Supporting Information

<u>*Title*</u>: Aggregation in aqueous solutions of 2-(tetrafluoro(trifluoromethyl)- λ^6 -sulfanylethan-1-ol (CF₃SF₄-ethanol): A comparison with aqueous trifluoroethanol and hexafluoroisopropanol using molecular dynamics simulations and dynamic light scattering experiments.

Authors: Samadrita Biswas^{†1}, Simi Kaur^{†1,2}, Christopher A. Myers^{2,3}, Alan A. Chen^{*1,2} and John T. Welch^{*1}

¹Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA

²RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA

³Department of Physics, University at Albany, State University of New York, 1400 Washington Ave, Albany,NY 12222, USA

+ equal contributions

* corresponding author

Table of Contents

General Comutational information	
Table S1. Parameters for bonds, angles and dihedrals for CF ₃ SF ₄ -ethanol	S3-4
Table S2: Parameters for bonds, angles and dihedrals for TFE	S5
Table S3: Parameters for bonds, angles and dihedrals for HFIP	S6
Table S4 : Summary of charges for HFIP conformers	S7
Table S5 : Summary of charges for TFE conformers	S7
Table S6: Bonded parameter used for TFE	S7-8
Table S7: Bonded parameter used for HFIP	S8
Figures representing Radial Distribution Function for TFE, HFIP and CF_3SF_4 -ethanol	
Figure S1: Radial Distribution Function g (r) for :TFE-TFE	S9
Figure S2: Radial Distribution Function g (r) for : HFIP-HFIP	S10
Figure S3: Radial Distribution Function g (r) for :CF ₃ SF ₄ -ethanol-CF ₃ SF ₄ -ethanol	S11
Figure S4. RDFs for aqueous mixtures of fluorinated alcohols. RDFs for the O_{TFE} - H_{Water} and O_{TFE} - O_{Water}	S12

Presentation of NMR and DART-MS Spectra for trifluoromethyl tetrafluoro-λ6-sulfanyl-ethan-1-ol

Figure S5 : NMR spectra of 2-(tetrafluoro(trifluoromethyl)-λ ⁶ -sulfanyl)ethan-1-ol	
(a) ¹ H Nmr spectra of CF ₃ SF ₄ -ethanol.	13
(b) ¹⁹ F Nmr spectra of CF ₃ SF ₄ -ethanol.	14
(c) HRMS (DART-ESI, m/z,positive) spectrum	15

Parameter ^a	Gauche	Antiperiplanar
r(S-C)	1.85	1.85
r(S-F)	1.68	1.68
<i>r</i> (S-F1)	1.68	1.68
<i>r</i> (S-F2)	1.69	1.65
<i>r</i> (S-F3)	1.72	1.65
<i>r</i> (S-C2)	1.98	1.92
<i>r</i> (C-C1)	1.53	1.53
<i>r</i> (C-H3)	1.09	1.09
<i>r</i> (C-H4)	1.09	1.09
<i>r</i> (C1-O)	1.41	1.42
<i>r</i> (C1-H1)	1.10	1.10
<i>r</i> (C1-H2)	1.10	1.10
<i>r</i> (O-H)	0.96	0.97
<i>r</i> (C2-F4)	1.32	1.32
<i>r</i> (C2-F5)	1.31	1.32
<i>r</i> (C2-F6)	1.32	1.32
<i>θ</i> (S-C-C1)	115.1	115.5
<i>θ</i> (S-C-H1)	101.97	104.05
<i>θ</i> (S-C-H4)	104.16	104.8
θ(S-C2-F4)	108.88	108.4
θ(S-C2-F5)	109.51	109.9
<i>θ</i> (S-C2-F6)	108.19	109.9
<i>θ</i> (C-S-F)	92.64	92.30
<i>θ</i> (C-S-F1)	90.52	89.93
<i>θ</i> (C-S-F2)	90.48	90.23
<i>θ</i> (C-S-F3)	93.51	93.12
θ(C-S-C2)	177.58	177.19
θ(C-C1-O)	114.26	108.47
<i>θ</i> (C-C1-H1)	104.71	110.07
<i>θ</i> (C-C1-H2)	105.83	111.28
<i>Ө</i> (С1-С-Н3)	111.57	109.89
<i>θ</i> (C1-C-H4)	111.49	112.21
<i>Ө</i> (С1-О-Н)	108.17	108.12
<i>θ</i> (O-C1-H1)	106.09	112.06
<i>θ</i> (O-C1-H2)	112.78	106.65
<i>θ</i> (H1-C1-H2)	107.36	108.18

Table S1: Parameters for bonds, angles and dihedrals for CF₃SF₄-ethanol

<i>Ө</i> (H3-C-H4)	111.56	109.38
<i>Ө</i> (F-S-F1)	176.86	176.65
<i>θ</i> (F-S-F2)	89.24	89.31
<i>Ө</i> (F-S-F3)	89.50	90.59
<i>θ</i> (F-S-C2)	89.33	90.68
<i>θ</i> (F1-S-F2)	90.38	90.23
<i>θ</i> (F2-S-F3)	175.83	177.48
<i>θ</i> (F1-S-C2)	90.91	89.36
<i>Ө</i> (F1-S-F3)	90.65	93.12
<i>θ</i> (F2-S-C2)	87.55	89.93
<i>θ</i> (F3-S-C2)	85.10	92.27
θ(F4-C2-F5)	110.39	109.3
θ(F5-C2-F6)	110.17	109.34
θ(F4-C2-F6)	109.66	109.7
φ(C-S-C2-F5)	-124.18	-165.71
φ(C-S-C2-F4)	-4.97	-46.11
φ(C-S-C2-F6)	115.01	73.40
φ(F3-S-C-C1)	108.51	-103.63
φ(F2-S-C-C1)	162.05	76.25
φ(F1-S-C-C1)	71.84	167.03
φ(F-S-C-C1)	-18.85	-14.35
φ(S-C-C1-O)	79.03	-172.43
<i>ф</i> (С-С1-О-Н)	-72.58	-76.22
φ(C2-S-C-C1)	38.16	70.14
<i>ф</i> (F4-C2-S-F)	52.18	44.82
φ(F4-C2-S-F1)	-38.68	-45.95
φ(F4-C2-S-F3)	141.74	133.93
φ(F4-C2-S-F2)	-128.86	-136.68
 <i>ϕ</i> (F5-C2-S-F)	-67.01	-74.68
φ(F5-C2-S-F1)	-157.9	-165.47
φ(F5-C2-S-F2)	111.93	14.43
φ(F5-C2-S-F3)	22.59	103.79
 <i>ϕ</i> (F6-C2-S-F)	172.18	164.35
φ(F6-C2-S-F1)	81.03	73.57
φ(F6-C2-S-F2)	-8.87	-106.53
φ(F6-C2-S-F3)	-98.27	-17.16

a. All distances are reported in Angstroms (Å), and all angles and dihedrals are in degrees (°).

Parameter ^a	Gauche	Antiperiplanar
<i>r</i> (C1-F)	1.35	1.35
r(C1-F2)	1.34	1.34
r(C-C1)	1.51	1.51
<i>r</i> (C-H1)	1.10	1.10
r(C-H2)	1.09	1.09
r(C-O)	1.40	1.40
r(O-H)	0.97	0.97
θ(F-C1-F1)	107.9	107.5
θ(F1-C1-F2)	108.1	107.2
θ(F-C1-F2)	107.4	107.2
θ(F-C1-C)	109.95	110.9
θ(F1-C1-C)	110.75	110.4
θ(F2-C1-C)	112.53	112.7
θ(C1-C-H1)	107.38	107.3
θ(C1-C-H2)	108.42	107.85
θ(H1-C-O)	113.23	112.99
θ(H2-C-O)	107.6	107.5
θ(C-O-H)	107.5	109.4
θ(C1-C-O)	112.41	112.4
φ(F-C1-C-O)	58.67	180
φ(F1-C1-C-O)	-61.33	60.76
φ(F2-C1-C-O)	177.79	-60.76
<i>ф</i> (С2-С-О-Н)	62.74	180

Table S2: Parameters for bonds, angles and dihedrals for TFE

a. All distances are reported in Angstroms (Å), and all angles and dihedrals are in degrees (°).

Parameter ^a	Gauche	Antiperiplanar
<i>r(</i> O-C)	1.39	1.39
<i>r</i> (C-H1)	1.10	1.09
<i>r</i> (C-C1)	1.53	1.53
<i>r</i> (C-C2)	1.53	1.53
<i>r</i> (F-C1)	1.34	1.34
<i>r</i> (F1-C1)	1.33	1.33
<i>r</i> (F2-C1)	1.33	1.33
<i>r</i> (F3-C2)	1.33	1.33
<i>r</i> (F4-C2)	1.33	1.33
<i>r</i> (F5-C2)	1.33	1.33
<i>θ</i> (C-O-H)	109.14	107.5
<i>θ</i> (F-C1-C)	107.83	110.2
<i>Ө</i> (Н1-С-О)	113.11	107.6
<i>θ</i> (F1-C1-C)	113.4	109.7
<i>θ</i> (F2-C1-C)	111.6	112.3
θ(F-C1-F2)	107.5	108.3
<i>θ</i> (F-C1-F1)	107.6	107.8
<i>θ</i> (F1-C1-F2)	108.6	108.3
θ(C1-C-C2)	113.7	113.3
θ(C-C2-F3)	110.7	110.2
θ(C-C2-F4)	112.4	109.7
θ(C-C2-F5)	109.3	112.4
θ(F3-C2-F4)	108.4	107.8
θ(F3-C2-F5)	107.8	108.2
θ(F4-C2-F5)	108	108.2
φ(F-C1-C-O)	-53.42	-179.9
φ (F1-C1-C-O)	65.52	59.5
φ(F2-C1-C-O)	-171.67	-59.03
φ(F3-C2-C-O)	-177.76	58.53
φ(F4-C2-C-O)	-57.02	-60.02
φ(F5-C2-C-O)	63.32	179.4
φ(F-C1-C-C2)	-173.31	-55.9
φ(F1-C1-C-C2)	-54.37	-176.5
φ(F2-C1-C-C2)	68.43	64.9
φ(F3-C2-C-C1)	-55.68	-65.5
φ(F4-C2-C-C1)	65.06	175.9
φ(F5-C2-C-C1)	-174.59	55.4
φ(H-O-C-C1)	58.65	62.9
φ(H-O-C-C2)	-177.83	-62.9
ф(H1-C-O-H)	-57.09	179.99

Table S3: Parameters for bonds, angles and dihedrals for HFIP

a. All distances are reported in Angstroms (Å), and all angles and dihedrals are in degrees (°).

Atom ID	Charges ^a (Gauche)	Charges ^a (antiperiplanar)
С	-0.179624	-0.220327
С	0.485153	0.401674
F	-0.151961	-0.133323
F	-0.151961	-0.133323
F	-0.151961	-0.133323
С	0.485153	0.401674
F	-0.151961	-0.133323
F	-0.151961	-0.133323
F	-0.151961	-0.133323
0	-0.389807	-0.443433
н	0.354832	0.4016661
Н	0.156059	0.258687

Table S4 : Summary of Charges for HFIP conformers

a. Values for partial Charge are presented in atomic units

Atom ID	Charges ^a (Gauche)	Charges ^a (Antiperiplanar)	
С	0.543783	0.565457	
С	-0.093684	-0.077413	
0	-0.455792	-0.502283	
Н	0.350009	0.395821	
Н	0.119999	0.094675	
Н	0.119999	0.094675	
F	-0.194771	-0.190311	
F	-0.194771	-0.190311	
F	-0.194771	-0.190311	

Table S5 : Summary of charges for TFE conformers

a. Values for partial Charge are presented in atomic units

Bond stretching parameters for CF3SF4-ethanol used in simulation			
Bond	<mark>r_{eq} (Å)</mark>	k _r (KJ/mol.nm²)	
C-C	1.53	253632.1	
C1-H1	1.10	281081.0	
C1-O	1.40	262846.0	
C-F	1.34	304431.0	
O-H	0.96	309287.4	
	Bond angle parameters used in s	imulation	

Table S6: Bonded parameters used for TFE

Angle	θ	θ_{eq} / degree k_{θ} (K		KJ/mol.rad²)
F-C-F	F-C-F 109.06 644.336		644.336	
F-C-C1		109.24	418.400	
C-C1-O		110.19		418.440
C-C1-H1		109.56		313.800
C1-O-H		109.5 460.25		460.250
O-C1-H1		110.26		292.880
Dihe	dral parameters use	ed in simulations (Ry	ckaert-Bellemans ty	vpe)
Dihedral	C ₀	C ₁	C ₂	C ₃
H3-C-C1-F	0.65689	1.97066	0.0	-2.62755
O-C1-C-H3	1.40600	-1.04600	0.0	0.0
H-O-C1-H2	0.995779	2.98736	0.0	-3.98316
C-C1-O-H	0.26778	0.26778 -9.41032		0.0

Bond stretching parameters for CF3SF4-ethanol used in simulation				
	<mark>r_{eq} (Å)</mark>	k r	(KJ/mol.nm²)	
	1.53		253632.1	
	1.09		281081.0	
	1.40		262846.0	
	1.34		304431.0	
	0.96		309287.4	
Bond angle parameters used in simulation				
	9 _{eq} / degree	$k_{ heta}$	(KJ/mol.rad²)	
	109.06		644.336	
	109.24		418.400	
	109.50		418.440	
	109.56 313.800		313.800	
109.50 460.250		109.50		460.250
	110.26		292.880	
Dihedral parameters used in simulations (Ryckaert-Bellemans type)				
Co	C ₁	C ₂	C ₃	
0.79496	-0.79496	0.0	0.0	
0.65084	1.95253	0.0	-2.60338	
0.69733	2.09200	0.0	-2.78933	
0.26778	-9.41032	9.10021	0.0	
	Bond angle dral parameters us Co 0.79496 0.65084 0.69733 0.26778	d stretching parameters for CF3SF4-etha r_{eq} (Å) 1.53 1.09 1.40 1.34 0.96 Bond angle parameters used in state θ_{eq} / degree 109.06 109.24 109.50 109.56 109.56 109.50 110.26 dral parameters used in simulations (Ry) C_0 C_1 0.79496 -0.79496 0.65084 1.95253 0.69733 2.09200 0.26778 -9.41032	Interview provide provide in the provided in simulation $r_{eq}(Å)$ k_r 1.53 1.09 1.40 1.34 0.96 0.96 Bond angle parameters used in simulation $\theta_{eq}/$ degree k_{θ} 109.06 109.06 109.50 109.56 109.50 109.56 109.50 110.26 dral parameters used in simulations (Ryckaert-Bellemans the provided in the	

Table S7. Bonded parameters used for HFIP

Figure S1: Radial Distribution Function g (r) for TFE-TFE

Figure S2: Radial Distribution Function g (r) for HFIP-HFIP

Figure S3: Radial Distribution Function g (r) for CF_3SF_4 -ethanol- CF_3SF_4 -ethanol

Figure S4. RDFs for aqueous mixtures of fluorinated alcohols. Presented above are the RDFs for the O_{TFE} - H_{Water} distribution in TFE (a), HFIP (b) and CF₃SF₄-ethanol (c) and for the O_{TFE} - O_{Water} distribution in TFE (d) HFIP, (e) and CF₃SF₄-ethanol (f).

Figure S5 : (a) ¹H Nmr spectrum of 2-(tetrafluoro(trifluoromethyl)- λ^6 -sulfanyl)ethan-1-ol

Figure S5: (b) ¹⁹F Nmr spectra of 2-(tetrafluoro(trifluoromethyl)-λ⁶-sulfanyl)ethan-1-ol

Figure S5 : (c) HRMS (DART-ESI, m/z, positive) spectrum of 2-(tetrafluoro(trifluoromethyl)- λ^{6-} sulfanyl)ethan-1-ol