1	Antitumor immunity as the basis for durable disease-free treatment-free survival in
2	patients with metastatic urothelial cancer
3	
4	Jonathan F. Anker ¹ , Sumanta K. Pal ² , Seunghee Kim-Schulze ³ , Huan Wang ⁴ , Rebecca
5	Halperin ⁴ , Andrew Uzilov ⁴ , Naoko Imai ³ , Shingo Eikawa ³ , Takuro Saito ⁵ , Robert Sebra ⁶ , Noah
6	M. Hahn ⁷ , Manishkumar Patel ³ , Jingjing Qi ³ , Hui Xie ³ , Nina Bhardwaj* ¹ , Sacha Gnjatic* ^{1,3} ,
7	Matthew D. Galsky*1
8	
0	
9	SUPPLEMENTAL MATERIAL
10	
11	SUPPLEMENTARY METHODS
12	HLA Class I and Class II target enrichment
13	HLA Class I and Class II loci were enriched using PCR amplification of genomic DNA (gDNA)
14	input followed by quantification using the Qubit HS dsDNA kit (Thermofisher Scientific). 200 ng of
15	gDNA was used as input for amplification and added to the Qiagen LongRange PCR mix
16	comprised of 0.4 μI LongRange Enzyme, 2.5 μI LongRange Buffer, 1.25 μI dNTP mix and
17	nuclease free water to achieve a final volume of 24 $\mu I.$ GenDX NGSgo-AmpX (GenDX) HLA Class
18	I and II amplification primers were used and resuspended in 108 μI of nuclease free water
19	(GenDX). 1.0 μI of HLA Class I and Class II primer was then added per reaction to generate a
20	final reaction volume of 25 $\mu I.$ The initial denaturation condition performed was at 95°C for 3
21	minutes for a total of 35 cycles, followed by denaturation at 95°C for 15 seconds, primer annealing
22	at 65°C for 30 seconds, and elongation at 68°C for 5 minutes. A final elongation step was
23	performed after the 35 th cycle at 68°C for 10 minutes with a cooling step at 15°C overnight. Once

24 amplification was completed, the PCR products were quantified using the Qubit HS dsDNA kit (Thermofisher Scientific) and with the Agilent DNA 12000 Bioanalyzer protocol to quantify 25 26 amplicon length based on the GenDX NGSgo-AmpX kit estimates. (For HLA-A, -B and -C PCR 27 products, sizes were 3 kbp to 4 kbp; DRB1 and DRB3 sizes were 3.7 kbp to 4 kbp; DRB4 and 28 DPB1 contained two expected PCR products, the DRB4 products at 400 bp and 1.5 kb, and the 29 DPB1 products at 5.0 kbp and 5.7 kbp; DRB5 products were 4 kbp; DQA1 products were 5.5 kbp 30 to 5.8 kbp; DQB1 amplicons were quantified to be 3.7 kbp to 4kbp; DPA1 amplicons were 4.7 kbp 31 in length) The amplified PCR products were purified using a bead wash condition of 0.6X volume 32 of AMPure PB Beads (Pacific Biosciences, part no. 100-265-900) and further eluted in 30 µl of 33 elution buffer (Zymo Research).

34 Single molecule real-time library preparation, DNA sequencing, and HLA typing

35 Purified PCR products were normalized to equal concentrations and all amplicons were pooled per sample and quantified using the Qubit HS dsDNA protocol (Thermofisher) and the Agilent 36 37 DNA 12000 Bioanalyzer protocol. 500 ng of pooled product from each sample was then brought 38 through the PacBio Amplicon Template Preparation and Sequencing protocol for SMRTbell library 39 preparation, using the SMRTbell template Prep Kit 1.0 (part no. 100-222-300) using the 0.6X 40 AMPure PB bead size selection condition. SMRTbell libraries for DRB4 amplicons were prepped separately in order to adequately sequence the 400 bp exon 2, using a 1.0X Ampure PB bead 41 size selection followed by each library barcoded individually using SMRTbell Barcoded Adapters 42 43 (part no. 100-465-900) and multiplexed.

The recommended 20:1 primer:template ratio was used for primer annealing, whereas P6 polymerase binding was performed at a modified 3:1 polymerase to template ratio for DRB4 amplicon SMRTbells and a 10:1 ratio for all other SMRTbells. HLA SMRTbell libraries were immobilized onto SMRT cells at a concentration of 150 pM on-chip for DRB4 amplicons and 70 pM on-chip for all other products. Loading titrations were performed to achieve optimal

49 sequencing conditions when specific samples required perturbation to achieve optimal loading 50 parameters. SMRT sequencing was then performed on the RSII system. Long Amplicon Analysis 51 pipeline v2 (LAA2) was used to process reads and generate .FASTQ files which were imported 52 into the NGSengine v2.7.0 (GenDX) software for haplotyping and allele annotation, SNP 53 identification, and individual base calling prior to additional analyses.

54 Neoantigen prediction pipeline

55 The novel composite score for neoantigen prediction incorporated the predicted MHC binding 56 affinity (IC50) to cognate HLA, position of the mutation in the short predicted peptide (with or 57 without major anchor motif), Levenshtein distance from the nearest self-epitope, expression in the 58 The Cancer Genome Atlas (TCGA) UC cohort (measured as reads per kilobase of transcript per 59 million reads mapped [RPKM]),[1] variant allelic frequency (VAF), and prior wildtype (WT) protein 60 immunogenicity for IgG reactivity using a database of seromic protein microarray reactivity of sera 61 from multiple cancer types (10,380 protein transcripts, Invitrogen/ThermoFisher's ProtoArrays). 62 The greatest weight was applied to the IC50, scored as a percentile out of a maximum of 500 nM. 63 For point mutations located in a canonical binding position (second or last position for most HLA 64 types), the IC50 of the WT peptide was subtracted from the scoring. Distance from nearest self 65 was normalized by peptide length, favoring epitopes with unique features. TCGA expression and 66 potential for seroreactivity were incorporated as score enhancers if detected.

Each peptide contained up to 25 amino acids to encompass either a point mutation at its center or a new frameshift sequence to allow for natural epitope processing and HLA class II presentation. Up to 20 long polypeptides were synthesized per patient (online supplemental tables S2-S8), with the majority achieving >85% purity (Genscript, Biosynthesis).

The formula for peptide scoring was as follows (subtraction of WT IC50 was only performed for mutations in an anchor position, not for those in a middle position):

(5000 – (variant IC50 – WT IC50) / 5000) × (peptide length / (peptide length – distance from
nearest self – 0.3 × |(9-peptide length)|)) × (frequency of seromic detections/10 + 1) × ((log(TCGA
RPKM) + 10) / 10) * VAF

76 ELISpot

77 CD4⁺ and CD8⁺ T cells were isolated from PBMCs at baseline, cycle 3 day 1, and cycle 6 day 1, 78 using magnetic beads (Invitrogen). 500,000 cells/well were plated in RPMI with 10% human AB 79 serum (complete medium; Sigma-Aldrich) in 96-well round-bottom culture plates (Gibco). 80 Remaining cells were pulsed with cognate pools of up to 20 polypeptides (1 µg/ml) overnight, 81 irradiated, and co-cultured 1:1 with CD4⁺ and CD8⁺ T cells in complete medium supplemented 82 with IL-2 (10 IU/ml; Roche) and IL-7 (20 IU/ml; R&D Systems). Remaining PBMCs were used to 83 generate autologous antigen-presenting cells (APCs), which were expanded with recombinant 84 CD40L and IL-21. After 20 (CD4⁺) or 10 (CD8⁺) days, T cells were co-cultured for 18 hours in ELISpot 96-well nitrocellulose plates (Millipore Sigma, MSHAS4510) coated with anti-IFN-y 85 86 monoclonal antibody (4 µg/ml) at 1:1 and 1:5 ratios with APCs that had been pulsed overnight 87 with peptide subpools of 6-7 peptides or DMSO vehicle as a negative control. Stimulation with 88 phorbol 12-myristate 13-acetate (PMA)/ionomycin served as a positive control. ELISpot 89 processing and data extraction were performed per manufacturer instructions (CTL ImmunoSpot, Cellular Technology Limited). Reactivity was quantified as the percentage of the well stained, 90 subtracted by that of the negative control and normalized to that of the positive control. A well was 91 92 considered positive for neoantigen reactivity if spots comprised ≥5% of the well area and the 93 stained area was ≥5-fold increased from that of the respective negative control well.

94

95 **REFERENCES**

96 1. Network TCGAR. Comprehensive Molecular Characterization of Urothelial Bladder Carcinoma.

⁹⁷ Nature. 2014;507:315.

100 Supplemental Figure S1

DDFTFS patients demonstrate unique patterns of analyte expression. Heatmaps of average zscores per response grouping at (A) baseline, (B) post-GC, and (C) post-GC+Ipi with the Milliplex assay. Columns indicate patient grouping by response, rows indicate individual analytes, with unsupervised hierarchical clustering performed on rows. GC, gemcitabine and cisplatin; Ipi, ipilimumab; NR, non-responder; SR, short-responder; DDFTFS, durable disease-free treatmentfree survival.

107

109 Supplemental Figure S2

110 DDFTFS patients demonstrate a unique immunophenotype normalized to non-responders.

111 Heatmaps of all analytes with a ≥1.5-fold increased or decreased z-score when comparing either

short-responders or DDFTFS patients to non-responders at (A) baseline, (B) post-GC, and (C)
post-GC+lpi. Columns indicate patient grouping normalized to NR values, rows indicating
individual analytes, with unsupervised hierarchical clustering performed on rows. Olink assay on
top, Milliplex assay on bottom. GC, gemcitabine and cisplatin; lpi, ipilimumab; NR, non-responder;
SR, short-responder; DDFTFS, durable disease-free treatment-free survival.

119 Supplemental Figure S3

PD-1, CD28, and DC-LAMP increased among DDFTFS patients post-GC+lpi. Scatter bar plots of
individual analytes with significantly altered levels when comparing DDFTFS patients at different
timepoints, with data displayed as mean ± SEM. Y-axis is transformed NPX values. * P < 0.05.
GC, gemcitabine and cisplatin; lpi, ipilimumab.

126 Supplemental Figure S4

Heterogeneity in DDR alterations among DDFTFS patients. Percentage and type of alterations among the entire cohort indicated on the left per gene. Total SNV count per DDFTFS patient indicated on top. SNV, single nucleotide variant; DDR, DNA damage response; DDFTFS, durable disease-free treatment-free survival.

131

Group DDFTFS No evidence of disease and >2 years		Patient ID MG08 MG25	Best response CR CR	Time from treatment initiation to death or censor (months)	Time from treatment initiation to last follow up if alive (months) 84.2 95.0 20.0
	time of last follow-	MG35	CR		90.9
N=4		MG30	UK		00.3
		MG01	PR	6.9	
		MG02	CR	34.8	
		MG03	PR	10.6	
		MG04	PR	7.3	
		MG06	PR	26.6	
		MG10	PR	9.5	
		MG11	CR	18.4	
	Short-	MG13	CR	27.3	
	Responder	MG14	PR	10.4	
	Best response	MG17	PR	12.2	
	CR or PR with	MG18	PR	12.3	
	recurrence of disease N=21	MG19	PR	10.1	
		MG21	PR	2.8	
		MG22	PR	13.8	
		MG23	PR	15.0	
Non-DDFTFS		MG26	PR	16.5	
N=32		MG29	PR	23.5	
		MG30	PR	5.6	
		MG32	CR	26.9	
		MG34	PR	37.4	
		MG37	PR	37.4	
		MG05	SD	5.0	
		MG07	SD	27.7	
	Non-Responder Best response PD or SD with recurrence of disease N=11	MG09	SD	10.6	
		MG12	SD	6.5	
		MG15	SD	9.8	
		MG16	SD	10.6	
		MG20	SD	14.5	
		MG27	PD	4.8	
		MG28	SD	13.9	
		MG31	SD	22.5	
		MG33	SD	6.5	

133 Supplemental Table S1

Patient classifications by response. DDFTFS and non-DDFTFS (short-responders and nonresponders) criteria and sample size listed, with best clinical response and time from treatment
initiation to death/censor or last follow up if alive. DDFTFS, durable disease-free treatment-free
survival; NR, non-responder; SR, short-responder; SD, stable disease; PD, progressive disease;
PR, partial response; CR, complete response.

MG02			
Gene	Variant	Peptide	
TMEM185B	p.D277H	KGGNHWWFGIRRHFCQFLLEIFPFL	
CLSTN1	p.L68V	DPPLIALDKDAPVRFAESFEVTVTK	
PARN	p.G469D	KTSDLYQLFSAFDNIQISWIDDTSA	
MXRA8	p.S121L	ELSASAFDDGNFLLLIRAVEETDAG	
MCAM	p.Q356H	SDVRVSPAAPERHEGSSLTLTCEAE	
PARP10	p.A19V	HLMPRPRVAMAEVEAGVAVEVRGLP	
MAP1S	p.A66T	DEQLKVFVSRHSTTFSSIVKGQRSL	
JADE2	p.D475N	YRRLKLFTHLRQNLKRVRNLCYMVT	
CORIN	p.T155M	THSQCQMLPYHAMLTPLLSVVRNME	
ADCY2	p.S57F	PLIVFLLLIVMGFCLALLAVFFALG	
TAGLN	p.W55S	GRPDRGRLGFQVSLKNGVILSKLVN	
SEPN1	p.V180A	ETMTKSKDGFLGASRLALSGLRNWT	
KIF1C	p.P408L	SVRGALPAVSSPLAPVSPSSPTTHN	
SFRP1	p.H267Y	DCPCHQLDNLSHYFLIMGRKVKSQY	
PIK3C2B	p.S399C	LQEALTFTCNCSCTVDLLIYQTLCY	

141 Supplemental Table S2

142 Top ranked neoantigen predictions and peptide sequences synthesized for MG02.

MG16			
Gene	Variant	Peptide	
SLC12A7	p.T256M	AAAMLHNMRVYGMCTLVLMALVVFV	
NAA35	p.Y524fs	LYSMHEYYYIYWLSL	
STEAP2	p.P380L	LGLLSLLAVTSILSVSNALNWREFS	
СМТМ3	p.I141N	SKAAGVFGFFATNVFATDFYLIFND	
CARD11	p.V171M	LEDEKKQMTLTRMELLTFQERYYKM	
MFAP5	p.R158Q	LPPRRLRRSNYFQLPPCENVDLQRP	
DHRS4	p.Q54H	DGIGFAIARRLAHDGAHVVVSSRKQ	
MROH1	p.G421S	AVVQVISAMAHHSYLEQPGGEAMIE	
CROCC	p.R1729W	VEESEGALRDKVWGLTEALAQSSAS	
HN1L	p.S44L	LSGQGPWAPLQRLASTRLVSGGHEA	
SYVN1	p.L110del	DFSPRFVALFTLLFLKCFHWLAEDR	
LRRC48	p.K69E	RIDNLWQFENLRELQLDNNIIEKIE	
TP53	p.R273C	SGNLLGRNSFEVCVCACPGRDRRTE	
HJURP	p.V188M	RVTPLPSLASPAMPAPGYCSRISRK	
SOGA2	p.V586M	VEEEANILGRKIMELEVENRGLKAE	

145 Supplemental Table S3

146 Top ranked neoantigen predictions and peptide sequences synthesized for MG16.

MG18			
Gene	Variant	Peptide	
MIB2	p.V131fs	VQVGMRVGARRGLEVGPAGRRRGRR	
MIB2	p.V131fs	DTRPHSGRAVGPGHAHQLPRRLPGR	
MIB2	p.V131fs	RLPGRARPAAVRQRPDRRPAPQHHL	
SMYD5	p.L60F	IFVERPLVAAQFFWNALYRYRACDH	
ARL3	p.T147fs	EIAEGLNLHPRPSLADPVLLSSHRR	
HDAC1	p.H39Y	GHPMKPHRIRMTYNLLLNYGLYRKM	
IRX5	p.R269fs	RARCLRVPAGPRLSIRRLRRRLLRC	
G2E3	p.E141fs	RSYHFPCGLQRMYFPVYWQFCVILL	
CYP4F11	p.D43N	LARVLAWTYTFYNNCRRLQCFPQPP	
SNX3	p.E75Q	KESTVRRRYSDFQWLRSELERESKV	
GTF2IRD1	p.S114L	EGRVVRRVLTVALRALCPTGGPPWK	
ZFP36L2	p.P207L	ELCRTFHTIGFCLYGPRCHFIHNAD	
STAP2	p.G173R	EAQLLLERYPECRNLLLRPSGDGAD	
VPS16	p.E642Q	GSFHIRASYAAEQRIEGRVAALQTA	
ATP5SL	p.E59K	ILQFLTNYFYDVKALRDYLLQREMY	
GP6	p.S184Y	AAHSGTYRCYSFYSRDPYLWSAPSD	
CLMN	p.P735S	PHDLFYFPHYEVSLAAVLEAYVEDP	
TBC1D20	p.D357H	FRGLLRPEDRTKHVLTKPRTNRFVK	
KDM6A	p.E168K	VLYVDPSFCRAKKIHLRLGLMFKVN	
TRA2A	p.R269I	RRRSPSPYYSRYISRSRSRSYSPRR	
CCR4	p.L146F	DRYLAIVHAVFSFRARTLTYGVITS	
ARID4A	p.E1066fs	ASGTCSIIVQERRVRRGQVMEIVD	
ARL3	p.T147fs	KSRRMEMQELREPNSVLKNTNLLLS	

149 Supplemental Table S4

150 Top ranked neoantigen predictions and peptide sequences synthesized for MG18.

MG25					
Gene	Variant	Peptide			
OTOP1	p.L77del	IVFVAGLLLLAWAVHAAGV			
OTOR	p.C37Y	ASKKLCADDEYVYTISLASAQ			
MTHFR	p.E594K	TNAPKLQPNAVTWGI			
TLL1	p.E496Q	CVWKITVSQSYHVGLTFQ			
RIC8A	p.T514K	GMSPRGHLKSLQDAMCETM			
ITGB5	p.R662T	CHSLCTDEVITWVDT			
KDR	p.T139I	VSDQHGVVYIIENKNKTVVI			
MYO1C	p.T1002M	VVLQSDHVIEMLTKTALSA			
TGFB1I1	p.S359W	GPILDNYIWALSALWHP			
TP53-1	p.N268fs	NLLGRTALRCVFVPVL			
TP53-2	p.N268fs	TGAQRKRISARKGSLTTSCPQGAL			
TP53-3	p.N268fs	ALSEHCPTTPAPLPSQRRNHWMENI			
TP53-4	p.N268fs	RNHWMENISPFRSVGVSASRC			
TP53-5	p.PDDIEQW46del	SQAMDDLMLSFTEDPG			
TMEM66	p.P60S	YTTSRRLDSIPQLKCV			
ASPM	p.F2233L	YWAMKERNIQLQRYNKLRHSV			
PCOLCE2	p.N244S	IVSERSELLIQFL			
NMUR2	p.R153C	YVAILHPFCAKLQSTRRRA			
SNX14	p.K328R	FAEPRNRKPSVLKLEL			
DAPK1	p.T78S	KEIQHPNVISLHEVYENKT			
RPS4Y1	p.R148H	LVTHDARTIHYPDPVIKV			
CAD	p.D1469H	KLVRLPGLIHVHVHL			
МҮОЗА	p.Q366P	LEKCYSRDPIYVYVG			
SETD3	p.S458F	KSVLKNHDLFVRAKMAIKL			

152

153 Supplemental Table S5

154 Top ranked neoantigen predictions and peptide sequences synthesized for MG25.

MG31			
Gene	Variant	Peptide	
DNAJC3	p.S13L	MVAPGSVTSRLGLVFPFLLVLVDLQ	
MSMO1	p.A187T	EFQAPFGMEAEYTHPLETLILGTGF	
ACSL3	p.E657K	WEELCNSCEMENKVLKVLSEAAISA	
PLTP	p.S139L	YWFFYDGGYINALAEGVSIRTGLEL	
PIGU	p.L207F	YPLTLFVPGLLYFLQRQYIPVKMKS	
ABTB1	p.Q374H	PGLKRLCGRSLAHMLDEDTVVGVWR	
LTN1	p.K279N	FYRVVTCSLLALNRLLCLLPDNELD	
LETM1	p.D174N	KHYYHGFRLLWINTKIAARMLWRIL	
ENKD1	p.Q293H	ENQRLETLTKLLHSQSQLLRELVLL	
NAP1L2	p.D435E	EVNDAIYDKIIYENWMAAIEEVKAC	
PEX11G	p.R48C	VEQCPARSEVGTCLLVVSTQLSHCR	
ZZEF1	p.S1899F	RQRLIQPYIHNYFWLLFAALALYSA	
MPHOSPH9	p.P476L	LPNALDDRISFSLDSVLEPSMSSPS	
PVR	p.P129L	DEGNYTCLFVTFLQGSRSVDIWLRV	
WNT6	p.P59L	LAGRQAELCQAELEVVAELARGARL	

157 Supplemental Table S6

158 Top ranked neoantigen predictions and peptide sequences synthesized for MG31.

MG32				
Gene	Variant	Peptide		
CNOT1	p.H1506P	LSVIIFFFVYIWPWALPLILNNHHI		
DCAF7	p.D243N	KQDPNYLATMAMNGMEVVILDVRVP		
TAPT1	p.L407F	SDSVARRMGFIPFPLAVLLIRVVTS		
LONP1	p.S692L	ALCGLDESKAKLLSDVLTLLIKQYC		
RP11-				
766F14.2	p.Q1575L	PPLPFTLQGAQPLVLCFSPPSMPAP		
TMEM52B	p.H143Y	SLDTLPGYEEALYMSRFTVAMCGQK		
LINGO1	p.N390fs	SRARSSRTSLMCYCPTTSPAAAPAS		
LINGO1	p.N390fs	PESTWSQPRAMGGSQSSLMARWRC A		
EPN3	p.P293L	EKEVRSWQGDGSLMANGAGAVVHH Q		
POLQ	p.S679L	YRFFCLWEKLPTLMKRVAELVGVEE		
KCNK1	p.S9L	MLQSLAGSLCVRLVERHRSAW		
ADCY3	p.D1018N	ERERWQHLADLANFALAMKDTLTNI		
GPR176	p.T189M	VFAVTNVADIYAMSTCTEVWSNSLG		
FREM2	p.M327I	NTAPKPSFVAMMIMEVDQFVLTALT		
HIATL2	p.V117I	DVWGRKPFLLGTIFFTCFPIPLMRI		
IPO5	p.P554A	EEKFVPYYDLFMASLKHIVENAVQK		
EHBP1L1	p.R1380W	QALEQEQRQIDGWAAEVEMQLRSLM		
TNPO3	p.958HSCTVPVTQECLF (stop- loss)	CWALRDFTRLFRHSCTVPVTQECLF		
TCTN1	p.S345L	YTDAGEVTKADLLFVLGTVSSVVVP		
TLX1	p.S228L	LEKRFHRQKYLALAERAALAKALKM		
PNPLA5	p.T218A	ELNVFNFSFQISAENFFLGLICLIP		

161 Supplemental Table S7

162 Top ranked neoantigen predictions and peptide sequences synthesized for MG32.

MG35			
Gene	Variant	Peptide	
APOBEC1	p.S97F	TWFLSWSPCWECFQAIREFLSRHP	
ZFHX3	p.E209K	TFHIASSFGKWFKGPDQAFPN	
SCN3A	p.E71K	KNLPFIYGDIPPKMVSEPLEDLDP	
ART1	p.G180D	PRCHQVFRDVHGLRFRPA	
FA2H	p.G30W	RRLAAGACWVRRWARLYDLSSFVRH	
PAK7	p.D517N	VDMYSSYLVGNELWVVMEFLEG	
TNN	p.S479F	QAVIDKYVVRYTFADGDTKEMAVHK	
AGPAT5	p.F65L	RLYCVYQSMVLFLFENYTGVQILLY	
MMP9	p.F581L	SVFEERLSKKLFLFSGRQVWVYTG	
SLC6A6	p.P253T	TGKVVYFTATFTFAMLLVLLVRGL	
ATP8B1	p.S925Y	EGMQAVMSSDYYFAQFRYLQRLLL	
PIEZO1	p.S217L	VTLLALAGIAHPLALSSVYLLLFLA	
FAM120C	p.S583F	EASLGDGEPHIPFLLSMSTRNHMDI	
PAK2	p.D317H	VNFLDSYLVGHELFVVMEYLAGG	
VWF	p.A1098fs	CSCESIGDCVLLRHHCCLCPRVCPA	
USP24	p.S2411L	LEVMFALRELTGLLLALIEMVV	
TRAM1	p.M165I	WRAYPHNLMTFQIKFFYISQLAY	
KIAA0922	p.Q385E	KACLFSSVAEGYFRMDSSATQ	
PICALM	p.Q521E	KPTVASENQNLPVAKLPP	
DHX9	p.E358Q	GPLAFATPQQISMDLKNELMY	
MACF1	p.S3200F	KTKETKHQIFSSNECKEKSYQE	
MSN	p.Q48R	TIGLREVWFFGLRYQDTKGFSTWLK	
HDAC9	p.K1002N	NMNAVISLQNIIEIQSKYWKSV	
ZMYM6	p.S282L	IPPYALGKSLRPLAEMIET	
HES1	p.F238L	GQFAFLIPNGALAHSGPVIPVYTS	

165 Supplemental Table S8

166 Top ranked neoantigen predictions and peptide sequences synthesized for MG35.

Characteristic	DDFTFS (N=4)	Non-DDFTFS (N=32)
Age, median (range)	66.5 (64-72)	62 (36-82)
Sex, N (%)		
Male	4 (100)	32 (78.1)
Female	0 (0)	4 (21.9)
Baseline neutrophil-lymphocyte ratio,	4.5 (2.2-7.3)	3.0 (1.3-7.0)
median (range)		
Mutation count, median (range)	664 (268-2324)	639 (273-2102)
Primary Tumor, N (%)		
Bladder	3 (75)	25 (78.1)
Renal Pelvis	0 (0)	7 (21.9)
Ureter	1 (25)	0 (0)
Karnofsky performance status, N (%)		
100%	2 (50)	7 (21.9)
90%	2 (50)	12 (43.8)
80%	0 (0)	11 (34.4)
ECOG performance-status score, N (%)		
0	2 (50)	7 (21.9)
1	2 (50)	25 (78.1)
Site of metastatic disease, N (%)		
Lymph node/soft tissue only	3 (75)	17 (53.1)
Visceral	1 (25)	13 (40.6)
Liver	1 (25)	6 (18.8)
Lung	1 (25)	9 (28.1)
Bone	0 (0)	10 (31.3)
Prior treatment, N (%)		
Systemic chemotherapy	0 (0)	5 (15.6)
Cystectomy or nephroureterectomy	3 (75)	9 (28.1)
Radiation therapy	0 (0)	2 (6.25)

169 Supplemental Table S9

170 Demographic and clinical characteristics of DDFTFS and non-DDFTFS patients. DDFTFS,

171 durable disease-free treatment-free survival; ECOG, Eastern Cooperative Oncology Group.