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eAppendix 1. Methods 

Populations for Derivation of Polygenic Risk Score for CAD 

Icelandic study: CAD case status (N=43,969) was assigned based on ICD code discharge diagnoses (ICD10: 
I20.0, I21.x, I22.X, I24.x, I25.x. or ICD9: 410.*, 411.*, 412.*, and 414.*) from Landspitali – The National 
University Hospital of Iceland (LUH), or based on the same ICD codes for CAD listed as the cause, or 
contributing cause of death, in the Icelandic death registry. The controls included 307,272 individuals 
recruited through different genetic studies at deCODE genetics and their relatives. The study was approved 
by The Icelandic Data Protection Authority and the National Bioethics Committee of Iceland (approvals no. 
VSNb201508003/03.01, VSNb2015010033/03.12, and VSNb2014100020/03.12 with amendments). All 
participating subjects donating biological samples signed informed consents. The personal identities of the 
participants and biological samples were encrypted with a third-party system approved and monitored by 
the Icelandic Data Protection Authority. 

UK Biobank: CAD case status (N=55,282) was assigned based on ICD codes indicative of CAD (ICD10: I20.0, 
I21.x, I22.X, I24.x, I25.x. or ICD9: 410.*, 411.*, 412.*, and 414.*), obtained from primary or secondary 
diagnoses codes a participant has had recorded following every admission to hospital. The UK Biobank 
resource was accessed under Application Number ‘24711’.  

The UK Biobank study is a large prospective cohort study of approximately 500,000 individuals (age range 
40-69) from across the UK (recruited in England, Wales, and Scotland). Extensive phenotype and genotype 
data have been collected for participants, including ICD diagnosis codes. The UK Biobank data were obtained 
under application number 24898. Phenotype and genotype data were collected following an informed 
consent obtained from all participants. The North West Research Ethics Committee reviewed and approved 
UK Biobank’s scientific protocol and operational procedures (REC Reference Number: 06/MRE08/65). 

Danish study: This study is a part of the ‘Genetics of cardiovascular disease’ – a genome-wide association 
study on repository samples from Copenhagen Hospital Biobank (CHB) approved by The National Ethical 
Committee (1708829). CHB is part of the Danish National Biobank and has been approved by the Danish 
Data Protection Agency (general approval number 2012-58-0004, and local number: RH-2007-30-4129/ I-
suite 00678). Patients included in CHB were informed about their right to refuse the use of their samples for 
research. CHB includes >330,000 adult patients (age above 18 years). The current study involves a targeted 
selection of patients with cardiovascular disease identified through health registries (the Danish National 
Patient Registry (NPR)). CAD case status (N=38,581) was assigned based on ICD codes indicative of CAD 
(ICD10: I20.0, I21.x, I22.X, I24.x, I25.x. or ICD9: 410.*, 411.*, 412.*, and 414.*). The control group included 
blood donors from “The Danish Blood Donor Study" (CVK-1700407) (N > 91,000)1. 

CARDIoGRAMplusC4D: Data on coronary artery disease (CAD) involving 60,801 cases and 123,504 controls 
have been contributed by CARDIoGRAMplusC4D investigators and have been downloaded from 
www.CARDIOGRAMPLUSC4D.ORG. The data includes a meta-analysis of GWAS studies of mainly European, 
South Asian, and East Asian, descent, reported in Nat Genet 2015 47:1121-1130. 

FinnGen study: The clinical endpoint used in the analysis was Ischaemic heart disease, wide definition 
(I9_IHD; based on the following diagnostic codes ICD10: I20*, I21.*, I22.*, I23.*, I24.*, I25.* and ICD9 and 

http://www.cardiogramplusc4d.org/
http://www.cardiogramplusc4d.org/
http://www.cardiogramplusc4d.org/
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ICD8: 410.*, 411.*, 412.*, 413.*, 414.*) (https://www.finngen.fi/en/researchers/clinical-endpoints). The 
study included 25,366 cases and 176,899 controls. FinnGen is a large public-private partnership aiming to 
collect and analyze genome and health data from 500,000 Finnish biobank participants. The summary 
statistics for available phenotypes were imported in May 2021 from a source available to consortium 
partners (version 5; http://r5.finngen.fi). 

The FinnGen study is an ongoing cohort study that integrates the genetic data generated from biobank 
samples and health‐related data from social and health care registers. Detailed information such as 
participating biobanks/cohorts, genotyping, and data analysis is available on their website 
(https://www.finngen.fi/en/). 

Populations for Derivation of Polygenic Risk Score for Stroke 

We obtained genetic association results for ischemic stroke from the following datasets: deCODE (Icelandic 
study), UKBiobank, Finngen (freeze 5) and the Megastroke consortium (European participants excluding 
deCODE) and conducted a genome wide association meta-analysis including 60,092 cases and 1,096,793 
controls to generate a PRS weights for the secondary event population (FOURIER). For the score used for 
the primary event population, the Icelandic study was excluded, resulting in a meta-analysis including 
52,827 cases and 765,607 controls. 

Icelandic study: Icelandic ischemic stroke cases (7,265), were identified from a registry of individuals 
diagnosed with ischemic stroke or TIA at LUH in Reykjavik. Control comprised 331,186 individuals recruited 
through different genetic projects at deCODE. Individuals with confirmed stroke (identified by cross-
matching with hospital lists) were excluded as controls. The study was approved by the Data Protection 
Commission of Iceland and the National Bioethics Committee of Iceland. All participants gave informed 
consent. 

UK Biobank: In the UKBiobank study, the ischemic stroke cases (7,211) were selected using the ICD diagnosis 
I63 (ICD-10) primarily from hospital data codes, surgical records, and General Practice clinical records. The 
number of controls used were 423,727. 

UK Biobank data were obtained under application number 24898. 

FinnGen study: The clinical endpoint used in the analysis was Ischemic stroke excluding hemorrhages 
(I9_STR_EXH, n=10,551) defined by the ICD-9 (4330, 4331, 4339, 4340, 4341, 4349, 436) and ICD-10 codes 
(I63, I64) (see: https://www.finngen.fi/en/researchers/clinical-endpoints). 

Megastroke consortium: Ischemic stroke cases of European ancestry from the Megastroke consortium2 
were included in the analysis (35,065 cases). Cases from deCODE were excluded from the Megastroke data 
set. The phenotype definition of ischemic stroke was based on clinical and imaging criteria. 

Icelandic Proteomics Study 

The study includes 39,155 Icelanders with measurements of protein levels in plasma. The plasma was 
sampled at deCODE from the years 2000 through 2006 (N = 23,474) and from the years 2010 through 2019 
(N = 15,681). The older samples were mostly sampled through the Icelandic cancer project (ICP)3 (N = 20,610) 
and most of the newer samples through the deCODE health study (dHS)4 (N = 8,818) from the years 2016 
through 2019. The rest of the samples came from various smaller projects (eFigure 1).  

https://www.finngen.fi/en/researchers/clinical-endpoints
https://www.finngen.fi/en/
https://www.finngen.fi/en/researchers/clinical-endpoints
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All participants who donated samples gave informed consent, and the National Bioethics Committee of 
Iceland approved the study, which was conducted in agreement with conditions issued by the Data 
Protection Authority of Iceland (VSN_14-015, VSN_15-130, and VSN_15-214). Personal identities of the 
participants‘ data and biological samples were encrypted with a third-party system (Identity Protection 
System), approved and monitored by the Data Protection Authority. 

Protein measurements: The SomaScan v4 platform was used to measure the levels of around 5,000 proteins 
in each of the Icelandic participants as has been previously described5. At plasma collection, the participants 
were non-fasting. All plasma samples were analyzed in the time period from January to June 2019, with one 
thawing cycle for the majority of the samples during preparation. Changes in protein levels by time of plasma 
collection was estimated with linear regression for each aptamer individually. Only 106 out of the 5,284 
SOMAscan aptamers showed a significant trend by time of sampling and the effects were modest; the 
maximum absolute trend was observed for GPD with a decrease of 0.0045 units per year. 

In the data analysis, we excluded aptamers that did not target human proteins and those that were reported 
as deprecated or unreliable by SomaLogic, resulting in a total of 4,963 protein aptamers targeting 4,718 
different proteins or combinations of proteins, (i.e., some aptamers targeted multiple proteins and some 
proteins were targeted by multiple aptamers). A total of 4,728 unique proteins, based on UniProt IDs, were 
targeted. All protein levels were log-transformed. 

Baseline Features: All features were collected as close to the time of plasma collection as possible. Age was 
included as a decimal number calculated from the date of birth and time of plasma collection. BMI values 
were available within one year of plasma collection for 31,135 participants. For 6,094 participants where all 
BMI measurements were more than one year from the time of plasma collection, we used the median of all 
available BMI measurements. For 1,926 participants there were no available BMI measurements. BMI for 
these participants was imputed with the mean of the subset used for that particular analysis. Information 
on the diagnosis of type 2 diabetes was based on the first date of any of the following: Oral diabetes 
medication prescription from The Icelandic Prescription Medicine Register up to 2014; diagnostic codes ICD9 
250 or ICD10 E11 from LUH, Register of Primary Health Care Contacts, or Register of Contacts with Medical 
Specialists in Private Practice; HbA1C levels at least 6.5% (LUH laboratory); or self-report. Individuals with 
type 1 diabetes and women with gestational diabetes were excluded. Where information about smoking 
was not available, it was estimated based on prediction from proteomics data. Information on hypertension 
treatment and statin use were obtained from the Icelandic Prescription Medicines Register. Since the 
register only goes back to 2003, we assumed that those with plasma sampled before the middle of 2003 who 
were receiving hypertension-lowering drugs during the first half of 2003 were already being treated at the 
time of plasma collection (N = 5,812). We used the proteomics data for those with plasma sampled after the 
middle of 2003 to estimate statin use for the older samples where statin use was uncertain (N = 1,879), our 
estimator had an AUC of 0.93 in a holdout test set. Information on missing data and imputation is provided 
in eTable 1. 

Endpoints: The primary endpoint was the first hard atherosclerotic cardiovascular disease (ASCVD) event, 
defined as the first myocardial infarction (MI), coronary heart disease death, or fatal or non-fatal stroke. MI 
was assigned based on ICD diagnosis codes (ICD10: I21.x, I22.X, I23.x, I25.2. or ICD9: 410.*, 412) from the 
Icelandic health care system (LUH, or the Icelandic Cause of Death Register). Icelanders with stroke, admitted 
to LUH over the period 1983-2020, were identified from the hospital registry using the following ICD codes 
for ischemic stroke: ICD9: 433.0, 433.1, 433.2, 433.3, 433.8, 433.9, 434.0, 434.1, 434.9 and ICD10: I63.0, 
I63.1, I63.2, I63.3, I63.4, I63.5, I63.8; and intracerebral hemorrhagic stroke (ICD9: 431 and ICD10: I61.0, I61.1, 
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I61.2, I61.3, I61.4, I61.5, I61.6, I61.8, I61.9. Individuals with stroke probably caused by alcohol or drug 
dependence syndrome, trauma, or brain tumor were excluded. Coronary heart disease death was assigned 
based on ICD primary cause of death codes (ICD10: I20.x, I21.x, I22.x, I23.x, I24.x, I25.x, ICD9: 410.*, 411.*, 
412.*, 413.*, 414.*) from the Icelandic Cause of Death Register. Dates of death from other causes, resulting 
in the end of the follow-up period, were obtained from the Icelandic Cause of Death Register. 

Primary event population data set: The ASCVD protein risk score was developed using a subset of 13,540 
subjects in the Icelandic proteomics data set. The subset consisted of participants aged 40 to 75 years who 
had not had previous MI (participants with codes ICD10: I25.2 and ICD9: 412 were assumed to have had MI 
at the time of plasma collection and were therefore always excluded) or stroke or undergone a percutaneous 
coronary intervention or coronary artery bypass graft. Participants, where there was uncertainty about 
whether events happened before or after plasma collection, were excluded. For all participants, follow-up 
information was available until the end of 2018 which was chosen as the end of the study. Because of limited 
follow-up information for the more recent measurements, only participants with plasma sampled from the 
years 2000 through 2006 were included (eFigure 1, eTable 1).  

This data set of 13,540 subjects was split into training and test sets (training: about 70% of total, N = 9,522; 
test: about 30% of the total, N = 4,018). The derivation set was used for all model selection, hyperparameter 
tuning, and training of the final model while the test set was reserved for testing the prediction performance. 
Each feature was standardized with its mean and standard deviation in the derivation set before training 
and applying the predictor. 

Secondary Event Population - FOURIER Trial 

As part of the data collection for FOURIER, medical history of prior MI, stroke, peripheral arterial disease due 
to atherosclerosis (PAD), CAD, cerebrovascular disease, type 1 and type 2 diabetes, coronary artery bypass 
graft, congestive heart failure, and hypertension were collected. Common clinical chemistry tests were also 
performed on samples extracted from the subjects in the FOURIER trial. As for the Icelandic study, the 
SomaScan v4 platform was used to measure the levels of around 5,000 proteins in a subset of the trial 
participants. The data used in the joint analysis of protein risk scores, medical history, and laboratory tests 
corresponded to baseline information (i.e., from day one of the trial). At plasma collection, the participants 
in the FOURIER trial had to be fasting for at least 9 hours. All plasma samples were analyzed in the time 
period from August 2020 to January 2021, with one thawing cycle for all sample preparations. 

The MACE endpoint was defined as the composite of cardiovascular death, myocardial infarction, or stroke. 
All potential endpoint events were adjudicated by a central clinical events committee led by the TIMI Study 
Group, whose members were unaware of the treatment assignment and lipid levels of the participants. 
Details of the definitions of the endpoints and further information about the trial protocol are provided in 
previous publications6. 

The study focused on individuals of European ancestry. In the analysis that included PRS data, genetic 
ancestry assignments by supervised ADMIXTURE7 were used to classify whether an individual was of 
European ancestry. ADMIXTURE was run in supervised mode with five contemporary reference populations 
(EUR: Utah residents with Northern and Western European ancestry (CEU); EAS: Han Chinese in Beijing, 
China (CHB); SAS: Indian Telugu from the UK (ITU); AMR: Peruvian from Lima, Peru (PEL); AFR: Yoruba in 
Ibadan, Nigeria (YRI)). Individuals assigned less than 0.93 of the CEU component were deemed ancestry 
outliers and excluded from the analysis. Since genotypic data were not available for all the individuals with 
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proteomics data, self-reported ethnicity (white race, including both Hispanics and non-Hispanics) was used 
for the analysis that did not involve PRS data. 

 

Development of Protein Risk Score for ASCVD 

The ASCVD protein risk scores were developed in the derivation set using a Cox proportional hazards model8 
with a lasso penalty9 by solving 

min
β

(− log 𝐿𝐿 (𝛃𝛃) + λ‖𝛃𝛃‖1), 

where 𝛃𝛃 is a vector of variable coefficients, the parameter λ > 0 controls penalization strength (large λ 
correspond to greater penalization), and log 𝐿𝐿 (𝛃𝛃) is the partial likelihood function of the Cox model. The 
parameter λ was chosen to minimize mean partial likelihood deviance in the hold-out sets of ten-fold cross-
validation in the derivation set. The glmnet10 package in R was used to perform the fit. 

Two versions of the protein scores were constructed. The first version was fitted using age, sex, and the 
4,963 protein measurements (ProtRS). To ensure that the coefficients for age and sex, i.e., β𝑎𝑎𝑎𝑎𝑎𝑎 and β𝑠𝑠𝑠𝑠𝑠𝑠,  
would be non-zero, they were exempted from the penalization. This was done to prevent the model from 
trying to capture the effects of age and sex on the endpoint using the protein variables. For the chosen 
penalization strength, the model had 70 other non-zero coefficients βk. The three models where at least one 
of the proteins NT-proBNP and MMP-12 was removed from the set of proteins during training, were fitted 
in the same manner as was done for the main protein score ProtRS. 

Another version was fitted using only the 4,963 protein measurements (ProtRSunadj). The resulting model 
included 199 non-zero coefficients βk, making it considerably larger than the model trained with age and sex 
given. It is worth noting that small changes in penalization strength can affect model size considerably 
without strongly affecting the fit (eFigure 2). 

After fitting the model, protein risk scores were calculated for everyone, according to the following formula; 

ProtRS = ∑ 𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘
𝑝𝑝
𝑘𝑘=1 , 

i.e., the linear part of the Cox model whose exponential represents the hazard ratio. Where wk = βk,𝑘𝑘 =
1, … , 𝑝𝑝, are the non-zero coefficients for protein levels, 𝑥𝑥𝑘𝑘; i.e., we do not use age and sex to calculate the 
protein risk score (the coefficients and proteins for our main ProtRS are provided in eTable 3).  

Our motivation for using the lasso is that it provides a well-established framework for dimensionality 
reduction that selects linear models systematically and objectively by fulfilling mathematical optimality 
criteria. This choice of method as a starting point in our analysis allows us to infer whether the underlying 
phenotype can be explained well by a subset of proteins. This could lead the way in a search for even sparser 
models with the hope of building better risk predictors and gaining insight into the biological processes at 
play. 

 

Construction of Polygenic Risk Score for CAD and Stroke 
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The polygenic risk score for CAD (PRSCAD) was generated using methods previously described11. The PRS was 
calculated using genotypes for about 630,000 autosomal markers that are included on the Illumina SNP 
microarrays to avoid uncertainty due to imputation quality. Linkage disequilibrium (LD) between markers 
was estimated using 14,938 phased Icelandic samples and this LD information was used to calculate adjusted 
effect estimates using LDpred11,12. The effect estimates used for PRSCAD were based on a combination of five 
study cohorts for a primary event of CAD (N affected: 223,999; N controls: 1,123,388), ensuring that 
individuals that had been used in more than one study were only used once. Several PRSs assuming different 
fractions of causal variants were calculated (using a tuning parameter in LDpred) and the best one was 
selected based on a prediction of the corresponding disease in the Icelandic data that had been used in 
calculating the effect estimates for the two PRSs. The weights for the most predictive scores were then used 
to calculate PRSCAD. Icelandic samples were not used in the construction of the PRS used in the primary event 
population in Iceland but were used in the construction of the PRS used for the secondary event population 
(FOURIER). 

Development of Clinical Risk Factor Scores in Secondary Event Population 

In the secondary event population, we considered two published secondary prevention risk scores, the 
updated Secondary Manifestations of ARTerial disease (SMART2) score13 and the TIMI Risk Score for 
Secondary Prevention (TRS2P)14. The only variable in the SMART2 score we did not have information on was 
medical history for abdominal aortic aneurysms. For the SMART2 score, we considered both the score with 
the weights of the individual risk variables provided in the original publication13 and a refitted score 
(SMART2refit) based on estimating weights using a Cox proportional hazards model using individuals from the 
secondary event population that were separate from the test set (individuals in the placebo arm of the 
FOURIER trial that did not have proteomics data, N = 5,403, N events = 413).  

The TIMI Risk Score for Secondary Prevention (TRS2P)14 is a sum of indicator variables for congestive heart 
failure, hypertension, age over 75 years, diabetes mellitus, prior stroke, prior coronary artery bypass graft, 
PAD, renal dysfunction (estimated glomerular filtration rate < 60 ml x min-1 x 1.73 m-2), and current smoking. 
Since not all individuals in our dataset had previous MI we also included previous MI in the sum as has been 
done before in a similar situation15. 

For calculating clinical risk scores, missing variable values were imputed using the mean values for 
continuous variables and zero for binary variables. At most 4% and 6% were missing for continuous and 
binary variables, respectively, except that 13% had no coronary artery bypass graft status data.  

In addition to considering published scores, we derived an optimized clinical risk scores using a Cox model 
with lasso penalization for model selection in the secondary event populations. The derivation involved 
selection from 66 variables (listed in eTable 15) that included clinical information, lab measurements, age, 
sex, the number of prior MIs and strokes, and other variables. The optimized risk score model included 20 
variables after being trained on the same set as was used in the refitting of variable weights for the SMART2 
model.  

Weights for models based on clinical risk factors in the secondary event population are provided in eTable 
2.  

Bootstrapped Lasso 
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To estimate the robustness of proteins selected by the lasso-penalized Cox method, we performed 
bootstrapping. Using resampling with replacement we sampled 1,000 different sets of 9,522 participants 
from the derivation set in the primary event population. In each set, we trained lasso-penalized Cox models 
for 20 different values of model size penalization parameter 𝜆𝜆 using all the protein measurements, age, and 
sex, where age and sex were excluded from penalization (i.e., forced into the model). For the 𝜆𝜆 closest to 
the 𝜆𝜆 used to train ProtRS, we counted how often each protein was included in the 1,000 different models. 
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eAppendix 2. Results 

Reclassification in Secondary Event Population 

The reclassification metrics for the addition of the ProtRS to a model with SMART2refit showed a significant 
increase for 2-year risk (IDI: 0.004, 95% CI: 0.002 to 0.007; category-free NRI: 0.182, 95% CI: 0.072 to 0.288) 
(Table 3 and eTable 8). Adding both the ProtRS and PRSs to SMART2refit significantly improved classification 
accuracy for 2-year risk as measured by category-free NRI (0.339, 95% CI: 0.203 to 0.476) and the IDI index 
(0.007, 95% CI: 0.003 to 0.010) (eTables 8 and 10). 

 

Analysis Clinical Risk Factor Scores in Secondary Event Population 

Here we present additional analysis involving clinical risk factors in the secondary event population, focusing 
on the clinical scores described in the section Development of Clinical Risk Factor Scores in Secondary Event 
Population above (results using SMART2refit are in the main text). 

Out of the 64 clinical variables considered, 50 had a significant correlation with the ProtRS and 16 were 
significantly associated with the MACE endpoint, after adjusting for age and sex (eTable 15 and 16). When 
adjusting for ProtRS, only one of the clinical variables was significant (time since first CVD event). To 
investigate to what extent the risk predicted by ProtRS could be explained when considering all the clinical 
variables, we employed machine learning on data from the secondary event population to derive an 
optimized clinical risk score. In joint model with this risk score, the ProtRS remained significant with an 
adjusted HR of 1.36 per SD (95% CI: 1.22 to 1.50; P = 3.7e-9). The ProtRS also remained significant when 
considering two other clinical risk scores, the original SMART2 score and TRS2P score (eTables 2 and 17 and 
eFigure 18). 

 

Proteomics and Data Redundancy 

Care has to be taken when interpreting the presence of specific proteins in the model. High correlations 
between levels of proteins (multicollinearity) and variable measurement accuracy of proteins can lead to 
models containing different sets of proteins that are equivalent in terms of prediction performance. This 
phenomenon is evident when randomly resampling from the derivation set and constructing a new ProtRS 
model for each resampling, where we observed great variability in the proteins selected. For example, out 
of the full set of 4,963 proteins, 3,077 were included at least once in a model and 424 different proteins were 
included in at least 10% of the models when resampling 1,000 times. The two proteins that stood out in 
terms of frequency of occurrence in the resampling models were NT-proBNP, which was the only protein 
that was included in all of the models, and MMP-12, which was included in more than 90% of the models. 
Five additional proteins, encoded by the genes LILRA6, CA10, WFDC2, EPOR, and PHGDH were included in 
more than 75% of the models (eFigure 3). 

NT-proBNP and MMP-12 are among the proteins with the most significant association in univariate analysis 
with the ASCVD endpoint in the primary event population (eTable 3). To investigate how important these 
two proteins are for proteomics-based risk prediction, we trained ProtRSs with NT-proBNP or MMP-12 
removed from the set of 4,963 plasma proteins (age and sex were included in the model). This increased the 
number of proteins included from 70 to 137 when we excluded NT-proBNP, 108 when we excluded MMP-
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12, and 181 when we excluded both. In the primary event population, the Harrell‘s C-index decreased from 
0.79 to 0.78 when we excluded both proteins and from 0.64 to 0.61 in the secondary event population, 
mostly driven by NT-proBNP (eTable 12). 

Excluding Information on Age and Sex During Protein Score Training 

To determine how information about sex and age affects the structure and performance of ProtRSs, we also 
considered a different approach for creating the protein score. In this second approach, a linear protein risk 
predictor (ProtRSunadj) was trained without providing information about the subjects‘ age and sex. In the 
absence of age and sex information during training, the machine learning algorithm selected proteins and 
weights into the model that capture the effect of these covariates concerning ASCVD risk; this is perhaps not 
surprising given that levels of proteins in plasma can predict age16,17 and sex very well (see Predicting Sex 
with Proteomics Data and Predicting Age at Plasma Extraction with Proteomics Data).  

When we calculated the two ProtRSs in the primary event population test set (N = 4,018), we observed that 
in a linear model, age and sex explained 55% of the variance of ProtRSunadj while they explained considerably 
less of the variance of ProtRS, or 22%. The score ProtRSunadj had highly significant association with age and 
sex, consistent with ASCVD incidence increasing with age and males having a higher risk of ASCVD than 
females in the general population. On the other hand, ProtRS only had a suggestive association with sex and 
a significantly smaller age effect than observed for ProtRSunadj (eFigure 4). 

There is considerable difference in the number of proteins in the models, where ProtRSunadj is comprised of 
199 proteins, whereas ProtRS is considerably sparser with 70. The two ProtRSs were highly correlated (ρ = 
0.87, 95% CI: 0.86, 0.88) and had 61 proteins in common. As for ProtRS, the two proteins with the largest 
standardized weights for ProtRSunadj were NT-proBNP and MMP-12. 

A comparison of event rates for ASCVD events for the two protein scores in linear risk predictors including 
age and sex as covariates did not show better performance for ProtRS than for ProtRSunadj. We also observed 
that adding age and sex as covariates to a risk model with only ProtRSunadj did not improve the risk prediction. 
This indicates that including age and sex information during the training step might not necessarily result in 
a better proteomics-based risk predictor, although the model consists of fewer proteins (eFigure 15 and 
eTable 14). 

Predicting Sex with Proteomics Data 

To predict sex using proteomics measurements, we used a logistic regression model with lasso penalty, 
trained with all 4,963 protein measurements as candidate features. The penalization strength was selected 
to minimize binomial deviance in 10-fold cross-validation. The resulting model had an ROC AUC of 0.999 in 
the test set; out of the 4,018 participants in the test set only 9 were wrongly predicted, or 0.22%, when using 
a threshold of 0.5 in a binary classifier based on the model (eFigure 16). The model included 244 protein 
measurements and the 5 proteins with the highest absolute weight in the model corresponded to the genes 
KLK3, LEP, PZP, SLITRK4, and IL3RA. 

Predicting Age at Plasma Extraction with Proteomics Data 

To predict age at plasma extraction, we trained a linear regression model with lasso penalty using all 4,963 
protein measurements as candidate features. The penalization strength was chosen to minimize the mean 
squared error in 10-fold cross-validation. In the test set, 90.0% of the variance in age at plasma extraction 
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could be explained by the model (eFigure 16). The model included 1,305 proteins and the 5 proteins with 
the highest weights in the model corresponded to the genes PTN, ADAMTSL1, CHRDL1, SCARF2, and CD93. 

Protein Risk Scores and Stability Selection 

We also tried constructing protein risk scores using smaller, carefully selected sets of proteins. The proteins 
were chosen using stability selection, where we ordered the proteins by how often they appeared in models 
for the ten highest 𝜆𝜆s in our lasso bootstrapping experiment (see Bootstrapped Lasso above). We trained 
three different Cox models using the proteins selected in at least 50% of models (8 proteins), the 10 proteins 
selected most frequently, and the 20 proteins selected most frequently. The models were trained with l2-
penalization, where penalization strength was selected with cross-validation. We also tried training without 
any penalization but did not find that to improve the models. 

These experiments with smaller models composed of 8, 10, or 20 proteins showed that protein risk scores 
utilizing only a few proteins can achieve good prediction performance. In the primary event population, all 
three protein scores added significantly to prediction with only the clinical risk factors where the smallest 
model had the smallest increase in prediction performance with the Harrell‘s C-index increasing by 0.012 
(95% CI: 0.002 to 0.023). In the secondary event population, only the 10-protein model resulted in significant 
discrimination improvement over SMART2refit where the C-index increased by 0.016 (95% CI: 0.002 to 0.031) 
(eTable 13). 

 

Alternative Methods for Developing Protein Risk Scores 

In light of their good performance in previous studies15, we also tried non-linear methods to create a ProtRS. 
As a non-linear approach for creating ProtRSs, we trained a Cox proportional hazards model with gradient 
boosted trees using XGBoost18. We used random search with cross-validation to adjust the following tree 
hyperparameters: max tree depth, learning rate, data instance subsampling, variable subsampling, minimum 
split loss, and minimum child weight. To further prevent overfitting, we used early stopping to determine 
the number of boosting iterations. The non-linear and linear models were compared using five-fold cross-
validation on the derivation set and we found the performance of both models to be similar (eFigure 17). 

 

Analysis of Protein Risk Scores Trained on Secondary Event Population 

For comparison to protein risk scores trained on primary event populations, we developed protein risk scores 
using the placebo arm of the secondary event population (N = 6,307, N events = 432). As in the case of the 
primary event population, we developed two scores using Cox models with a lasso penalization: one with 
age and sex adjustment (ProtRSadj,FOURIER) and the other without (ProtRSunadj,FOURIER). For developing the 
scores we used 70% of the data for training the protein weights and reserved the remaining 30% for testing. 
The number of proteins in the scores was 72 for ProtRSunadj,FOURIER and 85 for ProtRSadj,FOURIER. These two 
scores were highly correlated in the test set (ρ > 0.96) and had similar hazard ratios in Cox models with age 
and sex as covariates and using the MACE endpoint (ProtRSunadj,FOURIER HR = 1.54, P = 8.5e-7; ProtRSadj,FOURIER 
HR = 1.59, P = 2.4e-7). Those hazard ratios were not significantly different from the hazard ratios for the 
scores trained on the Icelandic primary event population (ProtRSunadj HR = 1.61, P = 1.5e-6; ProtRS HR = 1.48, 
P = 1.4e-5) (eTable 14). In the subset of the secondary event population that was used for testing (N = 1,863), 
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ProtRSadj,FOURIER had a Harrell‘s C-index (C-index = 0.620, 95% CI: 0.573 to 0.673) that was similar to the one 
for the score derived in the primary event population (C-index = 0.611, 95% CI: 0.556 to 0.666). This indicates 
that the difference in the C-indices observed for the the primary and secondary event populations for the 
score trained in the primary event population is probably not due FOURIER being an external validation 
cohort but rather due to differences between primary and secondary event populations. 

Protein Risk Scores When Sex and Age Information is Optional 

When generating ProtRS, adjustment was done for age and sex by forcing these variables into the Cox model 
while using lasso-penalization to select proteins along with their weights into the score (see Development 
of Protein Risk Score for ASCVD, where the regression coefficients for age and sex are excluded from the 
penalization). To investigate the added informational content of age and sex for cardiovascular risk 
prediction when proteomics data is available, we trained a model where the algorithm was given the option 
to include the age and sex variables in the model as opposed to forcing them in; this was done by adding a 
lasso-penalty to their model coefficients as well. When this model was trained on a secondary event 
population training set (see Analysis of Protein Risk Scores Trained on Secondary Event Population), this 
resulted in a linear predictor consisting of 70 proteins and the sex variable but the age variable was not 
selected (i.e., the lasso algorithm set its coefficient to zero); for downstream analysis, we used these 70 
proteins along with their weights to form the score ProtRSadjsex,FOURIER. In the secondary event population test 
set, the score ProtRSadjsex,FOURIER was highly correlated with the other two protein scores, ProtRSunadj,FOURIER 
and ProtRSadj,FOURIER, that were both also trained on the secondary event population (ρ > 0.96) and had a 
similar hazard ratio to them (HR for ProtRSadjsex,FOURIER = 1.54, 95%CI: 1.30, 1.83; P = 6.3e-7). 
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Panel A: Shown is a histogram showing the time of plasma collection of all 39,155 participants in the 
Icelandic study. The plasma was sampled at deCODE from the year 2000 throughout 2006 (N = 23,474) 
and from the year 2010 throughout 2019 (N = 15,681) (see eMethods for further details). 

The black vertical line at the end of year 2006 corresponds to the end of inclusion in the primary event 
population train and test sets. Follow-up information was available for all participants until the end of 2018 
(red vertical line in figure); this year was chosen as the end of the study.  

Panel B: Shown is a histogram of the age at sample collection of all 39,155 participants in the Icelandic study. 
The age count is shown in five-year bins from 0 – 110. The mean age is 55.4 (SD: 17.1). 

Panel C: Shown is a histogram of the follow-up time of the 13,588 participants included in the primary event 
population (blue bars). The mean follow-up is 14.0 (SD: 4.4) years. Most participants have follow-up until the 
end of the follow-up period at the end of 2018. The end of follow-up is 12 years after end of inclusion (see 
Panel A), therefore most participants have more than 12 years of follow up. Follow-up can also end with an 
event occurring (N = 1,522). The orange bars in the figure show separately the length of follow-up for the 
group that experience an event during the study. Events occur at a similar rate through most of the follow-
up. During every year of follow-up, a median of 90.5 events occurs. Event rates drop for the longest follow-
up since only a part of the participants have the full-length follow-up. The mean length of follow-up until 
event is 8.4 (SD: 4.5) years. End of follow-up because of death from other causes than cardiovascular (N = 
2,389) is similarly distributed as follow-up until an event occurs, i.e., evenly where follow-up is available for 
everyone and drops for the longest follow-up times. A median of 137 deaths from other causes occurred 
during every year of follow-up and the mean follow-up until death from other causes is 8.8 (SD: 4.9) years. 
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eFigure 1. Age at Plasma Collection and Follow-Up in the Icelandic Population
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Panel D: Shown is a histogram of the age at sample collection of the 13,588 included in the primary event 
population. The age count is shown in five-year bins from 0 – 110 but due to the inclusion criteria for the 
population all participants are between 40 – 75 years. The mean age is 57.2 years (SD: 10.2). 

  



© 2023 American Medical Association. All rights reserved. 

 

The figure demonstrates how the penalization strength λ for fitting the ProtRS using all the protein 
measurements, age, and sex, where age and sex are excluded from the penalization, is selected based on 
the partial likelihood deviance (PLD) in ten-fold cross-validation. The red dots represent the mean PLD for 
each λ that was used and the bars represent one standard deviation in each direction for the cross-
validations. The top x-axis shows how the number of nonzero coefficients changes with the penalization 
strength. 

For each panel, the vertical dotted line to the left indicates the λ that gave the lowest mean PLD; this is the 
penalization strength λ𝑚𝑚𝑚𝑚𝑚𝑚 that was used to develop the protein risk score. The vertical line to the right 
indicates the highest λ that gave a mean PLD within one standard deviation from the PLD corresponding to 
λ𝑚𝑚𝑚𝑚𝑚𝑚. Panel A shows the PLDs for all 100 tested λs while Panel B shows in close up the PLDs for the λs closest 
to  λ𝑚𝑚𝑚𝑚𝑚𝑚. 
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eFigure 2. Cross-Validation for Selecting Penalization Strength for Fitting Protein ASCVD Risk Prediction Models 
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Panel A shows a plot of protein score weights in the formula for ProtRS. The plotted weights correspond to 
standardized protein measurements that have been normalized with the sum of squares over all protein 
weights in the score. The weights are ordered by their absolute value in the model and the ten proteins 
with the greatest absolute weight are indicated with a label with the corresponding gene name for the 
protein 

Panel B shows the behavior of ProtRS with age and sex in the primary event population test set of 4,018 
individuals (N female = 2,370 (blue); N male: 1,648 (red)). The broken lines show a positive trend with age 
for males and females that almost coincide. 

eFigure 3. Protein Risk Score Weights and Relationship With Polygenic Risk Scores and Age in the Primary Event 
Test Set 
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Panels C and D are based on proteomics data in the primary event population test set. ProtRS and PRSs 
were standardized so that they had a mean zero and standard deviation of one within the test set. Panel C 
shows a scatterplot for ProtRS and PRS for CAD (Pearson correlation = 0.08, 95% CI: 0.05, 0.11) and Panel D 
shows a scatterplot for ProtRS and PRS for stroke (Pearson correlation = 0.02, 95% CI: -0.01 to 0.05). 

Panel E: The panel shows the frequency of inclusion of the different proteins in multiple ASCVD risk 
models. The models are Lasso penalized Cox models using age, sex, and the 4,963 proteins as candidate 
features, where age and sex were excluded from the penalization, trained on 1,000 different resamplings 
of the derivation data. Out of the twenty tried penalization strengths, these figures show results for the 𝜆𝜆 
closest to 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 used to train ProtRS. Shown is the proportion of models that include the 39 proteins that 
are included in at least 50% of the models; the labels on the x-axis are the gene names corresponding to 
the proteins. N-terminal pro-BNP (gene name NPPB) is the only protein that is included in every model and 
MMP-12 (gene name MMP12) is the only other protein included in more than 90% of the models. 
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These figures are based on proteomics data in the test set of 4,018 individuals (N female = 2,370; N male: 
1,648) and show plots of protein risk scores for cardiovascular events calculated with the formula developed 
in the derivation set using lasso-penalized Cox model, where ProtRS corresponds to the model that takes 
age and sex into account by including them as covariates and ProtRSunadj is only based on proteomics data. 
The protein risk scores were standardized so that they had mean zero and standard deviation of one within 
the test set. 

Panel A corresponds to ProtRSunadj and shows protein score density estimates for females and males, where 
the density for females is shifted to the left by β = 0.53 SD (95% CI: 0.49, 0.57 SD, P = 2.8e-124). On Panel B, 
corresponding to ProtRS, we see that there is almost no difference in the protein score densities for females 
when information about sex and age was taken into account during construction of the score (β = 0.07 SD 
for males, 95% CI: 0.02, 0.13, P = 0.013). 

Panel C corresponds to ProtRSunadj and shows the behavior of the protein score with age. The broken lines 
show positive trend with age for males (βage,male = 0.067 SD per year, 95% CI: 0.064, 0.070 SD per year) and 
females (βage,female = 0.070 SD per year, 95% CI: 0.066, 0.072 SD per year); there was not a significant 
difference in the age trends between the genders (P interaction = 0.27). On Panel D, corresponding to 
ProtRS, we see that the trend with age has attenuated when information about age and sex was taken into 

A B 

C D 

eFigure 4. Protein Risk Scores With Respect to Age and Sex in Test Set for Primary Event Population 
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account and the broken lines corresponding to the sex-specific fits almost coincide (βage,males = 0.050 SD per 
year, 95% CI: 0.046, 0.054 SD per year; βage,females = 0.043 SD per year, 95% CI: 0.039, 0.047 SD per year; P 
interaction = 0.013). 
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The plots on Panels A and B correspond to the test set of 4,018 individuals in the primary event population 
(N female = 2,370; N male: 1,648). The PRSs were standardized so that they had a mean of zero and standard 
deviation of one within the set. 

Panel A shows density estimates for PRSCAD in the test set. There was not a statistically significant shift in 
density between females and males (βSex = 0.06 SD for females, 95% CI: -0.01, 0.12 SD; P = 0.073). 

Panel B shows density estimates for PRSStroke in the test set. There was not a statistically significant shift in 
density between females and males (βSex = 0.01 SD for females, 95% CI: -0.06, 0.07 SD; P = 0.86). 

Panel C shows the behavior of PRSCAD with age at plasma extraction in the test set. The broken line showed 
slight negative trend with age (βage = -0.0048 SD per year, 95% CI: -0.0079, -0.0018 SD per year; P = 0.0019); 
no difference in trends was observed when stratifying on sex (P interaction = 0.091). 

Panel D shows the behavior of PRSStroke with age at plasma extraction in the test set. The broken line shows 
a marginal negative trend with age (βage = -0.0034 SD per year, 95% CI: -0.0065, -0.0004 SD per year; P = 
0.028); no difference in trends was observed when stratifying on sex (P interaction = 0.86). 
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eFigure 5. Polygenic Risk Scores for CAD and Stroke With Respect to Age and Sex in Primary Event Population 
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eFigure 6. AUCs and ROC Curves with Different Handling of Censoring and Competing Risk in the Primary 
Event Population 
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Shown are the discrimination performance of the ProtRS, PRSs and clinical risk factors in the primary event 
population test set (N = 4,018, N events = 465). AUCs and ROC curves were both calculated with and 
without adjustment for censoring and competing risk. In the adjustment, competing events (i.e., death 
from non-ASCVD causes) were not included as controls when calculating the specificity and inverse 
probability of censoring weighting was used. In the curves without adjustment, all non-events before each 
timepoint were taken as controls. The censoring and competing risk adjusted AUCs and ROC curves were 
calculated using the timeROC package in R19.Panels A and B show the AUC for the events within 1-15 years. 
In Panel A the simple binary AUC is shown with no adjustment for censoring while in Panel B we adjust for 
censoring and competing risk. 

Panels C and D show the ROC curves for 10-year risk prediction without (Panel C) and with (Panel D) 
adjustment for censoring and competing risk. 
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eFigure 7. Calibration in the Primary Event Population 

Shown are predicted 10-year risk and observed 10-year event rate in the primary event population test 

dataset (N = 4,018, N events = 465). The event rates were estimated in deciles of predicted risk with Kaplan 



© 2023 American Medical Association. All rights reserved. 

Meier method (red) and using cumulative incidence that  accounts for competing risk from death from 
other causes than coronary heart disease (blue). The estimates are show for different combinations of risk 
scores where the baseline survival is estimated in the same dataset as we are estimating calibration in, i.e., 
the primary event population test dataset. All the observed models seem to be mostly well calibrated 
except for the top 10% at greatest risk whose risk seems to be consistently overestimated by all the 
models, especially when we account for competing risk of death from other causes. 
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The figure shows reclassification results when ProtRS and PRSs are added on top of clinical risk factors 
(age, sex, statin use, hypertension treatment, type 2 diabetes, BMI, and smoking status at the time of 
plasma collection) in the primary event population test set (N = 4,018, N events = 465, N events within 10 
years = 284). The results are shown for predicted 10-year risk using a 20.0% risk threshold to identify 
people at very high risk. Three groups are considered: (i) those with ASCVD event within 10 years, (ii) those 
who die from other causes than ASCVD within 10 years, and (iii) those who survive 10 years without ASCVD 
event.  
 
Panel A shows a reclassification table for the addition of ProtRS on top of the clinical risk factors. The total 
categorical net reclassification improvement (NRI) is 0.071 (0.022 to 0.121) and 0.093 (0.047 to 0.143) 
when excluding those who die from non-ASCVD causes. NRI for ASCVD events is 0102 (0.054 to 0.152), -
0.031 (-0.039 to -0.023) for ASCVD non-events (groups (ii) and (iii)), and -0.009 (-0.016 to -0.002) for those 
who survive 10 years without ASCVD event (group (iii)).  
 
Panel B shows a reclassification table when both ProtRS and PRSs are added on top of the clinical risk 
factors. The total NRI is 0.084 (0.034 to 0.134) and 0.103 (0.056 to 0.153) when excluding those who die 
from non-ASCVD causes. NRI for ASCVD events is 0.113 (0.063 to 0.162), -0.029 (-0.037 to -0.020) for 
ASCVD non-events (groups (ii) and (iii)), and -0.009 (-0.017 to -0.002) for those who survive 10 years 
without ASCVD event (group (iii)).  
  

eFigure 8. Reclassification in the Primary Event Population 
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Shown are boxplots demonstrating predicted 10-year risk by different models for three separate groups in 
the primary event population. The groups considered are: (i) those with ASCVD event within 10 years (N = 
284, green), (ii) those who die from other causes than ASCVD within 10 years (N = 358, blue), and (iii) those 
who survive 10 years without ASCVD event (N = 3,376, red).  
The boxes range from the first quartile to the third quartile and the whiskers extend to the smallest and 
largest value or the 1.5 times the interquartile range from the box if the smallest or largest values are 
beyond that. Datapoints beyond the inter-quartile range are represented by dots. The black horizontal bar 
inside the box represents the median.  

eFigure 9. Predicted 10-Year Risk by Different Models in Three Separate Groups in the Primary Event 
Population 
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eFigure 10. Cumulative Rate of Cardiovascular Events in Primary Event Population 
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The plots show results for cardiovascular endpoint in the test set for the primary event population (N = 
4,018, N events = 465) using risk models with coefficients fitted in the training set. Risk groups correspond 
to the 1st quintile (low risk), 2nd-4th quintiles (medium risk), and the 5th quintile (high risk). 
Clinical/established risk factors considered are sex, age, BMI, smoking, type 2 diabetes, hypertension 
treatment, and statin treatment. PRSs corresponds to polygenic risk scores for CAD and stroke. Cumulative 
event rates are based on Kaplan-Meier estimates. 

Cumulative event rates for cardiovascular end point when restricting to individuals below or above the 
median age at plasma sampling in the test set (median age: 56.6 years; N events for age < 56.6 = 108; N 
events for age ≥ 56.6 = 357) are shown in Panel A (below median age) and Panel B (above median age). 

The curves are based on Kaplan-Meier estimates for different risk groups corresponding to the linear 
predictor values resulting from three different Cox models: (i) clinical risk factors; (ii) PRSs and clinical risk 
factors, and (iii) ProtRS, PRSs, and clinical risk factors. Shown are curves for High and Medium risk groups.  

When considering both age groups and the top quintile of predicted risk, the model with clinical risk 
factors and the PRSs had a 10-year cumulative event rate of 21.2% (95% CI: 18.1% to 24.1%) and when 
adding the ProtRS to the cumulative event rate was 23.3% (95% CI: 20.0% to 26.4%). Among those that 
were above median age, the 10-year cumulative event rate for the top quintile for the full model with 
clinical risk factors, PRSs, and ProtRS was 30.8% (95% CI: 25.4% to 35.7%), that was considerably higher 
than when considering the same risk group for those below median age, or 11.9% (95% CI: 8.6% to 15.1%). 
Further counts and risk estimates for years 5 and 10 are shown in eTable 9. 

Panel C: Shown are the 10-year cumulative event rates in the intersection of risk groups based on ProtRS 
and risk groups based on clinical risk factors. The numbers below the bars correspond to the number of 
individuals in the intersection. The addition of the ProtRS to clinical risk groups defined by medium and 
high risk estimated by clinical risk factors, resulted in a significant gradient in 10-year event incidence (P 
log-rank < 3.3e-6 when comparing medium and high ProtRS within the medium and high clinical risk 
groups). Patients with both high clinical risk and a high ProtRS, about 9.7% of the test population, had a 10-
year cumulative CVD event rate of 27.6% (95% CI: 22.4% to 32.4%) compared to 0.3% (95% CI: 0.0% to 
0.8%) for those with low clinical risk and a low ProtRS (about 9.4% of the population) 

Panels D, E and F show the cumulative event rates for all risk quintiles of the whole test set for the clinical 
risk factor model (Panel D), clinical risk factors, PRSCAD, and PRSStroke model (Panel E), and clinical risk factors, 
PRSCAD, PRSStroke, and ProtRS model (Panel F).  
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Shown are the discrimination performance of the ProtRS, PRSs and clinical risk factors in the secondary 
event population test set (N = 6,307, N events = 432). AUCs and ROC curves were both calculated with no 
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eFigure 11. AUCs and ROC Curves With Different Handling of Censoring in the Secondary Event Population 
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consideration of censoring, considering all non-events before each timepoint as controls, as well as with 
adjustment for censoring. When adjustments were used, censoring was adjusted for with inverse 
probability of censoring weighting. The censoring adjusted AUCs and ROC curves were calculated using the 
timeROC package in R19 

Panels A and B show the AUC for the events within 3-36 months. In Panel A the simple binary AUC is 
shown with no adjustment for censoring while in Panel B we adjust for censoring. 

Panels C and D show the ROC curves for 10-year risk prediction without (Panel C) and with (Panel D) 
adjustment for censoring. 
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eFigure 12. Calibration in the Secondary Event Population 
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Shown are predicted 2-year risk and observed 2-year event rate in the secondary event population 
proteomics dataset (N = 6,307, N events = 432) or proteomics and genomics intersection dataset (N = 
3,887, N events = 271) when the PRSs are included. The event rates were estimated in deciles of predicted 
risk with Kaplan-Meier method. The estimates are shown for different combinations of risk scores where 
the baseline survival is estimated in the same dataset as we are estimating calibration in. All the observed 
models seem to be mostly well calibrated. 
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Shown are scatterplots for protein risk score (ProtRS), and polygenic risk scores for CAD and Stroke in Panels 
A, B, and C (one plot for each pair). The data in the scatterplots are based on individuals in the secondary 
event population that were of European descent based on ADMIXTURE analysis using genetic information 
and had both proteomics and genotypic data available. The total number of individuals was 3,887. 

Panels D, E, and F show the behavior of the protein risk score, and polygenic risk scores for CAD and Stroke 
with age and sex.  

Panel D shows how ProtRS increases with the age of the individuals in the secondary event population that 
have genotype measurements, where the age effect was 0.022 SD per year (95% CI: 0.019, 0.026; P = 2.1e-
35) and sex effect was 0.12 SD for females (95% CI: 0.05, 0.19; P = 8.1e-4); variance explained by age and sex 
was 4.3%. 

Panel E shows how PRS for CAD decreases with the age of the individuals in the secondary event population 
that have proteomics measurements, where the age effect was -0.016 SD per year (95% CI: -0.019, -0.012; P 
= 2.7e-18) and sex effect was 0.13 SD for females (95% CI: 0.06, 0.20; P = 4.9e-4); variance explained by age 

A B 

D 

C 

E F 

eFigure 13. Polygenic Risk Scores for CAD and Stroke and Protein Risk Score in the Secondary Event Population 



© 2023 American Medical Association. All rights reserved. 

and sex was 2.1%. This is consistent with what was observed when considering all individuals that had PRS 
available (i.e., not limiting to those that also had proteomics data available). 

Panel F shows how PRS for stroke decreases slightly with the age of the individuals in the secondary event 
population that have proteomics measurements, where the age effect was -0.006 SD per year (95% CI: -
0.009, -0.002; P = 0.0019); no sex effect was observed (0.04 SD for females (95% CI: -0.03, 0.12; P = 0.23); 
variance explained by age and sex was 0.3%. 

The broken lines in the plots on Panels D, E, and F correspond to linear fit through the data, with adjustment 
for sex. The red color corresponds to males and the blue color to females. 
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Risk groups correspond to the 1st quintile (Low risk), 2nd-4th quintiles (Medium risk), and the 5th quintile 
(High risk). For the SMART2refit score, coefficients of the SMART2 score were refitted using individuals of 
European ancestry in the secondary event population that did not have proteomics measurements. 
Cumulative event rates are based on Kaplan-Meier estimates.  

Panel A: Cumulative event rates for the secondary event population (N = 6,307, N events = 432) and the 
MACE endpoint. The curves are based on Kaplan-Meier estimates for different risk groups corresponding 
to the linear predictor values resulting from three different Cox models that all included age and sex as 
covariates. Shown are curves for the high and low risk groups. The high risk group for the ProtRS, age, and 
sex model had a 2-year cumulative event rate of 12.1% (95%CI: 10.2% to 14.0%). The high risk group for 
the model with only the SMART2refit score had a similar 2-year event rate, or 11.8% (95%CI: 9.9% to 13.6%), 
and the model including both the ProtRS and SMART2refit had a 2-year event rate of 13.4% (95% CI: 11.4%, 
15.3%). For the low risk group, the 2-year cumulative event rates were 3.0% (95%CI: 2.0%, 3.9%), 2.7% 
(95%CI: 1.8%, 3.6%), and 2.2% (95%CI: 1.4%, 3.1%) for the ProtRS model, SMART2refit model, and the joint 
model, respectively. 

Panel B: Shown are the 2-year cumulative event rates in the intersection of risk groups based on ProtRS 
and risk groups based on the SMART2refit score. The numbers below the bars correspond to the number of 
individuals in the intersection. The results are based on individuals in the secondary event population that 
had proteomics data (N = 6,307, N events = 432). The addition of the ProtRS to SMART2refit risk groups 
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eFigure 14. Cumulative Rate of Cardiovascular Events in Secondary Event Population 
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resulted in a significant gradient in event incidence (P log-rank < 0.003 when comparing medium and high 
ProtRS within the medium and high SMART2refit risk group). Within the low SMART2refit risk group, the 2-
year cumulative CVD event rate increased from 1.5% (95% CI: 0.3% to 2.7%) for those with low ProtRS to 
6.5% (95% CI: 0.1% to 12.4%) for those with high. Patients with both high SMART2refit risk and a high ProtRS 
had a 2-year cumulative CVD event rate of 15.3% (95% CI: 12.2% to 18.3%). 

Panel C: Comparison of hazard ratios for ProtRS in different ancestries and the MACE endpoint in the 
secondary event population. The analysis was based on self-reported ancestries. The Cox models included 
age and sex as covariates. No heterogeneity was observed when comparing the hazard ratios for the three 
ancestries (Phet = 0.74) and combined  
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The plots show cumulative event rates for cardiovascular end point in the test set for the primary event 
population in Iceland (N = 4,018, N events = 465). The curves are based on Kaplan-Meier estimates for 
different risk groups corresponding to the linear predictor values resulting from four different Cox models: 
(i) ProtRSunadj only (ii) ProtRSunadj, age , and sex, and (iii) ProtRS, age, and sex.  

Shown are curves for the 20% at highest risk (Panel A), the 10% at highest risk (Panel B), and medium risk 
(20% to 80% percentile) as a reference. 

Panels C and D show all five quintiles for the ProtRS, age, and sex model (Panel C) and the ProtRSunadj, age , 
and sex model (Panel D).  
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eFigure 15. Cumulative Event Rate of Cardiovascular Events Stratified by Protein Risk Scores in the 
Primary Event Population 
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Panels A and B: Shown are plots of AUC as a function of model size when predicting sex using proteomics 
data. To predict sex using proteomics measurements, we used a logistic regression model with lasso penalty, 
trained in the derivation set with all 4,963 protein measurements as candidate features. Panel B shows that 
with only one protein one can reach an AUC of almost 0.97 and only two proteins are necessary to reach an 
AUC of 0.99. The best one protein model consisted of PSA (prostate-specific antigen) and the best two 
protein model consisted of PSA and PZP (pregnancy zone protein). 

Panels C and D: Shown are plots of proportion of the variation (R2) in age that is predictable from proteomics 
data in Iceland as a function of model size. To predict age at plasma extraction, we trained a linear regression 
model with lasso penalty in the derivation set using all 4,963 protein measurements as candidate features. 
Panel D shows that with less than 60 proteins one can explain 75% of the variance in age.  

eFigure 16. Prediction of Age and Sex Using Proteomics Data in the Primary Event Population 
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The figure shows the Harrell’s C-indices for each fold in a five-fold cross-validation performed in the 
derivation set (N = 9,522). The green triangles represent the mean C-index over the five folds and the yellow 
lines are the median. These results demonstrate no obvious benefit from using the non-linear gradient 
boosted tree cox model over the simpler penalized linear cox model.  

  

eFigure 17. Comparison of Models to Calculate Protein Risk Scores  
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The plot shows comparisons of cumulative event rates for the MACE endpoint in the secondary event 
population (N = 6,307, N events = 432) for several different clinical risk models. The curves are based on 
Kaplan-Meier estimates for risk groups corresponding to the 1st quintile (Low risk) the 5th quintile (High risk) 
for the linear predictors based on the models. ‘Optimized Clinical Score’ corresponds to a model that was 
derived within the secondary prevention population itself using a set of clinical variables that were available. 
The other scores are based on two published secondary prevention risk scores, the SMART2 score and the 
TIMI Risk Score for Secondary Prevention (TRS2P) (eMethods). Two scores based on the SMART2 score were 
considered: SMART2-orig uses the weights provided in the original publication for the score and SMART2-
refit uses weights estimated using a Cox proportional hazards model using individuals from the secondary 
event population that were separate from the test set (the placebo arm of the FOURIER trial that excluded 
individuals with proteomics data, N = 5,403, N events = 413).  

eFigure 18. Cumulative Event Rate of Cardiovascular Events for Several Clinical Risk Scores in the Secondary 
Primary Event Population 
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eAppendix 4. List of eTables 

See separate Excel document in Supplement 2.  

Table Contents: 

eTable 1. Inclusion Criteria and Missing Data and Imputation in the Icelandic Proteomics Population 

eTable 2. Weights in ASCVD Risk Scores Based on Clinical Risk Factors in the Secondary Event Population 

eTable 3. Probes and Weights for Protein Risk Score Trained Including Age and Sex Covariates 

eTable 4. Harrell's C-indices in Primary and Secondary Event Populations 

eTable 5. Cox Proportional Hazard Joint Survival Analysis for Clinical Risk Factors, PRSs and ProtRS in the 
Primary Event Population Test Set (N = 4,018, N events = 465) 

eTable 6. Association of Clinical Risk Factors With ProtRS and the ASCVD Event in the Primary Event 
Population Test Set (N = 4018, N events = 465) 

eTable 7. Prediction Performance in the Primary Event Population for Events within 2-, 5-, or 10-Years 

eTable 8. Category-free Net Reclassification Index in Primary and Secondary Event Populations 

eTable 9. Risk Estimates for Models with Protein Risk Score, Clinical Risk Factors, and Polygenic Risk Scores 
for CAD and Stroke in the Test Set of the Primary Event Population 

eTable 10. C-indices and Reclassification in the Secondary Event Population With Protein and Genotype 
Data Available 

eTable 11. Cox Survival Analysis of the ProtRS in Secondary Event Populations of European, Asian, and 
African Ancestries 

eTable 12. Cox Survival Analysis of Protein Risk Scores Trained With and Without Including NT-proBNP and 
MMP-12 in Primary and Secondary Event Populations 

eTable 13. Association and Prediction Performance of Protein Risk Scores Trained Using Small Sets of 
Proteins Selected With Stability Selection 

eTable 14. Protein Risk Scores Trained in Secondary Event Population or Primary Event Population Tested 
in Secondary Event Population Test Subset (N = 1863, N events = 127) 

eTable 15. Correlations of Lab Measurements and Medical History at Baseline with ProtRS in Secondary 
Event Population 

eTable 16. Association of Lab Measurements and Medical History Parameters, and Protein Risk Score with 
MACE Endpoint in the Secondary Event Population 

eTable 17. Cox Survival Analysis of Protein Risk Scores, PRSs, and Clinical Risk Factor Scores in the 
Secondary Event Population 




