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Figure S1. The omics overview of the Fudan University Shanghai Cancer Center (FUSCC) HER2-low cohort, 
related to Figure 1. 

(a) Multiomics level and number of features of included HER2-low patients. WES, whole exome sequencing; TMT: 
tandem mass tag. 

(b) Bar plots comparing the copy number alteration (CNA) of ERBB2 among HER2 status subgroups stratified by 
hormone receptor (HR) status based on Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. 
Amp: 2, gain: 1, neu: 0, loss: -1, del: -2. P values were computed using the two-sided Fisher’s exact test. 

(c-d) Boxplots comparing the RNA (c) and protein (d) levels of ERBB2 among HER2 status subgroups stratified by HR 
status. For RNA, the number (N) of HR-positive HER2-0, HR-positive HER2-low, HR-positive HER2-positive, HR-
negative HER2-0, HR-negative HER2-low, and HR-negative HER2-positive is 61, 355, 100,27, 66, and 81. For 
protein, the number (N) was 19, 113, 33, 15, 43 and 31. P values were computed using the two-sided Wilcoxon test. 
In boxplots, the centerline represents the median, the box limits represent the upper and lower quartiles, the 
whiskers represent the 1.5x interquartile range, and the points represent individual samples. 

Source data are provided as a Source Data file. 
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Figure S2. CNA-RNA-protein integrated analyses of frequently altered breast cancer genes in HER2-low breast 

cancers, related to Figure 1e.  

Samples with all CNA, RNA and protein data were included. RTKs: receptor tyrosine kinases. 

Source data are provided as a Source Data file. 
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Figure S3. Heatmap showing the molecular landscape of HER2-low breast cancers, related to Figure 1e. 

(a-c) Samples were stratified by hormone receptor (HR) status and HER2 IHC scores. RNA-seq (a), proteome (b) and 

metabolome (c) data are shown separately. 

Source data are provided as a Source Data file. 
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Figure S4. Difference in overall survival (OS) between HER2-low and HER2-0 patients, related to Figure 2. 

(a-c) Kaplan–Meier curves and risk tables showing OS of HER2-low and HER2-0 breast cancers compared by two-
sided log-rank test in the entire cohort (a), HR-positive subgroup (b) and HR-negative subgroup (c). 

Source data are provided as a Source Data file. 
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Figure S5. Difference between HER2-low and HER2-0 breast cancer with different HR statuses, related to Figure 
3. 

(a-b) Gene Ontology (GO) enrichment analysis of genes that were differentially expressed between HER2-low and 
HER2-0 breast cancers in the HR-positive (a) and HR-negative (b) subgroups. 

(c-d) Dot plot showing differentially expressed proteins between HER2-low and HER2-0 breast cancers in the HR-
positive (c) and HR-negative (d) subgroups.  

(e-f) GO enrichment analysis of proteins that were differentially expressed between HER2-low and HER2-0 breast 
cancers in the HR-positive (e) and HR-negative (f) subgroups. 

Source data are provided as a Source Data file. 
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Figure S6. The trend of pathway activity and result of metabolite enrichment, related to Figure 3. 

(a-b) Dot plots showing the trend of REACTOME pathway activity changing with HER2 IHC scores in HR-positive (a) 
and HR-negative (b) subgroups. Significantly increasing or decreasing lipid-related gene sets were plotted in red 
dots and annotated. P values were computed by Spearman's rank correlation analysis and were adjusted for 
multiple testing using false discovery rate method. 

(c)  Pathway-based analysis of lipid and polar metabolite changes along with HER2 IHC scores in different HR 
subgroups. 

Source data are provided as a Source Data file. 
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Figure S7. Sankey diagram showing the classification of HR-negative HER2-low non-basal-like tumors in the 
PAM50 subtype and other molecular subtypes, related to Figure 4. 

(a) Lehmann’s TNBC subtyping1. (b) Burstein’s TNBC subtyping2. (c) Quist’s TNBC subtyping3 

Source data are provided as a Source Data file. 
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Figure S8. Internal molecular heterogeneity of HR-negative HER2-low breast cancers, related to Figure 4. 

(a-b) Boxplot comparing the mRNA (a) and protein (b) levels of ERBB2 among HER2 subgroups. For RNA, the number 
(N) of HER2-0, HER2-low basal-like, HER2-low non-basal-like, and HER2-positive is 27, 46, 20 and 81. For protein, 
the number (N) was 15, 26, 14 and 31. P values were computed using the two-sided Wilcoxon test. 

(c-d) Boxplots comparing the enrichment score of REACTOME PI3K AKT ACTIVATION (c) or PI3K EVENTS IN ERBB2 
SIGNALING (d) among HER2 subgroups using gene set variation analysis (GSVA). The number (N) of HER2-0, 
HER2-low basal-like, HER2-low non-basal-like, and HER2-positive is 27, 46, 20 and 81. P values were computed 
using the two-sided Wilcoxon test. 

(e-f) Boxplot comparing the enrichment score of REACTOME PI3K AKT ACTIVATION (e) and PI3K EVENTS IN ERBB2 
SIGNALING (f) between PIK3CA wild-type (WT, N=5) and mutated samples (MT, N=8) among tumor subgroups. P 
values were computed using the two-sided Wilcoxon test. 

(g) Dot plot showing the log2(fold change) of the comparison of genes involved in PI3K and ERBB2 signaling between 
HR-negative HER2-low non-basal-like tumors and basal-like tumors at both the RNA and protein levels.  

(h) Expression of ERBB4, PTK6 and FGFR4 among HER2 subgroups in the TCGA-BRCA cohort4,5. The number (N) of 
HER2-low basal-like and HER2-low non-basal-like is 42 and 14. P values were computed using the two-sided 
Wilcoxon test. 

(i) Expression of FGFR4 among HER2 subgroups in Schettini et al.’s cohort6. The number (N) of HER2-low basal-like 
and HER2-low non-basal-like is 65 and 12. P values were computed using the two-sided Wilcoxon test. 

(j-l) Bar plots comparing the copy number alterations (CNAs) of FGFR4 (j), PTK6 (k) and ERBB4 (l) between non-basal-
like tumors and basal-like tumors. P values were computed using the two-sided Fisher’s exact test. 

(m-o) Dot plot of the Spearman correlation between the expression of ERBB4 and FGFR4 (m), ERBB4 and PTK6 (n), 
and PTK6 and FGFR4 (o). P values were computed by Spearman correlation analysis. 

(p-q) Gene Ontology (GO) enrichment analysis of genes (p) and proteins (q) that were differentially expressed between 
HER2-low non-basal-like and basal-like tumors. 

Basal: basal-like; non-basal: non-basal-like. 

In boxplots, the centerline represents the median, the box limits represent the upper and lower quartiles, the whiskers 
represent the 1.5x interquartile range, and the points represent individual samples. 

Source data are provided as a Source Data file. 

  



Alpha linolenic acid metabolism

Arachidonic acid metabolism

Biosynthesis of unsaturated fatty acids

Ether lipid metabolism
Fatty acid biosynthesis

Fatty acid degradation

Fatty acid elongation

Glycerolipid metabolism

Glycerophospholipid metabolism

Primary bile acid biosynthesis

Sphingolipid metabolism

Steroid biosynthesis

Steroid hormone biosynthesis

Synthesis and degradation of ketone bodies

KEGG lipid metabolism pathways

−1 1

Median centered RNA level

PIK3CA
WT

PIK3CA
Mut

HR-negative
HER2-low

a

Glycerolipid metabolism

Glycerophospholipid metabolism

Ether lipid metabolism

Arachidonic acid metabolism

Alpha linolenic acid metabolism

Sphingolipid metabolism

Fatty acid metabolism

Steriod biosynthesis

Primary bile acid biosynthesis

Steriod hormone biosynthesis

Biosynthesis of unsaturated fatty acids

PIK3CA
WT

PIK3CA
Mut

HR-negative
HER2-low

Median centered 
GSVA pathway score

−2 2

b

Alpha linolenic acid metabolism

Arachidonic acid metabolism

Biosynthesis of unsaturated fatty acids

Ether lipid metabolism
Fatty acid biosynthesis

Fatty acid degradation

Fatty acid elongation

Glycerolipid metabolism

Glycerophospholipid metabolism

Primary bile acid biosynthesis

Sphingolipid metabolism

Steroid biosynthesis

Steroid hormone biosynthesis

Synthesis and degradation of ketone bodies

KEGG lipid metabolism pathways

−0.6 0.6

Spearman’s
correlation coefficient

c HR-negative
HER2-low

Glycerolipid metabolism

Glycerophospholipid metabolism

Ether lipid metabolism

Arachidonic acid metabolism

Alpha linolenic acid metabolism

Sphingolipid metabolism

Fatty acid metabolism

Steriod biosynthesis

Primary bile acid biosynthesis

Steriod hormone biosynthesis

Biosynthesis of unsaturated fatty acids

Spearman’s
correlation coefficient

0 0.5

HR-negative
HER2-low

d

FGFR4 PTK6 ERBB4 FGFR4 PTK6 ERBB4

0.040

0.033

0.004

0.005

0.002

<0.001<0.001

0.001 <0.001

0.001

0.015

0.002 0.002

0.005 0.015

0.006

0.008

0.008 0.010<0.001

<0.001

<0.001 <0.001

0.005

P 

18



19 
 

Figure S9. The association between molecular characteristics and lipid metabolism in HR-negative HER2-low 

breast cancers, related to Figure 4.  

(a) Heatmap comparing the gene expression level of lipid metabolism between PIK3CA-mutated and PIK3CA-wild-type 

breast cancers. 

(b) Heatmap comparing the pathway score of lipid metabolism between PIK3CA-mutated and PIK3CA-wild-type breast 

cancers. Original p values derived from two-sided Wilcoxon test that is less than 0.05 were annotated. 

(c) Heatmap showing Spearman’s correlation coefficient between the expression levels of FGFR4/PTK6/ERBB4 and 

lipid metabolism-related genes. 

(d) Heatmap showing Spearman’s correlation coefficient between the expression levels of FGFR4/PTK6/ERBB4 and 

the pathway scores of lipid metabolism. Pathways that were significantly correlated with FGFR4/PTK6/ERBB4 

levels (FDR from two-sided Spearman’s correlation coefficient were less than 0.05) are marked with the exact FDR. 

Source data are provided as a Source Data file. 
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Figure S10. Molecular difference between HER2-low and HER2-0 tumors in the HR-positive subgroup and its 

relation with survival, related to Figure 5. 

(a-c) Boxplots comparing luminal-related genes6 (b), endocrine sensitivity score7 (c) and SETER/PR score8
 (d). In boxplots, 

the centerline represents the median, the box limits represent the upper and lower quartiles, the whiskers represent 
the 1.5x interquartile range, and the points represent individual samples. For luminal-related genes, the number (N) 
of HER2-0 and HER2-low is 61 and 355. For endocrine sensitivity score, the number (N) was 55 and 301. For 
SETER/PR score, the number (N) was 57 and 282. P values were computed using the two-sided Wilcoxon test. 

(d) Somatic mutations of cancer-related genes (CAGs) among HER2 status subgroups. Upper panel: top 10 frequently 
mutated CAGs, lower panel: other differentially mutated CAGs between HER2 status subgroups. Genes that were 
differentially mutated (P<0.05) between HER2-positive and HER2-0 tumors compared with HER2-low tumors are 
in bold font. P values were computed using the two-sided Fisher’s exact test. 

(e-g) Comparison of the copy number of Amp peak 17q12 (e), Del peak 17q11.12 (f) and Del peak 17q21.31 (g). P 
values were computed using the two-sided Fisher’s exact test. 

(h-i) Forest plots showing the multivariable Cox regression analysis for distant metastasis-free survival (DMFS) of the 
status HR and the status of focal peaks 17q12 (h) and 17q11.2 (i) in HR-positive HER2-low breast cancers. 
Number(N) of patients belonging to each category is indicated. Association of all variables with prognosis is 
analyzed using a two-sided Cox proportional hazard regression analysis. Error bars represent the 95% confidence 
interval of hazard ratio. 

(j) Spearman’s correlation between the copy numbers of 17q11.2, 17q21.31 and 17q12. P values were computed by 
Spearman's rank correlation analysis. 

Gain/amp: gain/amplification; Loss/del: loss/deletion. 

Source data are provided as a Source Data file. 
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Figure S11. Downstream effect of loss/deletion in 17q11.2 and 17q21.31 within the HR-positive HER2-negative 

subgroup, related to Figure 5. 

(a) Comparison of the expression level of genes located in 17q11.2 and 17q21.31 between loss/deletion patients and 
others. P values were computed using the two-sided Wilcoxon test and were adjusted for multiple testing using 
false discovery rate method. 

(b-c) Dot plot showing the log2(fold change) of the comparison of genes located in 17q11.2 (b) and 17q21.31 (c) between 
tumors with or without loss/deletion in corresponding peaks at both the RNA and protein levels. 

Source data are provided as a Source Data file. 
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Table S1. Baseline characteristics of included patients stratified by HER2 status. 
  Overall HER2-0 HER2-low HER2-positive 

P1 P2 P3   N=707 N=91 N=434 N=182 

Clinicopathological characteristics 

Age (years)         

 Mean (SD) 53.00 (10.40) 53.57 (11.95) 53.26 (10.49) 52.07 (9.30) 0.364 0.805 0.182 

Age (years, %)         

 <40 61 (8.6)  12 (13.2)  33 (7.6)  16 (8.8)  0.109 0.184 0.143 
 40-59 466 (65.9)  53 (58.2)  283 (65.2)  130 (71.4)     

 ≥60 180 (25.5)  26 (28.6)  118 (27.2)  36 (19.8)     

Menopause (%)         

 Male 1 (0.1) 0 (0.0) 1 (0.2) 0 (0.0) 0.810 0.416 0.670 
 No 289 (40.9) 33 (36.3) 184 (42.5) 72 (39.6)    

 Yes 416 (58.9) 58 (63.7) 248 (57.3) 110 (60.4)    

 NA 1 0 1 0    

Laterality (%)         

 Left 370 (52.3)  48 (52.7)  217 (50.0)  105 (57.7)  0.216 0.646 0.093 
 Right 337 (47.7)  43 (47.3)  217 (50.0)  77 (42.3)     

HER2-low status full (%)         

 HER2 0 91 (12.9)  91 (100.0)  0 (0.0)  0 (0.0)  / / / 
 HER2 1+ 227 (32.1)  0 (0.0)  227 (52.3)  0 (0.0)     

 HER2 2+ ISH- 207 (29.3)  0 (0.0)  207 (47.7)  0 (0.0)     

 HER2 positive 182 (25.7)  0 (0.0)  0 (0.0)  182 (100.0)   
 

 

Histology (%)       
 

 

 IDC 675 (95.5)  88 (96.7)  408 (94.0)  179 (98.4)  0.048 0.121 0.090 
 ILC 18 (2.5)  0 (0.0)  16 (3.7)  2 (1.1)     

 Other 14 (2.0)  3 (3.3)  10 (2.3)  1 (0.5)     

Grade (%)         

 <3 350 (52.2) 43 (48.9) 250 (61.7) 57 (32.0) 1.9e-10 0.031 3.4e-11 
 3 321 (47.8) 45 (51.1) 155 (38.3) 121 (68.0)    

 NA 36 3 29 4    

Ki67 percentage (%)         

 <20 142 (20.1)  20 (22.0)  112 (25.8)  10 (5.5)  2.4e-9 0.507 4.8e-10 
 ≥20 565 (79.9)  71 (78.0)  322 (74.2)  172 (94.5)     

HR status (%)         

 Positive 525 (74.3)  63 (69.2)  361 (83.2)  101 (55.5)  7.8e-12 0.003 2.8e-12 
 Negative 182 (25.7)  28 (30.8)  73 (16.8)  81 (44.5)     

sTILs         

 Mean (SD) 0.17 (0.15) 0.19 (0.16) 0.15 (0.14) 0.21 (0.15) 4.7e-5 0.052 9.6e-6 

iTILs         

 Mean (SD) 0.02 (0.02) 0.03 (0.03) 0.02 (0.02) 0.02 (0.03) 0.056 0.031 0.504 

pT (%)         

 pT1 310 (44.0) 37 (40.7) 201 (46.5) 72 (39.6) 0.627 0.563 0.246 
 pT2 383 (54.3) 53 (58.2) 224 (51.9) 106 (58.2)    

 pT3 12 (1.7) 1 (1.1) 7 (1.6) 4 (2.2)    

 NA 2 0 2 0    

pN (%)         

 pN0 353 (51.6) 52 (61.2) 212 (50.8) 89 (48.9) 0.081 0.343 0.090 
 pN1 188 (27.5) 21 (24.7) 120 (28.8) 47 (25.8)    

 pN2 86 (12.6) 7 (8.2) 57 (13.7) 22 (12.1)    

 pN3 57 (8.3) 5 (5.9) 28 (6.7) 24 (13.2)    

 NA 23 6 17 0    

Molecular features 

TMB (mutations/Mb)  
       

 Mean (SD) 1.45 (1.89) 1.47 (2.27) 1.33 (1.79) 1.71 (1.90) 0.114 0.553 0.032 

HRD score  
       

 Mean (SD) 24.36 (16.57) 28.54 (18.51) 22.81 (16.86) 26.41 (13.30) 0.015 0.014 0.057 

PAM50 (%)         

 LumA 202 (29.3) 25 (28.4) 159 (37.8) 18 (9.9) <2.2e-16 3.5e-4 <2.2e-16 
 LumB 200 (29.0) 24 (27.3) 141 (33.5) 35 (19.3)    

 HER2 140 (20.3) 4 (4.5) 36 (8.6) 100 (55.2)    

 Basal 105 (15.2) 31 (35.2) 58 (13.8) 16 (8.8)   
 

 Normal 43 (6.2) 4 (4.5) 27 (6.4) 12 (6.6)    

 NA 17 3 13 1    
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Not available (NA) values in categorical variables were shown but not included in the statistical analysis. Statistical tests 

of continuous variables were performed using the two-sided Kruskal‒Wallis rank sum test. Statistical tests of categorical 

variables were performed using the two-sided Fisher's exact test. P1: comparison among HER2-0, HER2-low and 

HER2-positive. P2: comparison between HER2-0 and HER2-low. P3: comparison between HER2-low and HER2-

positive. IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; ISH: in situ hybridization; HR: hormone 

receptor; sTILs: stromal tumor infiltrating lymphocytes; iTILs: intratumoral tumor infiltrating lymphocytes; TMB: tumor 

mutation burden; HRD: homologous recombination deficiency; LumA: luminal A; LumB: luminal B; HER2 (in PAM50 

section): HER2-enriched; Basal: basal-like; Normal: normal-like; SD: standard deviation. 
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Table S2. Molecular features and treatment information of HER2-low and HER2-0 breast cancers stratified by 

hormone receptor (HR) status 

  HR-positive  HR-negative 

  HER2-0 HER2-low P 
 

HER2-0 HER2-low P 

  N=63 N=361  
 

N=28 N=73  

Molecular features 

TMB (mutations/Mb) 
 

   
 

   

 
Mean (SD) 0.93 (0.92) 1.16 (1.73) 0.327  

 
2.86 (3.73) 2.33 (1.85) 0.398  

HRD score 
 

   
 

   

 
Mean (SD) 20.47 (15.39) 19.31 (14.33) 0.623  

 
45.05 (12.48) 40.98 (17.47) 0.329  

PAM50 (%)     
 

   

 LumA 25 (41.0) 157 (44.2) 0.534  0 (0.0) 2 (3.0) 0.015  

 LumB 23 (37.7) 140 (39.4)   1 (3.7) 1 (1.5)  

 HER2 4 (6.6) 22 (6.2)  
 

0 (0.0) 14 (21.2)  

 Basal 5 (8.2) 12 (3.4)  
 

26 (96.3) 46 (69.7)  

 Normal 4 (6.6) 24 (6.8)   0 (0.0) 3 (4.5)  

 NA 2 6   1 7  

Treatment information 

Adjuvant chemotherapy (%)    
 

   

 No 9 (14.8) 76 (22.6) 0.234  
 

1 (3.6) 2 (2.9) 1  

 Yes 52 (85.2) 261 (77.4) 
 

27 (96.4) 66 (97.1)  

 NA 2 24  
 

0 5  

Taxane usage (%)         

 No 15 (30.0) 108 (34.0) 0.632  3 (15.8) 16 (23.2) 0.753 

 Yes 35 (70.0) 210 (66.0)   16 (84.2) 53 (76.8)  

 NA 13 43   9 4  

Anthracycline usage (%)         

 No 24 (48.0) 144 (45.3) 0.761  7 (36.8) 15 (21.7) 0.232 

 Yes 26 (52.0) 174 (54.7)   12 (63.2) 54 (78.3)  

 NA 13 43   9 4  

Platinum usage (%)         

 No 50 (100.0) 318 (100.0) /  16 (84.2) 63 (91.3) 0.399 

 Yes 0 (0.0) 0 (0.0)   3 (15.8) 6 (8.7)  

 NA 13 43   9 4  

Capecitabine usage (%)         

 No 49 (98.0) 316 (99.4) 0.356  17 (89.5) 63 (91.3) 1 

 Yes 1 (2.0) 2 (0.6)   2 (10.5) 6 (8.7)  

 NA 13 43   9 4  

Adjuvant radiotherapy (%)     
 

   

 No 42 (67.7) 208 (65.4) 0.771  
 

22 (78.6) 56 (77.8) 1  

 Yes 20 (32.3) 110 (34.6) 
 

6 (21.4) 16 (22.2)  

 NA 1 43  
 

0 1  

Adjuvant endocrine therapy (%)    
 

   

 No 2 (3.4) 5 (1.6) 0.311  
 

28 (100.0) 72 (98.6) 1  

 Yes 57 (96.6) 305 (98.4) 
 

0 (0.0) 1 (1.4)  

 NA 4 51  
 

0 0  

Not available (NA) values in categorical variables were shown but not included in the statistical analysis. Statistical tests 

of continuous variables were performed using the Kruskal‒Wallis rank sum test. Statistical tests of categorical variables 

were performed using Fisher's exact test or the chi-square test, where appropriate.HR: hormone receptor; TMB: tumor 

mutation burden; HRD: homologous recombination deficiency; LumA: luminal A; LumB: luminal B; HER2 (in PAM50 

section): HER2-enriched; basal: basal-like; normal: normal-like; SD: standard deviation. 
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Supplementary Methods 

Sample processing for genomic DNA and total RNA extraction 

Fresh frozen tumor tissues were macrodissected to prevent the influence of stromal tissues (<30% stromal tissue). The 
percentage of tumor cells was confirmed to be 50% or more in all breast cancer specimens. We purified genomic DNA 
from fresh frozen samples and peripheral blood cells using TGuide M24 (Tiangen, Beijing, China). The purity and 
quantity of genomic DNA were estimated by measuring the absorbance at 260 nm (A260) and 280 nm (A280) using a 
NanoDrop 2000 spectrophotometer (Thermo Scientific, Wilmington, DE, USA). The extracted DNA was considered pure 
and suitable for future experiments when the A260/A280 ratio was within the range of 1.6-1.9. We purified the total RNA 
from tissues that had been previously stored in RNAlater solution using the miRNeasy Mini Kit (Qiagen #217004) 
according to the manufacturer’s instructions. RNA integrity was assessed by an Agilent 4200 Bioanalyzer using RNA 
ScreenTape (Agilent Inc.), and concentrations were determined by a NanoDrop ND-8000 spectrophotometer (Thermo 
Fisher Scientific Inc.). 

 

RNA sequencing 

Sample preparation and data generation 

Libraries were constructed by ribosomal RNA depletion methods. Ribosomal RNA was depleted using a Ribo-off rRNA 
Depletion Kit (H/M/R) (Vazyme #N406, Vazyme Biotech Co., Ltd., Nanjing, China), and RNA libraries were constructed 
using a VAHTS Universal V8 RNA-seq Library Prep Kit for Illumina (Vazyme #NR605, Vazyme Biotech Co., Ltd., Nanjing, 
China). Specifically, the fragmented RNAs were reverse-transcribed into cDNA, and then 3-terminal poly(A) modification 
was completed. Subsequently, adapters were added to the cDNA. PCR was then used to amplify the libraries. During 
quality control (QC) of the libraries, Qubit 4.0 (Thermo Fisher Scientific Inc.) and Agilent 2200 Bioanalyzer (Agilent Inc.) 
were used to detect the concentration and fragment size distribution of the libraries, respectively. The libraries were 
sequenced on Illumina NovaSeq platforms with paired-end reads of 150 bp. 

The raw Illumina sequence data were demultiplexed and converted to FASTQ files, and adapter and low-quality 
sequences were quantified. Sample reads were then mapped to the hg38 human genome reference using HISAT2. We 
obtained the fragments per kilobase of transcript per million mapped reads (FPKM) using StringTie and Ballgown. To 
choose genes with accurate expression values, we removed genes whose FPKM was 0 in more than 30% of the 
samples before subsequent analyses. 

 

Whole-exome sequencing 

Sample preparation and data generation 

Qualified genomic DNA from tissues and matched white blood cell samples was prepared for whole-exome sequencing 
(WES). A total of 300 ng of each DNA sample based on Qubit quantification was fragmented on a Bioruptor Plus 
sonication system (Diagenode, Liège, Belgium). Sheared DNA was used to perform end repair, A-tailing and adapter 
ligation with an Agilent SureSelectXT Library Prep Kit (Agilent Technologies, Santa Clara, CA, USA) according to the 
manufacturer’s protocol. Then, 750 ng of prepared DNA in a volume of 3.4 ml was captured using Agilent SureSelect 
Human All Exon V6 (Agilent Technologies) probes, followed by the amplification of the captured library with indexing 
primers. Quality control was performed using the Agilent 2100 Bioanalyzer (Agilent Technologies) with a DNA chip. After 
quantified with a Qubit® 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA), the libraries were sequenced on an Illumina 
HiSeq platform (Illumina Inc., San Diego, CA, USA). For each library preparation from tissue, 12 samples were loaded 
in a single lane. For each library preparation from blood, 20 samples were loaded in a single lane. 

Genomic data analysis 

The exome-sequenced reads were aligned using BWA-mem, and the resulting BAM files were preprocessed with 
duplicate marking and base quality score recalibration using version 202010.02 of Sentieon Genomics tools 9. 
Sequencing quality was assessed using NGSCheckMate 10, FastQ Screen 11, FastQC 12 and Qualimap 13. 

Somatic variant calling 

VarScan2 v2.4.2 14 (--min-coverage 3 --min-coverage-normal 3 --min-coverage-tumor 3 --min-var-freq 0.08 --p-value 
0.10 --somatic-p-value 0.05 –strand-filter 1), TNseq 9, and TNscope 15 (sentieon driver -t -r --algo TNscope --dbsnp --
pon) were used to identify the somatic mutations. Specifically, for the raw VarScan2 results, processSomatic and 
somaticFilter (--min-coverage 10 --min-reads2 2 2 --min-strands2 1 --min-avg-qual 20 --p-value 0.1) were used to extract 
high-confidence somatic mutations and to remove clusters of false positives and SNV calls near indels. TNseq detected 
and filtered out variants by TNhaplotyper2 (--germline_vcf --pon --algo OrientationBias and --algo ContaminationModel) 
and TNfilter (--contamination --tumor_segments --orientation_priors). Both TNseq and TNscope adopted a panel of 
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normal (PoN) samples to screen out expected germline variation and artifacts. This PoN panel was based on 699 normal 
blood samples, from which two VCF files were created for the sites identified as mutations by TNseq and TNscope. In 
addition, the location of the population germline resource containing the population allele frequencies obtained from 
gnomAD 16 was used to filter the raw TNseq results. 

To obtain the final set of variant calls, we used a two-step approach, first removing any spurious variant calls arising 
as a consequence of sequencing artifacts and then making use of consensus mutations in at least two out of three 
callers to identify somatic mutations. Second, additional filtering based on bam-readcount 
(https://github.com/genome/bam-readcount) was performed to reduce false-positive calls: 1) variant allele frequency 
(VAF) ≥ 5%; 2) sequencing depth in the region ≥ 8; and 3) sequence reads in support of the variant call ≥ 4. A catalog 
of cancer driver genes was assembled with: (1) the curated cancer gene list by OncoKB (October 2020) 17; (2) previously 
published and functionally validated oncogenic driver genes by Bailey, et al 18; (3) the compendium of mutational cancer 
driver genes from the Integrative OncoGenomics 19; (4) genes recorded as oncogene or tumor suppressor gene (TSG) 
by the Cancer Gene Census 20. 

 

Copy number alterations 

Sample preparation and data generation 

The OncoScan CNV Assay Kit (Affymetrix, Santa Clara, CA, USA) was used to perform genome-wide copy number 
analysis according to the manufacturer’s recommendations. Briefly, a total of 80 ng of DNA from each tumor sample 
was processed. Molecular inversion probes (MIPs) were mixed with the sample DNA and annealed at 58°C overnight. 
The annealed DNA was divided into two equal parts and incubated with AT or GC gap-fill master mixes for ligation. Then, 
exonuclease treatment was performed to remove the unincorporated, noncircularized MIPs and the remaining genomic 
template. The circularized MIPs were linearized with a cleavage enzyme, and the two PCR amplifications were 
performed successively. The amplified products were digested with HaeIII and Exo enzymes, and the small fragments 
containing the specific single-nucleotide polymorphism (SNP) genotype were hybridized onto arrays. The arrays were 
washed and stained using a GeneChip Fluidics Station 450 (Affymetrix, Santa Clara, CA, USA) and scanned using a 
GeneChip Scanner 3000 7G (Affymetrix, Santa Clara, CA, USA). The fluorescence of clusters was measured to 
generate a DAT file. Cluster intensity values were automatically calculated using a built-in algorithm from DAT files using 
GeneChip Command Console software (Affymetrix, Santa Clara, CA, USA), and a CEL file was generated. 

Analysis of SNP array data 

An analysis of Affymetrix OncoScan CNV SNP probe assays was performed with Chromosome Analysis Suite (ChAS) 
v4.1 software (Thermo Fisher Scientific). A copy number reference model file was built by using a reference cohort of 
DNA from 23 randomly selected white blood cell samples from the mentioned patients and positive control samples from 
the OncoScan CNV Assay Kit. Probe-level output from the ChAS was analyzed using ASCAT (v2.4.3) 21 to obtain 
segmented copy number calls, estimated tumor ploidy and estimated tumor purity results. The ASCAT segments were 
subsequently used to produce log2 ratios by dividing by the total copy number (nAraw + nBraw, with zero values set to 
0.05). These segments were used as the input of GISTIC2.0 (v2.0.22)22 to study the recurrence of gene-level CNVs in 
our sample set. GISTIC2.0 was run with the following parameters changed from the default settings (-ta 0.2 -td 0.2 -
genegistic 1 -smallmem 1 -broad 1 -conf 0.95 -rx 0 –brlen 0.7 -cap 3.5 –armpeel 1 -js 100). Moreover, a group of adjacent 
normal tissues from 23 patients was used to filter recurrent germline/potential false-positive calls. Based on their 
segment output, the probes that suggested gain or loss in at least five patients were used with the help of Integrative 
Genomics Viewer to constitute a CNV file for removing recurrent germline/potential false-positive calls in GISTIC2.0. 

 

MS sample processing and data collection for proteomics 

Proteome analysis 

Proteins were extracted and denatured from 1-2 mg of fresh frozen tissues in 30 μL lysis buffer (6 M urea, 2 M thiourea, 
100 mM triethylammonium bicarbonate), followed by proteolytic digestion using Lys-C (Hualishi, Beijing, China) and 
trypsin (Hualishi, Beijing, China) assisted by pressure-cycling technology (PCT), as described previously 23,24. TMTpro 
16plex label reagents (Thermo Fisher Scientific, San Jose, USA) were used to label the digested peptides. A common 
pooled peptide sample was used as the reference control sample for each TMT batch. The TMT-labeled samples were 
cleaned with a C18 column (Waters Sep-Pak® Vac 1 cc C18 Cartridge) and fractionated using a Dionex UltiMate3000 
HPLC system (Thermo Fisher Scientific, San Jose, USA) as described previously (Gao et al., 2020). Peptides were 
separated into 60 fractions, which were then consolidated into 30 fractions. The redissolved peptides were analyzed by 
liquid chromatography–tandem mass spectrometry (LC–MS/MS) with a nanoflow DIONEX UltiMate 3000 RSLCnano 
System (Thermo Scientific™, San Jose, USA) coupled with an Orbitrap Exploris 480 mass spectrometer (Thermo 
Scientific™, San Jose, USA), which was equipped with a FAIMS Pro™ (Thermo Scientific™, San Jose, USA) in data-
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dependent acquisition (DDA) mode. The peptide samples were analyzed using an LC gradient of 60 min. The other LC–
MS parameters followed a previous publication (Gao et al., 2020). 

Database search 

The mass spectrometric (MS) data were analyzed by Proteome Discoverer (Version 2.4.1.15, Thermo Fisher) using the 
human protein database downloaded from UniProt (version 15/07/2020, 20368). Two trypsin missed cleavages were 
allowed. The minimal peptide length was set to 6 residues. Normalization was performed against the total peptide 
amount. Carbamidomethylation (+57.021 Da) of cysteine was set as static modification, while oxidation (+15.995 Da) of 
methionine and acetylation (+42.011 Da) of peptides’ N-termini were set as variable modifications. Lysine residues and 
peptide N-termini were tagged with TMTpro (+304.207 Da). Precursor ion mass tolerance was set to 10 ppm, and 
fragment mass tolerance was to 0.02 Da. Both unique peptides and razor peptides were used for mapping the best 
associated master proteins. The master protein abundances were calculated by summation of their associated peptide 
groups. The false discovery rate (FDR) of peptide was set to 1% (strict) and 5% (relaxed). The other parameters followed 
the default setup. More details have been described previously 25. 

Normalization and quality control of proteomic data 

In the primary matrix of proteome data, columns were tested samples and rows were detected proteins. Samples with 
outlier median intensity ratio [defined as >mean(intensity ratio)+2*sd(intensity ratio) or <mean(intensity ratio)-
2*sd(intensity ratio)] were excluded by tumor samples and para-tumor samples respectively. Then, the matrix was first 
log2-transformed and then normalized by column-median. Batch effects were removed by the removeBatchEffect 
function in the R package limma 26. Batch effects before and after batch effect removal were evaluated by principal 
component analysis (PCA). Proteins that were absent in over 30% of all samples were not included in further quality 
control analysis. Then samples were filtered by PCA, where sample out of the 90% confidence eclipses in PCA analysis 
(plotted with PC1 and PC2 using all included proteins) by tumor samples and para-tumor samples respectively. Finally, 
duplicated samples and genes were merge by using mean value. 

 

 

MS sample processing and data collection for metabolomics 

Polar metabolomics detection 

1) Sample quenching and extraction 

Twenty-five milligrams of sample was weighed into an EP tube, and 500 μL of extraction solution 
(methanol:acetonitrile:water = 2:2:1) was added. Then, the samples were homogenized at 35 Hz for 4 min and sonicated 
for 5 min in an ice-water bath. The homogenization and sonication cycle was repeated 3 times. The samples were 
incubated for 1 h at -40°C and centrifuged at 12000 rpm for 15 min at 4°C 27. The QC sample was prepared by mixing 
equal aliquots of the supernatants from all of the samples. 

2) Chromatography separation 

LC–MS/MS analyses were performed using an ultrahigh-performance liquid chromatography (UHPLC) system 
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH Amide column (2.1 mm × 100 mm, 1.7 μm) coupled to a Q 
Exactive High Field (QE-HFX) mass spectrometer (Orbitrap MS, Thermo). The mobile phase consisted of 25 mmol/L 
ammonium acetate and 25 mmol/L ammonia hydroxide in water (pH = 9.75) (A) and acetonitrile (B). The autosampler 
temperature was 4°C, and the injection volume was 2 μL. 

3) Mass spectrometry 

A QE HFX mass spectrometer was used for its ability to acquire MS and MS/MS spectra in information-dependent 
acquisition (IDA) mode in the control of the acquisition software (Xcalibur, Thermo). In this mode, the acquisition software 
continuously evaluates the full-scan MS spectrum. The electrospray ionization (ESI) source conditions were set as 
follows: sheath gas flow rate of 30 Arb, Aux gas flow rate of 25 Arb, capillary temperature of 350°C, full MS resolution of 
60000, MS/MS resolution of 7500, collision energy of 10/30/60 in normalized collision energy (NCE) mode, and spray 
voltage of 3.6 kV (positive) or -3.2 kV (negative). 

4) Data processing, metabolite identification and data analysis 

MS raw data files were converted to mzXML format by ProteoWizard software (version 3.0.19282) and processed by 
the R package XCMS (v3.2) for metabolomics. The data pretreatments include peak identification, peak alignment, peak 
extraction, retention time correction and peak integration. To make the metabolomics data reproducible, peaks with 
RSDs larger than 30% in the QC samples were filtered out. The remaining peaks were annotated by comparison to 
retention time and mass to charge ratio (m/z) indices in the library by using the R package CAMERA 28. After that, we 
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obtained a data matrix consisting of the retention time, m/z and peak intensities. The data matrix was further processed 
by removing the peaks with missing values (intensity = 0) in more than 50% of the samples. For each metabolite, the 
missing values were replaced with 50% of the lowest observed value of all detected samples 29,30. The area of each 
peak was then normalized by isotopically labeled ISs for polar metabolomics 31. To remove the unwanted intra- and 
interbatch analytical variations, each metabolite peak in all subject samples was normalized using the locally estimated 
scatterplot smoothing (LOESS) method based on QC samples 31. In brief, a LOESS regression model was built based 
on the intensity drift of each metabolite in the QC samples and used to predict and correct the intensities of the same 
metabolite in subject samples 31. In all, 11708 MS features were included for further annotation. 

Then the MS/MS spectra were searched in an in-house database for polar metabolite annotation based on accurate 
mass (m/z, ± 5 ppm), retention time and spectral patterns. The MS/MS spectra matching score was calculated using 
dot-product algorithm, which take the fragments and intensities into consideration 32. Metabolites with MS/MS matching 
score higher than 0.3 were included in our study. In all, 669 MS/MS features were annotated and included in our study. 

In summary, only the peaks with MS/MS name and with MS/MS matching score higher than 0.3 were included for further 
analysis. 

Lipidomic detection 

1) Sample quenching and extraction 

Twenty milligrams of sample was weighed into an EP tube. Two hundred microliters of water and 480 μL of extract 
solution (MTBE: MeOH= 5: 1) were added sequentially. After 30 s of vortexing, the samples were homogenized at 35 
Hz for 4 min and sonicated for 5 min in an ice-water bath. The homogenization and sonication cycle was repeated 3 
times. Then, the samples were incubated at -40°C for 1 h and centrifuged at 3000 rpm (RCF=900 (×g), R= 8.6 cm) for 
15 min at 4°C. Three hundred microliters of supernatant was transferred to a fresh tube, and the QC sample was 
prepared by mixing equal aliquots of the supernatants from all of the samples and drying the mixture in a vacuum 
concentrator at 37°C. Then, the dried samples were reconstituted in 150 μL of 50% methanol in dichloromethane by 
sonication for 10 min in an ice-water bath. The constitution was then centrifuged at 13000 rpm (RCF=16200 (×g), R= 
8.6 cm) for 15 min at 4°C, and 120 μL of supernatant was transferred to a fresh glass vial for LC/MS analysis. 

2) Chromatography separation 

For lipidomics data collection, LC–MS/MS analyses were performed using a UHPLC system (1290, Agilent Technologies) 
equipped with a Kinetex C18 column (2.1 * 100 mm, 1.7 μm, Phenomen). Mobile phase A consisted of 40% water, 60% 
acetonitrile, and 10 mmol/L ammonium formate. Mobile phase B consisted of 10% acetonitrile and 90% isopropanol, to 
which 50 mL of 10 mmol/L ammonium formate was added for every 1000 mL of mixed solvent. The analysis was carried 
out with an elution gradient as follows: 0~12.0 min, 40%~100% B; 12.0~13.5 min, 100% B; 13.5~13.7 min, 100%~40% 
B; and 13.7~18.0 min, 40% B. The column temperature was 55°C. The autosampler temperature was 4°C, and the 
injection volume was 3 μL (pos) or 3 μL (neg). 

3) Mass spectrometry 

A QE mass spectrometer was used for its ability to acquire MS and MS/MS spectra in DDA mode in the control of the 
acquisition software (Xcalibur 4.0.27, Thermo). In this mode, the acquisition software continuously evaluates the full-
scan MS spectrum. The ESI source conditions were set as follows: sheath gas flow rate of 30 Arb, Aux gas flow rate of 
10 Arb, capillary temperature of 320°C (positive) and 300°C (negative), full MS resolution of 70000, MS/MS resolution 
of 17500, collision energy of 15/30/45 in NCE mode, and spray voltage of 5 kV (positive) or -4.5 kV (negative). 

4) Data processing, metabolite identification and data analysis 

MS raw data files were converted to mzXML format by ProteoWizard software (version 3.0.19282) and processed by 
LipidAnalyzer for lipidomics data. The data pretreatments include peak identification, peak alignment, peak extraction, 
retention time correction and peak integration. The filtering of reliable lipid peaks and the normalization of data were 
similar to that in polar metabolomics. Then, the LipidBlast database was applied for lipid annotation. The MS/MS spectra 
matching score was also calculated as described in the polar metabolomic analysis section. Generally, 1312 MS/MS 
peaks were identified for lipidomics.  

In summary, only the peaks with MS/MS name and with MS/MS matching score higher than 0.3 were included for further 
analysis. 
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