir sources were not significantly separated from each other. However, farm sources
were consistently separated from abattoir sources and from each other (adjusted p values <
0.05). Comparison of individual phyla abundances (Wilcoxon Rank-sum test) highlighted
nine phyla with differences across sources (Supplementary Fig. 3 and Supplementary Table
4). As expected, typical soil phyla, Actinobacteria and Planctomycetes were more abundant
in outdoor soil samples, and commensal gut species (Firmicutes, Protobacteria, and
Bacteroidetes) were found in high abundances in most sample sources indicative of
potentially contaminated environments. Chlamydiae, a phylum endemic in birds, was found
in high abundance in abattoir samples.

In the resistome of all samples, after rarefying to the minimum read depth, 260 ARGs were
found, representative of 14 antibiotic classes. The ARG count patterns differed in all farm
and abattoir sources (PERMANOVA, p < 0.05) except for wastewater and abattoir
processing line, Supplementary Fig. 4. The analysis of pattern differentiation for ARGs
belonging to each specific class (Wilcoxon Rank-sum test, Supplementary Fig. 5 and
Supplementary Table 5) revealed that 13 of the 14 classes had significant differentiation at
least in one pairwise comparison across sources, consistent across farms. Specifically, barn
floor (t1 and t2) samples carried a greater number of aminoglycosides, amphenicol,
macrolide-lincosamide-streptogramin B (MLSB) and tetracycline genes compared to
wastewater, outdoor soil, carcasses and (for t2 only) processing line (adjusted p values <
0.05). Chicken faeces carried a greater number of aminoglycoside, MLSB and amphenicol
genes compared to outdoor soil, wastewater, processing line and carcasses (adjusted p values
< 0.05), and beta lactam genes compared to outdoor soil, wastewater and carcasses (adjusted

p values < 0.05). Additionally, chicken faeces collected at t1 carried a greater number of



multi-drug resistant genes (MDR) and fosfomycin genes compared to outdoor soil,

wastewater and carcasses (adjusted p values < 0.05).

The microbiome linked to AMR correlates to antibiotic usage

We investigated if the core chicken gut microbiome previously identified as predictors
of resistance in E. coli (i.e., bacterial species and ARGs found in the ML to be correlated to
resistant-susceptibility phenotypes for the antibiotic models with an AUC greater than 0.90),
may in turn be associated with antibiotics usage on farms (measured by whether an antibiotic
class was used or not used on the farm during the study period, Supplementary Table 12). We
found statistically significant differences (measured by a Wilcoxon rank sum test) in the
relative abundance of ARGs per antibiotic class (Supplementary Fig. 12), counts of ARGs
(Supplementary Fig. 13) and relative abundances of microbial species (Supplementary Fig.
14), between farms using and not using antibiotics (Supplementary Table 13). On the farms
that received tetracycline antibiotics, the tetracycline class and tetracycline ARGs (tet(39),
tet(B), and tet(Y)) were found to be significantly increased (adjusted p values < 0.05). In
addition, in these farms there was also a significantly increased presence of genes from the
classes: aminoglycoside, beta lactam, MLSB, MDR, phenicol, trimethoprim, fosfomycin,
fluroquinolone, glycopeptide and nucleoside (adjusted p values < 0.05). All these, except
fosfomycin, glycopeptide and nucleoside, had a greater than expected co-presence on contigs
with tetracycline genes (Chi-square test, Holm correction adjusted p values < 0.0001).
Similarly, on farms that received lincosamide antibiotics there was an increased presence of
MLSB the gene erm(42). There was also an increased presence of genes in aminoglycoside,
beta lactam, phenicol and MLSB classes. All had a greater than expected co-presence on
contigs with MLSB genes (Chi square test, Holm correction adjusted p values < 0.0001). For
the farms that received aminoglycoside there was a decrease in the counts of the gene ErmX
and an increase in the presence of genes from the classes: nucleoside and trimethoprim. For the
farms that received polypeptide there was an increase in the counts of the genes ErmC, MCR-
1, mphE and spd and an increase in the presence of genes from the classes: aminoglycoside,

beta lactam, MLSB and tetracycline.



Supplementary Methods
Sample collection methods

For faecal samples, each sample consisted of approximately 10 g fresh sample of mixed
chicken faeces (2-3 chickens), collected from the bottom of the chicken cage/net using a
sterilized spoon. Feather samples were collected from the birds and swabbed using cotton
tipped swabs. Pooled carcass samples were collected in the abattoirs using a sponge swab
(SS100NB, Hygiena International, Watford, UK) on the surface of the carcass. In addition,
samples from four types of environmental sources (barn floor, soil outside the barn, wastewater
and processing line in the abattoir) were also collected. Barn floor samples were taken using a
sterilized spoon. Wastewater samples of no less than 20 mL were collected from the water pipe
or by using pipettes. Abattoir processing line samples were collected from multiple surfaces,
e.g., the cutting table and transfer belt of the cutting and deboning house. Soil samples consisted
of about 10 g soil, collected outdoors at depth of 1-3cm, 5m from the external barn walls, to
ensure sufficient separation from areas of human use. All biological samples were collected
using aseptic techniques, and then stored in secure containers at 4°C during transportation to

the laboratory and extracted within 24h.

Antibiotic susceptibility testing of E. coli isolates

For each sample, E. coli strains were cultured as indicator organisms. 1g sample of
faeces and outdoor soil was vortexed with 9 mL of sterile buffered peptone water tube (BPW,
Lugiao Inc., Beijing, China) for 1 min. Broiler carcass sponge samples were homogenised with
10 mL BPW for 1 min in a stomacher bag. Approximately 1 mL was added to 9 mL E. coli
(EC) broth (Lugiao Inc.) and incubated at 37°C for 16-20 h. A loopful of these solutions was
then streaked onto an eosin-methylene blue (EMB) agar and MacConkey (MAC) Agar (Lugiao
Inc.) and incubated at 37°C for 18-24 h. Typical E. coli colonies were counted and subsequently
characterized by Bruker MALDI Biotyper (Germany).

The antimicrobial susceptibility testing was carried out on the cultured E. coli isolates.
Antimicrobial susceptibility to a panel of agents was determined by broth microdilution and
interpreted according to the criteria based on the Clinical & Laboratory Standards Institute
(CLSI) interpretive criteria (CLSI 2009). The minimum inhibitory concentrations (MIC) of 28
antimicrobial compounds were measured for the E. coli isolates: ampicillin (AMP),
ampicillin/sulbactam (AMS), tetracycline (TET), chloramphenicol (CHL),
trimethoprim/sulfamethoxazole (SXT), cephazolin (CFZ), cefotaxime (CTX), ceftazidime
(CAZ), cefoxitin (CFX), gentamicin (GEN), imipenem (IMI), nalidixic acid (NAL),



sulfisoxazole (SUL), ciprofloxacin (CIP), amoxicillin/clavulanic acid (AMC),
cefotaxime/clavulanic acid (CTX-C), ceftazidime/clavulanic acid (CAZ-C), polymyxin E
(CT), polymyxin B (PB), minocycline (MIN), amikacin (AMI), aztreonam (AZM), cefepime
(FEP), meropenem (MEM), levofloxacin (LEV), doxycycline (DOX), kanamycin (KAN),
streptomycin (STR). The resistance/susceptibility profiles for each isolate were calculated
(summarised in Supplementary Table 1). E. coli ATCC™25922 was used as a control

bacterium for these experiments.

Statistical Analysis

Analysis of variance was done using PERMANOVA in R, with pairwise testing based on the
adonis function with Holm correction for multiple comparisons. Statistical comparison for the
mean number of potentially mobile ARGs was done in R, using the Kruskal Wallis test with
pairwise comparisons using a two-sided Dunns test with Holm correction. Additional statistical
comparisons were made using the SciPy package implementing: 1. For the ARGs analysis a
two-sided Wilcoxon Rank-sum test, with Holm correction - adjusted p value 0.05 was used to
compare the number of ARGs present per sample, the counts of individual ARGs and the
relative ARG abundance per antibiotic class; 2. For the taxonomic composition a two-sided
Wilcoxon Rank-sum test, with Holm correction - adjusted p value 0.05 was used to compare
the relative abundances of the phyla; and 3. a two-sided Friedman Statistical F-test (FF) with
Iman-Davenport correction for statistical comparison of multiple datasets over the seven
different classifiers used (p value 0.05). With 7 classifiers and 17 antibiotic models, the
Friedman test is distributed according to the F distribution with 7—1 = 6 and (7-1)x(17-1) =
96 degrees of freedom. The critical value of F(6,96) for p value = 0.05 is 2.19451621. The post-
hoc Nemenyi test was used to find if there is a single classifier or a group of classifiers that
performs statistically better in terms of their average rank after the FF test has rejected the null
hypothesis that the performance of the comparisons on the individual classifiers over the
different datasets is similar. For the correlation analysis with temperature and humidity, a linear
least-square regression analysis was used and a ARG or a microbial specie was found
statistically correlated to the temperature or humidity if the slope of the regression line

statistically differed from 0 (p value < 0.05 using a two-sided t-test).
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Supplementary Fig. 1: Summary of the collection of biological samples and environmental
sensor data: (A) Map of mainland China® showing the three provinces of China (Liaoning,
Shandong and Henan) where the 10 farms are located. Three farms were located in Liaoning
province, four farms were located in Shandong province and three farms in Henan province.
(B) Source and collection time points for the biological samples collected within each farm.
Biological samples consist of: i) farm samples (faeces and feather from chickens and barn floor
and outdoor soil samples) collected at mid-life (t1: week 3) and at the end of life (t2: week 6)
and ii) abattoir samples (chicken carcass, processing line and wastewater) collected on
slaughtering day (ts: 1-5 days after week 6). The number of samples collected from each source
type and collection timepoint is given; (C) Start dates of the collection campaign for each farm.
Note the use of an underscore to distinguish the two collection campaigns executed to cover
two breeding cycles at Shandong 1 (SD1_1 and SD1_2), which were sampled as part of a pilot

study to optimise sampling and data analysis protocols.
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Supplementary Fig. 5. Relative presence of ARG classes across sources. Combined violin and

categorical scatter plot for the 13 (out of 14) antibiotic classes that resulted in at least one case

of significant differentiation between each other when compared across any two sources.

Relative presence expressed as percentage (ARGs in sample / Total number of ARGs in the

respective antibiotic class x 100). Each circle represents an individual sample.
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Supplementary Fig. 6. Nemenyi post-hoc test. Comparison of the performance of the 7
predictive functions, using their average ordinal rank over the 17 antibiotics analysed based on
the performance metrics: (A) AUC, (B) accuracy, (C) sensitivity, (D) specificity, (E) precision
and (F) Cohen’s kappa score. The x-axis indicates the average ordinal rank of the machine
learning methods. The scale is from 1 (best rank) to 7 (worst rank). For each performance
metric, the ordinal rank of a predictive function is defined as: the ML method with the best
performance is given rank 1, the second-best performance rank 2 and the n-th performance
rank n, with n being the number of machine learning methods used. For each antibiotic and
performance metric, the methods are ranked between 1 (highest performance) and 7 (lowest
performance), since in this case there are 7 machine learning methods used. Next, for each
method, the ranks are averaged based on the 17 antibiotics studied. The critical distance (CD)
is defined based on the Nemenyi two-sided post-hoc test (p value = 0.01), all the methods that
fall in the same bold bar below the axis are considered statistically equivalent based on the CD

value.
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Supplementary Fig. 7. Machine learning performance from correlations between the gut

microbiome and resistome, and antibiotic resistance in E. coli. Performance of the ML-powered
predictive functions of E. coli resistance to specific antibiotics (ML technology: extra-tree
classifier — see Materials and Methods). Performance indicators (A) sensitivity, (B) specificity
and (C) Cohen’s Kappa score were computed as the average of 30 iterations of nested cross-
validation (see Materials and Methods). The violin plots show the distribution of the data, with
each datapoint representing one antibiotic model. Inside each violin plot, a box plot is indicate
with the box showing the interquartile range (IQR), the whiskers showing the rest of the
distribution as a proportion of 1.5 x IQR, and the white circle showing the median value.
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Supplementary Fig. 8. Bee swarm plot of SHAP-calculation for the ten highest ranking
features for each of the antibiotic ML models with an AUC > 0.9. ARGs and microbial species
are sorted by their mean absolute SHAP value in descending order with the most important
features at the top. Each dot corresponds to one isolate in the study. The colour indicates either
the ARG count or the microbial specie abundance normalized between 0 and 1. The bee swarm

plot shows how the different feature in each isolate affects the prediction of the ML model
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Supplementary Fig. 9. Daily average (A) Temperature and (b) Humidity measurements taken
nine farms over the breeding cycles. LN1 is not shown as technical issues resulted in not data

being collected.
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Supplementary Fig. 10. Categorical scatter plot of the statistically significant features selected
by the regression analysis for the humidity and temperature. Each point on the plot represents
a feature (ARG or microbial species) for which a regression analysis was performed. The R?
value of the linear least-square regression analysis indicates the correlation between
presence/absence of the ARGs and abundance of microbial species against temperature or
humidity. The ARGs features are grouped by antibiotic class. R? ranges from -1 (negative

correlation) to 1 (positive correlation).
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Supplementary Fig. 12. Antibiotic Usage analysis based on the ARGs’ antibiotic class.
Comparison of the ARGs’ antibiotic classes, based on the ARGs selected by the machine
learning framework (phase | and phase Il, as described in the Materials and Methods) for the
antibiotic models with an AUC > 0.9, across farms depending on antibiotic usage, i.e., the
antibiotic was used or not. The antibiotic was considered present and labelled ‘Yes’ if it was
used in the shed under study during the chicken production cycle, otherwise it was labelled
‘No’. The y-axis refers to the percentage of ARGs from each class that were found in any
individual sample relative to all the ARGs of that class found in the cohort. Only the statistically
significant (two-sided Wilcoxon Rank-sum test with Holm Correction and adjusted p value <

0.05) ARGs’ antibiotic classes are shown.
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Supplementary Fig. 13. Antibiotic usage analysis based on count of ARGs. Comparison of
the ARGs’ count, selected by the machine learning framework, across the different farms
depending on antibiotic usage, i.e. the antibiotic was used or not. Only the statistically
significant (two-sided Wilcoxon Rank-sum test with Holm Correction and adjusted p value <
0.05) ARGs are shown.



aminoglycoside fluoroguinolone

. Yes |
I No

Presence
w
o

° 1 ® |
£lm Wi

=
,J

3 E 3 2 2 3 L g

= 2 9, 5 2 = 2 @

. S @ o @ =3 = @

= o = 0 ] £ ] g

i 5] ] B S 1 > e

© w = | c o o =

£ 9 cu w @ c = a

| o = 2 a o ] a

o o - = o o 2 o

= 8 w ® = = o 3

5 e o o gz 2 1]

& 2 8 g 3 = g

b= ® 2 2 S

- - 0

L @

o (=%

Microbial Species Microbial Species
lincosamide polypeptide

1 100 ]
20 T Yes & . Yes

°
3 No & | g %
c > c 5
g 10 - g 50 :
[ a
a | & [ . ;
0 . 01@ g Al D g @ -0 et =t o O'g D@
w © = w © a £ © © n w = w @
o = s @ 2 3 = ~ = =1 ] ] B
g £ 2 & % 2 2 & = = B s 3z Z
S o ]
o g g 2 2 4 8 I g 3z £ & 3 ¢z
X A 0“? © = B 9, o , ® =} ﬂ; € o
£ £ > ® b= g o { E ] w' > g E
= S < = a 2 E = E =) ] =
=} = E =} o o = = = . b =
T ] o | 9 | o 3 = o = ) £ |
o T o © 0 ) S ° = 2 9 i) H o
2 =3 = = ® E] o 2 E o @ = © =
wn 0w a [ c = o = w o o a o )
) =] a @ T 5 W =} i =} a 0
< i @ 2 8 2 8 G ] g b b @
w 8 ] @ E o c kv) 5] 3 o g o ]
c = = 5 ui =3 c 4 = 3 =
£ E = 5 2
L o o © an
5 = ® - ]
5 - =
= Microbial Species

Microbial Species

tetracycline

b

Proteus_hauseri 1+
Proteus_mirabilis {F

Alistipes_sp_An66 &

Lysinibacillus_sp_BF 4 {4
Weissella_jogaejeotgali 4}
Weissella_thailandensis

Weissella_paramesenteroides -
o

Microbial Species

Supplementary Fig. 14. Antibiotic usage analysis based on relative abundance of microbial
species. Comparison of microbial species abundances, selected by the machine learning
framework, across the different farms depending on antibiotic usage, i.e. the antibiotic was
used or not. Only the statistically significant (two-sided Wilcoxon Rank-sum test with Holm

Correction and adjusted p value < 0.05) microbial species are shown.
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