
nature methods

https://doi.org/10.1038/s41592-023-01908-wArticle

Context-aware transcript quantification 
from long-read RNA-seq data with Bambu

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41592-023-01908-w


Chen*, Sim*, et al. - Supplementary Information

Content

Supplementary Figures 3
Supplementary Figure 1. The transcript discovery model is robust and effective at
classifying full-length read classes 4
Supplementary Figure 2. Quantification accuracy and consistency by methods that
does both transcript discovery and quantification 5
Supplementary Figure 3. Comparison of quantification for Bambu with other NDRs 6
Supplementary Figure 4. Quantification performance when partial/extended
annotations are provided 7
Supplementary Figure 5. Quantification when partial/extended annotations are
provided compared against quantification when complete annotations are provided 8
Supplementary Figure 6. Full-length and unique read support show evidence
additional to transcript abundance estimates 9
Supplementary Figure 7. Transcript discovery identifies novel transcripts overlapping
highly with repeats 10
Supplementary Figure 8. Equivalence Read Class (EquiRC) types 10

Supplementary Text 11
1. Features used for transcript discovery 11
2. Contribution of transcript features to transcript discovery 13

Supplementary Text Figure 1. Contribution of features to Bambu’s transcript
discovery model 13

3. Combining Samples 14
4. Single Exon Read Classes 14

Supplementary Text Figure 2. Impact of novel single exon transcripts on
quantification accuracy 15

5. Using a pre-trained model (in practice) 15
6. Bambu performance at different levels of annotation completeness 15

Supplementary Text Table 1. Performance of Transcript Discovery Model trained
with missing reference annotations 16
Supplementary Text Table 2. NDR recommendation on different datasets 16

7. Filtering incompatible read classes for transcript quantification 16
Supplementary Text Figure 3. Tracking of incompatible reads improves gene
expression quantification 17

8. Impact of Minimap2 alignment parameters used on NanoCount and Salmon
quantification results 18

Supplementary Text Figure 4. The impact of transcriptome alignment parameters
on quantification for NanoCount and Salmon 18
Supplementary Text Table 3. minimap2 alignment parameters 19

9. Benchmark on running time and memory usage 19
Supplementary Text Figure 5. Comparison of processing time and peak RSS
usage 20
Supplementary Text Table 4. Processing time and peak memory usage for a very
large sample (121 million reads). 21

1



Chen*, Sim*, et al. - Supplementary Information

Supplementary Text Table 5. Ease of use in transcript discovery and
quantification when processing 10 samples 22

10. Feature comparison 22
Supplementary Text Table 6. Feature comparison of methods that provide
transcript quantification for long read data 23

11. Software versions 23
Supplementary Text Table 7. Versioning information for all methods benchmarked
23

Supplementary Notes 24
1. Transcript discovery evaluation 24
2. Transcript quantification with context-specific annotations 26
3. Full-length and unique read support 27
4. Quantification of retrotransposon-derived isoforms 29

References 30

2



Chen*, Sim*, et al. - Supplementary Information

Supplementary Figures

3



Chen*, Sim*, et al. - Supplementary Information

Supplementary Figure 1. The transcript discovery model is robust and effective at classifying
full-length read classes
(a) PR curves for the performance of transcript discovery when using minimum, mean, and maximum to
combine TPS across samples for the same read class on all HepG2 samples together without annotations for
human chromosome 1. The performance of using the sum of read counts as the classifier across the samples
is used as a comparison (b) A precision recall curve showing the performance of Bambu on PacBio data using
either the PacBio trained model (purple), the pretrained model (green), or ranking read classes by gene
proportion (orange) or read count (blue). The grey shaded area represents the mean +/- SE of the precision
for each line. (c) A precision recall curve showing the performance of models pre-trained on human (purple),
mouse (blue) or arabidopsis (green) data applied to another arabidopsis tissue. Additionally the performance
of the sample trained model is included (orange). The grey shaded area represents the mean +/- SE of the
precision for each line. (d) The precision and sensitivity of varying Bambu thresholds when looking at a subset
of read classes divided into expression quantiles. The same model is applied to all subsets. The full data is
coloured in red, read classes that have expressions ranging from 0 to the lower quartile are shaded in yellow,
those ranging between the lower quartile and the median in green, between the median and upper quartile in
blue and the upper quartile to the max in red. Each subset should represent approximately 25% of the read
classes. The lowest expressed quartile is larger than the others due to a greater than 25% of read classes
sharing a read count of 2. (e) The precision and sensitivity of varying Bambu thresholds when looking at a
subset of read classes divided by the number of expressed isoforms (> 2 read count) their gene contains. The
same model is applied to all subsets. The full data is coloured in red, the subset of read classes that are the
only expressed isoforms in their gene are coloured purple, those which have two or more isoforms are shaded
in teal, and those with five or more isoforms are green. (f) Precision and Recall curves of the classification
using Bambu models trained using reference annotations missing a random fraction of annotations used from
the human reference annotations (excluding chromosome 1). The models trained using these annotations, are
used to classify read classes from chromosome 1. The Pretrained Model represents the in-built model in
Bambu which is used when the annotations do not support training and Read Count classifies the read
classes solely using read count alone. These were applied to all SG-NEx datasets. (g) A box plot showing the
distribution of NDR recommendations of SG-NEx samples (n = 76) when Bambu was run with different
percentages of reference annotations. (h) We measured the difference in ROC AUC of trained and pretrained
models in which the trained model was trained with missing reference annotations. Samples in which Bambu
recommends using the pretrained model are coloured red (the recommended NDR was calculated as > 0.5),
and samples where the trained model is used are coloured blue (i)The sensitivity and precision from transcript
discovery on SGNex_HepG2_directRNA_replicate6_run1 with 50% of chr1 annotations randomly removed.
Each tool is displayed at several different parameter thresholds. Bambu (red) was run using novel discovery
thresholds between 1 and 0.1. StringTie2 (teal and blue) FLAIR (orange and green) and TALON (purple and
pink) were run with read count/coverage thresholds between 2 and 10 and gene proportion thresholds
between 0.01 and 07. FLAIR and TALON do not provide their own parameter for thresholding by gene
proportion, so these thresholds were manually applied using the quantification results from the respective tool
Error bars represent the standard error (j) The average sensitivity and precision of transcript discovery on core
SG-NEx samples (n = 76) without annotations for human chromosome 1. Each tool is displayed at several
different parameter thresholds: Bambu (blue) with NDR thresholds varying between 1 and 0.1, FLAIR (red),
StringTie2 (green) and TALON (grey) with read count/coverage thresholds varying between 2 and 10, with 4
additional thresholds for StringTie2 at 15, 20, 30 and 50. Horizontal error bars represent the mean +/- SD of
the sensitivity and vertical error bars represent the mean +/- SD of the precision (k) The measured sensitivity
and precision of transcript discovery when combining HepG2 samples (n = 12), without annotations for human
chromosome 1. Each tool is displayed at several different parameter thresholds: Bambu (blue) with NDR
thresholds varied between 1 and 0.1, StringTie2 (green) and TALON (grey) with read count/coverage
thresholds varying between 2 and 10, and 4 additional thresholds for StringTie2 at 15, 20, 30 and 50 (l) The
average sensitivity and precision of transcript discovery on spike-in data (n = 8) with 50% of the spike-in
annotations randomly removed. Each tool is displayed at several different parameter thresholds: Bambu (blue)
with NDRthresholds varying between 1 and 0.1, StringTie2 (green), FLAIR (red) and TALON (grey) with read
count/coverage thresholds varied between 2 and 10. Horizontal error bars represent the mean +/- SD of the
sensitivity and vertical error bars represent the mean +/- SD of the precision (m) The average sensitivity and
precision from transcript discovery outputs run on spike-in data (n = 8) without annotations for the spike-in
chromosome. Each tool is displayed at several different parameter thresholds. Bambu (Blue) was run using
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novel discovery thresholds between 1 and 0.1. StringTie2 (green), FLAIR (red) and TALON (grey) were run
with read count/coverage thresholds between 2 and 10. Error bars represent the standard error

Supplementary Figure 2. Quantification accuracy and consistency by methods that does both
transcript discovery and quantification
(a) The mean absolute error between the log2 normalised spike-in transcript abundance estimates and log2
normalised expected spike-in abundance when applying Bambu with recommended NDR (0.244), Bambu with
NDR = 0.4, StringTie2, IsoQuant, FLAMES, FLAIR, and TALON for annotations for extended annotations by
each of these methods, including annotations that are present in the reference (partial) sequin annotations, the
annotations that have been artificially removed and rediscovered by each of the methods, and also the false
positive annotations discovered by each method (green), plus annotations that have been artificially removed
from the partial annotation and remained missing after transcript discovery, i.e., missing annotations (blue) (b)
Scatterplots between log2 normalised transcript abundance estimates and log2 normalised expected spike-in
abundance when applying Bambu with recommended NDR (0.244), Bambu with NDR = 0.4, StringTie2,
IsoQuant, FLAMES, FLAIR, and TALON for spike-in transcripts annotated transcripts (light blue), transcripts
artificially removed from the reference and rediscovered by Bambu (green), false positive transcripts (purple),
transcripts artificially removed from the reference and remained missing after Bambu discovery (grey) (c)The
number of missing (grey) and false positive (purple) transcripts using partial full sequin annotations when
applying Bambu with default recommended NDR (0.244), Bambu with NDR = 0.4, StringTie2, IsoQuant,
FLAMES, FLAIR, and TALON. (d) and full annotations when applying Bambu with recommended NDR
(0.244), Bambu with NDR = 0.4, StringTie2, IsoQuant, FLAMES, FLAIR, and TALON. This is calculated
separately for annotated transcripts (light blue), transcripts artificially removed from the reference (green), and
false positive transcripts (purple) (e) Scatterplots between log2 normalised transcript abundance estimates
with complete annotations and log2 normalised transcript abundance estimates with partial annotations when
applying Bambu with recommended NDR (0.244), Bambu with NDR = 0.4, StringTie2, IsoQuant, FLAMES,
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FLAIR, and TALON for spike-in transcripts annotated transcripts (light blue), transcripts artificially removed
from the reference and rediscovered by Bambu (green), false positive transcripts (purple), transcripts artificially
removed from the reference and remained missing after Bambu discovery (grey)

Supplementary Figure 3. Comparison of quantification for Bambu with other NDRs
(a) Scatterplots between log2 normalised transcript abundance estimates and expected spike-in abundance
using partial annotations, and (b) Scatterplot between log2 normalised transcript abundance estimates using
full and partial annotations: for spike-in annotated transcripts (light blue), transcripts artificially removed from
the reference and rediscovered by Bambu (green), false positive transcripts (purple), transcripts artificially
removed from the reference and remained missing after Bambu discovery (grey) when applying Bambu with
varying NDRs from 0.1 to 0.3, and 0.5 to 1
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Supplementary Figure 4. Quantification performance when partial/extended annotations are provided
(a) The mean absolute error between the log2 normalised transcript abundance estimates and log2
normalised expected spike-in abundance when applying Bambu, featureCounts, LIQA, NanoCount, and
Salmon with partial (blue) or Bambu extended (NDR = 0.1, green) annotations for transcripts that are present
in the reference (partial sequin annotations). (b-c) Scatterplots between transcript abundance estimates and
expected spike-in abundance when applying Bambu, featureCounts, LIQA, NanoCount, and Salmon for
transcripts that are present in the reference (partial sequin annotations) (light blue), transcripts that have been
artificially removed from the reference and rediscovered by Bambu (green), false positive transcripts (purple),
transcripts that have been artificially removed from the reference and remained missing after Bambu discovery
(grey): (b) with partial annotations; (c) with extended annotations by Bambu (NDR = 0.1)
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Supplementary Figure 5. Quantification when partial/extended annotations are provided compared
against quantification when complete annotations are provided
(a) The mean absolute error between the log2 normalised spike-in transcript abundance estimates with partial
(blue) or Bambu extended (NDR = 0.1, green) annotations against with full annotations when applying
Bambu, featureCounts, LIQA, NanoCount, and Salmon for transcripts that are present in the reference (partial
sequin annotations). (b-c) Scatterplots between log2 normalised transcript abundance estimates with
complete annotations and log2 normalised transcript abundance estimates when applying Bambu,
featureCounts, LIQA, NanoCount, and Salmon for transcripts that are present in the reference (partial sequin
annotations) (light blue), transcripts that have been artificially removed from the reference and rediscovered by
Bambu (green), false positive transcripts (purple), transcripts that have been artificially removed from the
reference and remained missing after Bambu discovery (grey): (b) with partial annotations; (c) with extended
annotations by Bambu (NDR = 0.1)
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Supplementary Figure 6. Full-length and unique read support show evidence additional to transcript
abundance estimates
(a) The distribution of average reads categorised as full-length, partial length, and unique (b) The comparison
of transcript abundance estimates between two replicates of MCF7 generated using the direct cDNA protocol,
with filtered transcript number being approximately 30 thousand, when filtered using CPM, unique read count,
and full-length read count. The spearman correlation is shown in the top right for each filter (c) The mean
spearman correlation of transcript abundance estimates between replicates for each cell line generated using
cDNA, direct cDNA, and direct RNA protocols against number of transcripts that pass the filter, using CPM,
full-length read count, full-length CPM, unique read count and unique CPM filter thresholds, with thresholds
ranging from 1 to 20 (d) Violin plot showing the median, upper and lower quartiles, and 1.5 x interquartile
range of the average fraction of full-length, unique read counts and CPM for each artificial transcript across
Hct116 samples (e) The sensitivity and precision of NanoCount and Salmon abundance estimates in filtering
transcripts overlapping with highly abundant isoforms that have no unique or full-length reads support at
varying filtering thresholds from 1 to 20 on Hct116 samples. Filtering was based on the average values across
replicates being not lower than the threshold
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Supplementary Figure 7. Transcript discovery identifies novel transcripts overlapping highly with
repeats
(a-b) Histogram of overlapping percentage of repeats for (a) annotated transcripts and (b) novel transcripts (c)
Scatterplot of transcript abundance estimates with discovery (NDR = 0.3) against that without discovery (NDR
= 0), with red and green points showing annotated and novel transcripts with at least 80% overlapping with
HERVH-LTR7, and light blue points showing other transcripts with less than 80% overlapping with
HERVH-LTR7

Supplementary Figure 8. Equivalence Read Class (EquiRC) types
Illustration of the five equiRC types: FIM (Full Intron Match), equally aligning to unique transcript; SIM (Subset
Intron Match), partially aligning to unique transcript; FSIM (Full and Subset Intron Match), equally aligning to
subset transcripts, while partially aligning to longer transcripts; MFIM (Multiple Full Intron Match), equally
aligning to multiple transcripts, usually very similar transcripts; MSIM (Multiple Subset Intron Match), partially
aligning to multiple transcripts (these are the mostly fragmented reads)
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Supplementary Text

1. Features used for transcript discovery

Bambu’s transcript discovery model uses nine features during classification: number of
reads, gene proportion, the standard deviation of the starts and ends of read classes, and
the number of polyAs and polyTs found at the read class start and ends, which are detailed
below:

Feature definition:
Each read class i is described by a vector 𝑥

𝑖 
∈ 𝑅9 :

1. 1 Number of reads ( )𝑥
𝑖
𝑅𝐶

The number of reads for each read class is defined as the number of aligned reads that
share the exact exon-junctions ( ), normalised by library size for sample j ( ):𝑐

𝑖
𝑙

𝑗

𝑥
𝑖
𝑅𝐶 =  

𝑐
𝑖

𝑙
𝑗

With .𝑙
𝑗

=  
𝑖=1

𝑀

∑ 𝑐
𝑖

This feature is an intuitive measure for the validity of a read class and its abundance in the
sample of interest, as the read count directly reflects the number of observations for this
read class in the data set.

Limitations of read count as a standalone parameter
Systematic errors during library preparation, sequencing, or alignment can result in larger
read counts for read classes that are not valid transcripts, such as degraded RNAs and
non-full-length reads. Furthermore, read classes with low read count can still be valid
transcripts, and highly expressed genes are more likely to lead to read classes with high
read count that originate from degradation products or other possible artefacts. Therefore,
higher read count does not guarantee a high probability that a read class is a valid transcript,
and a low read count does not guarantee that a read class is not a valid transcript.

1.2 Gene proportion ( )𝑥
𝑖
𝐺𝑃

Gene proportion represents the proportion of reads that are assigned to one read class
amongst all the reads assigned to the same gene:
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𝑥
𝑖
𝐺𝑃 =  

𝑐
𝑖

𝑡 ∈ 𝐼
∑ 𝑐

𝑡

With I representing the set of all read classes that overlap the same gene as read class i

Gene proportion directly addresses some of the main limitations of read count ( ) as it𝑥𝑅𝐶

reflects the number of reads assigned to each read class relative to the number of reads
assigned to the gene.

Limitations of read count as a standalone parameter
There are 2 main limitations for gene proportion. Firstly, this feature is strongly influenced by
the number of isoforms for each gene and therefore not comparable across different genes.
In particular, gene proportion is always 1 for single transcript genes, and much smaller with
larger numbers of expressed transcripts. Secondly, the estimation of gene proportion can be
inaccurate with low read counts. With a gene read count of 10, any read class with 2 reads
will have a gene proportion of 20%, which is already higher than the gene proportion
observed for many valid, annotated transcripts from genes with many isoforms.

1.3 TSS/TES standard deviation ( and )𝑥
𝑖
σ𝑇𝑆𝑆 𝑥

𝑖
σ𝑇𝐸𝑆

This feature is calculated by measuring the standard deviation of the locations of the start
and end coordinates for all the reads comprising a read class. Differences in the standard
deviation may indicate specific properties of valid transcripts that distinguish them from
degradation artefacts and other invalid transcript candidates.

1.4 Strand bias ( )𝑥
𝑖
𝑠𝑡𝑟𝑎𝑛𝑑 

The strand bias is calculated as the proportion of reads mapping to the strand with higher
read count.

In cDNA samples sequencing can start at both the 5’ and 3’ end of the transcript (whereas
in RNA samples, sequencing always starts at the 3’ end). For cDNA samples, a deviation
from the average strand bias could represent cases where sequencing did not process
correctly in one direction resulting in a systematic early truncation.

1.5 Start and End polyA/T frequency ( )𝑥
𝑖
𝑠𝑡𝑎𝑟𝑡−𝐴, 𝑥

𝑖
𝑠𝑡𝑎𝑟𝑡−𝑇, 𝑥

𝑖
𝑒𝑛𝑑−𝐴, 𝑥

𝑖
𝑒𝑛𝑑−𝑇 

This feature counts the number of A’s (orT’s respectively) within the first (or last respectively)
10bp of the start and end of the read class. This feature is based on the genome sequence,
not on the read or transcript sequence, and does not represent the presence of polyA tails.
The presence of polyA/polyT sequences can result in early truncation of the read. One
example is strand invasion that can occur during reverse transcription leading to truncated
reads with an abundance of A’s at the 5’ end. This feature is designed to capture sequencing
artefacts due to the presence of A or T rich sequences.
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2. Contribution of transcript features to transcript discovery

Bambu trains a model that automatically optimises the contribution of all features for
transcript discovery based on the sample and technology provided by the user. On their own,
only read counts and gene proportion (and to a lesser amount the standard deviation of both
ends) are useful as classifiers (Supplementary Text Figure 1a). However as Bambu can
learn non-linear relationships, these features still contribute to the overall classification
accuracy, with varying impact depending on the sample. In the sample used for the default
pre-trained model, gene proportion is the most important feature, whilst the presence of
polyA and polyTs at the start of the read class and the read count showed similar importance
(Supplementary Text Figure 1b). As this sample is direct RNA and is therefore stranded, the
strand bias feature has no relevance in the model, showing how training is able to adapt to
the sample as needed. The relevance of the multi-feature approach is highlighted when
looking at the change in contribution of the features across multiple samples and library
preparations (Supplementary Text Figure 1c). For example the number of T’s and A’s at the
start of a transcript have more impact on the direct RNA-seq data, reflecting specific
characteristics of the direct RNA-Seq protocol.
The integration of features using a supervised machine learning model allows for more
dynamic and context-specific transcript discovery. Besides being robust and accurate, this
approach also reduces the complexity of threshold calibration from nine potentially relevant
features to a single, interpretable probability score.

Bambu also allows users to specify read count and gene read proportion thresholds which
can be used instead of the NDR, however, this is not recommended.

Supplementary Text Figure 1. Contribution of features to Bambu’s transcript discovery model
(a) A precision-recall plot for each feature used in the transcript prediction model in bambu.
Features are used to rank read classes/transcript candidates without any transformation. Each
precision-recall curve is averaged across all SG-NEx data. The grey shaded area represents the
standard error for each feature. (b) A SHAP plot showing the value of different features for a model
trained on the HepG2 direct RNA replicate 5 run 1 sample. The y-axis is each feature used in the
model with the number representing the feature SHAP score (the contribution of the feature) to the
model. Each point represents one read class and the colour represents if the feature has a higher
value (purple) relative to the feature. The x-axis is the importance of the features value to the model
prediction score. (c) A jitter plot of the feature SHAP scores for all SG-NEx samples. Each feature
from the model is on the y-axis and the mean SHAP score is shown on the x-axis. Each point is
coloured based on the library preparation of the sample: PCR cDNA (red), PCR cDNA stranded
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(green), direct cDNA (blue) and direct RNA (purple)

3. Combining Samples
Bambu trains a model on each sample individually and thereby assigns a different TPS to a
read class that occurs across multiple samples. Bambu uses the maximum TPS to combine
multiple samples (see Methods for details). As a comparison, we also measured the
predictive power with a PR curve when either the maximum, minimum or mean is used to
integrate the TPS across samples. Using the mean or max TPS resulted in the best and very
similar performance with taking the minimum TPS performing worse than the read count
baseline (Supplementary Figure 1a).

4. Single Exon Read Classes

Overlapping single exon reads are combined into single exon read classes. By default
Bambu does not report single exon novel transcripts, however users can choose to include
them if desired using advanced parameters (see online documentation).

During model training, bambu separately trains single-exon and multi-exon read classes and
produces two distinct models. The read classes are not trained together as the features
between the two read class types have differing behaviours which negatively affect model
performance. Single exon read classes which are wholly contained within an annotated
single exon annotation are considered as equal for training purposes (irrespective of how
much the start and end sites differ). The TPS for multi-exon and single-exon read classes
are predicted by their respectively trained models.

Single exon transcripts can be a source for false positives. While these transcripts can be
included, we recommend that they are carefully inspected and interpreted. Single exon read
classes are always used for quantification regardless of how they are handled during
transcript discovery.

We have performed the quantification by other tools after removing the single exon
transcripts. Compared to no filtering on novel single exon transcripts , the number of false
novel transcripts is reduced for StringTie2, FLAIR, and TALON, reducing the mean absolute
error (Supplementary Text Figure 2, other methods did not report single exon transcripts for
the sequin genes).
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Supplementary Text Figure 2. Impact of novel single exon transcripts on quantification accuracy
The mean absolute error between the log2 normalised spike-in transcripts estimates and log2
normalised true concentration levels when applying StringTie2, FLAIR, and TALON with (solid line)
or without (dashed line) novel single exon transcripts removed for software annotations, i.e., partial
annotations + positive annotations from each of the methods (green), or complete annotations, i.e.,
full reference annotations + positive annotations for each of the methods (blue).

5. Using a pre-trained model (in practice)

The pretrained model is shown to be able to effectively classify novel transcripts when tested
on data from different technology (PacBio) and on different organisms (Arabidopsis) with
only a small performance drop compared to a sample trained model (Supplementary Figure
1b). However, for users that do not have sufficient annotations to train their sample, and
would like to increase the performance of transcript discovery, Bambu allows for training new
models using related data for which comprehensive reference annotations are available. To
evaluate this functionality, we trained Bambu on mouse, human and Arabidopsis data, and
tested the pre-trained models on a different genotype of Arabidopsis. Here we observe that
both the human and mouse pre-trained models can be used to rank novel transcripts in
Arabidopsis (Supplementary Figure 1c). However, the model that was trained on A.
Thaliana and applied to another genotype of A. Thaliana showed higher performance that
was comparable with the sample/genotype specific model (Supplementary Figure 1c).
These results suggest that the generic pre-trained model is robust and can be used
effectively, while a pre-trained model that matches the species of interest is expected to lead
to an improved performance.

Please refer to the online documentation (https://github.com/GoekeLab/bambu) for details on
model training.

6. Bambu performance at different levels of annotation completeness
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Reference
annotations

Mean number of
expressed
annotated
transcripts

Mean Model
performance. (PR
AUC)

Mean ROC AUC

25% 2345 0.597 0.770

50% 4688 0.639 0.785

75% 6999 0.663 0.792

100% 9260 0.677 0.798

Pretrained Model NA 0.668 0.792

Read Count NA 0.498 0.678

Supplementary Text Table 1. Performance of Transcript Discovery Model trained with missing
reference annotations
Reference annotations represent the random fraction of annotations used from the human
reference annotations (excluding chromosome 1). The models trained using these annotations,
are used to classify read classes from chromosome 1. The Pretrained Model represents the
in-built model in Bambu which is used when the annotations do not support training and included
chromosome 1 during training. Read Count classifies the read classes solely using read count
alone. These were applied to all SG-NEx datasets.

Missing
Annotations

0% 25% 50% 75% Number of
Samples

PacBio
Human

0.141 ±0.004 0.349 ±0.009 0.569 ±0.001 0.766 ±0.006 3

Mouse 0.128 ±0.010 0.336 ±0.010 0.557 ±0.015 0.774 ±0.004 4

Arabidopsis 0.103 ±0.007 0.309 ±0.009 0.527 ±0.002 0.755 ± 0.002 3

Supplementary Text Table 2. NDR recommendation on different datasets
The table shows the mean recommended NDR across the samples tested. ± is the standard
deviation of the mean

7. Filtering incompatible read classes for transcript quantification

To improve Bambu quantification accuracy, we only assign reads to transcripts if they are
below a maximum alignment distance of 35bps (referred to as compatible), whereas any
other read will be excluded from transcript quantification (incompatible reads). The filtering
step provides more accurate transcript quantification (Supplementary Text Figure 3a-b).

Most reads which are incompatible with transcripts due to missing annotations can still be
accurately assigned to genes. Usually, gene expression is estimated as the sum of transcript
expression, therefore, when incompatible reads are removed, gene expression will be
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underestimated. To prevent this, Bambu assigns all incompatible reads to an artificial
“unidentified transcript” that is associated with each gene. Gene expression is then
estimated using all reads that can be assigned to the transcripts of each gene, including
reads that are incompatible with all existing annotations, leading to improved gene
expression quantification (Supplementary Text Figure 3c-d).

Supplementary Text Figure 3. Tracking of incompatible reads improves gene expression quantification
Shown is the scatter plot of observed CPM vs expected CPM for sequin transcripts and genes
when Bambu is used with NDR = 0 and partial annotation is provided: (a) sequin transcript
expression (old Bambu version) vs (b) sequin transcript expression (revised Bambu version); (c)
sequin gene expression when incompatible reads are excluded vs (d) sequin gene expression
when incompatible reads are included (revised version of Bambu). Blue dots represent transcripts
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that are present in the partial annotation. Grey dots represent transcripts that are artificially
removed from annotation, i.e., the missing transcripts in the partial annotation. Orange dots
represent the unidentified transcript expression for each gene, with each dot representing one
gene. Unidentified transcripts are only used for gene expression estimates, but not for transcript
expression estimates, leading to improved quantification.

8. Impact of Minimap2 alignment parameters used on NanoCount
and Salmon quantification results

For the transcriptome alignment-based methods NanoCount and Salmon, we aligned fastq
files to the transcriptome with the recommended/default alignment steps that differ in the
number of alignments reported for each read 1,2(see Supplementary Text Table 3 for the
detailed parameter settings). To assess the impact of alignment parameters on
quantification, we additionally applied NanoCount with alignments generated using Salmon
recommended alignment parameters, and Salmon with alignments generated using
NanoCount recommended parameters (Supplementary Text Figure 4). We find that both
NanoCount and Salmon quantification results for the spike-in transcripts are similar when
different alignment parameters are used (Supplementary Text Figure 4). For both methods,
the recommended alignment parameters give better results, therefore we have kept the
different alignment settings for the transcriptome-alignment based methods.

Supplementary Text Figure 4. The impact of transcriptome alignment parameters on quantification for
NanoCount and Salmon
(a)Shown the barplot of mean absolute error between log2 normalised spike-in transcript
abundance estimates and log2 normalised expected abundance when applying NanoCount and
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Salmon with NanoCount recommended alignments parameters vs with Salmon recommended
alignment parameters (b)-(c)Shown the scatterplots of log2 normalised spike-in transcript
abundance estimates vs log2 normalised expected abundance when applying NanoCount and
Salmon with (b) NanoCount recommended alignment parameters and (c) Salmon recommended
alignment parameters are used.

Method Minimap2 alignment parameters

NanoCount* “ -ax map-ont -p 0 -N 10”

Salmon* “-ax map-ont -p 1.0 -N 100”

FLAMES** “-ax splice -t 12 -k14” and “-ax map-ont -p 0.9 --end-bonus 10 -N 3”

All other
methods

“-ax splice --junc-bed -k14”, “-uf” for stranded samples

Supplementary Text Table 3. minimap2 alignment parameters

*NanoCount and Salmon aligned fastq files to transcriptome fasta file
**FLAMES did alignment twice, once to genome fasta file with “-ax splice -t 12 -k14” and
once to transcriptome fasta file with “-ax map-ont -p 0.9 --end-bonus 10 -N 3”

9. Benchmark on running time and memory usage
Being able to analyse larger sample numbers with reasonable running times was a key
consideration during the design and implementation of Bambu. To achieve this, we have
vectorised most computation steps for efficient calculation in R, and we have implemented
parallel processing and memory friendly file handling. We specifically evaluated the following
scenarios for a systematic comparison the running time and memory of Bambu with existing
methods for transcript discovery and quantification

(1) Processing of individual samples

For this evaluation, we used 10 samples with varying sequencing depth (500K to 4.5 million
reads) that were processed individually using a single CPU. Compared to other transcript
discovery methods, Bambu is the second most efficient (average running time of 8.15
minutes and 1.4 GB RAM) after StringTie2 (2.45 minutes, 0.77GB RAM), with all other
methods having running times between 14 and 32 minutes (Supplementary Text Figure 5).

For completeness we have also included methods that only perform quantification. As
expected, these methods are generally faster as they do not attempt to identify novel
transcripts (Supplementary Text Figure 5).

(2) Parallel processing of multiple samples
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Most use cases of Bambu will include multiple samples that are jointly analysed. To compare
the running time and memory usage of Bambu with other methods in this scenario, we used
the same 10 samples and processed them as a single analysis using 5 CPUs. For this
analysis, only methods that allow customised multi-threading were included. Here, Bambu
has a running time of 23 minutes, which is comparable to StringTie2 (21 minutes), and
significantly faster than any other transcript discovery method (295-330 minutes, Figure
Supplementary Text Figure 5). Bambu supports the re-analysis with pre-processed files (for
example when new samples are added to an existing analysis, or alternative thresholds are
tested). Using this option further reduces the running time to 14.5 minutes.

Supplementary Text Figure 5. Comparison of processing time and peak RSS usage
Shown is the processing time for 10 samples when (a) processed individually with 1 CPU and (c)
processed together with 5 CPUs; and the processing peak resident set size (RSS) usage for 10
samples when (b) processed individually with 1 CPU and (d) processed together with 5 CPUs.
Methods that perform both transcript discovery and quantification have names colored in blue,
while methods that only perform transcript quantification have names colored in green. Note that
FLAMES can process multiple samples when fastq files are provided. IsoQuant is unable to
process all samples together as not all samples include the spike-in chromosome. All other

20



Chen*, Sim*, et al. - Supplementary Information

methods were able to process the data. For IsoQuant, we processed the 10 samples individually
with 5 CPUs as an approximation.

(3) Ability to process large data sets (121 million reads)

Due to improvements in the sequencing chemistry, an increasing number of reads is
expected from long read RNA-Seq data. We therefore also evaluated the ability to perform
transcript discovery and quantification on a sample with very high throughput (121 million
reads in total, 94.6 million aligned reads). Bambu can successfully analyse such samples
(Supplementary Text Table 4), whereas TALON, IsoQuant, NanoCount and LIQA either
return errors or have running times of > 4 days.

Method Processing time
(mins)

Peak RAM
(GiB)

Number of cpus
used*

Transcript
discovery and
quantification
methods

Bambu 98.11 43.01 1

StringTie2 87.80 1.84 12

FLAIR 701.41 7.74 12

FLAMES 1458.87 97.63 3

Transcript
quantification
methods

featureCounts 31 0.07 1

Salmon 4.98 12.42 24

Supplementary Text Table 4. Processing time and peak memory usage for a very large sample (121
million reads).

Only methods that completed the analysis are shown.
*different cpus are used here to quickly process the sample. For featureCounts, no
multi-thread is allowed. For Bambu multi-threading is most efficient when multiple samples
are provided to facilitate memory-efficient compute, here only a single CPU is used. For
flames three CPUs are used to prevent large memory usage

(4) Ease-of-use

Efficiency not only implies low running time and memory, but also ease of use. Bambu was
designed to simplify the analysis of long read RNA-Seq data, minimising the number of
commands and user-defined thresholds to obtain transcript annotation and quantification
results. Among the transcript discovery methods, Bambu, FLAMES, and IsoQuant only
require a single command to perform transcript discovery and quantification of 10 samples
(Supplementary Text Table 5). In contrast, other methods analyse samples individually
before combining them, requiring 10 to 12 commands to obtain the results from such a
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multi-sample analysis (Supplementary Text Table 5). Compared to FLAMES and IsoQuant,
Bambu is significantly faster (see above).

Method Number of commands for 10 samples (ease of use)

discovery quantification

Transcript
discovery and
quantification

Bambu 1 command

FLAIR 10 Correct + 1 Collapse
(11 commands)

Quant
1 command

TALON 1 Initialise DB + 10 talon_label_reads +
1 discovery

(12 commands)

Quant
1 command

StringTie2 10 Discovery + 1 merge
(11 commands)

Need to re-run StringTie
again with “-B -e”

parameters
(10 commands)

FLAMES 1 command

IsoQuant 1 command

Transcript
quantification

only

LIQA Not applicable 10 commands

NanoCount Not applicable 10 commands

featureCounts Not applicable 10 commands

Salmon Not applicable 10 commands

Supplementary Text Table 5. Ease of use in transcript discovery and quantification when processing
10 samples

10. Feature comparison
In this section, we highlight the novel aspects for quantification of long read RNA-Seq in
Bambu and present them in a table (Supplementary Text Table 6).

Method provide
long read
quantification

Able to
quantify
gene
expression

Able to
process
multiple
samples

No extra
steps need to
match
annotations

Able to track
full-length
and unique
read count
estimates

Able to process very large
sample (over 100 million
reads, using 96
processors and 186.7GiB
RAM)

Bambu ✔ ✔ ✔ ✔ ✔

NanoCount ❌ ❌ ✔ ❌ ❌

Salmon ✔* ❌ ✔ ❌ ✔

featureCounts ✔* ❌ ✔ ❌ ✔
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StringTie2 ✔* ❌ ✔ ❌ ✔

FLAIR ✔* ✔ ❌ ❌ ✔

TALON ✔ ✔ ✔ ❌ ❌

LIQA ❌ ✔ ✔ ❌ ✔**

FLAMES ✔* ✔ ✔ ❌ ✔

IsoQuant ✔* ✔ ✔ ❌ ❌

Supplementary Text Table 6. Feature comparison of methods that provide transcript quantification
for long read data

✔: Possible
❌: Not possible
* not using incompatible reads;
**The whole process takes about 4 days.

11. Software versions

In this section, we listed out the versions of the softwares that were used in the benchmark
analysis.

Software Version used in transcript
discovery benchmark

Version used in transcript
quantification benchmark

Bambu BambuManuscriptRevision branch BambuManuscriptRevision branch

StringTie2 2.1.5 2.1.7

FLAIR 1.5.1 1.4 using docker, the docker
version is not updated since 2019
Jun 26

TALON 5.0 5.0

IsoQuant 3.1.2 3.1.2

LIQA NA 1.1.16

FLAMES NA 0.1.0

NanoCount NA 1.0.0.post3

Salmon NA 1.9.0

featureCounts NA Rsubread_2.12.2

Supplementary Text Table 7. Versioning information for all methods benchmarked
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Supplementary Notes

1. Transcript discovery evaluation

To evaluate the accuracy of the model in identifying valid novel transcript candidates we

designated the read classes derived from spike-ins and chromosome 1 as the test set and

the remaining read classes as the training set. The model was trained for each sample

separately on all SG-NEx spike-in data (n = 8) and all core SG-NEx data (n = 76)

(Supplementary Table 1). Sensitivity is measured as a percentage of the expressed

annotated transcripts in the sample (read classes that are full-splice-matches to the

reference annotation).

To measure the interpretability of the NDR threshold, we ran Bambu without the annotations

for chromosome 1 on all core SG-NEx samples (n = 76) (Supplementary Table 1). We then

measured the precision as the fraction of read classes from chromosome 1 that were below

the varying NDR thresholds matching the splice junctions of reference annotations from

chromosome 1. This was similarly performed for different read count thresholds. We also

compared the precision of Bambu to both StringTie2 3 and TALON 4 across all core SG-NEx

samples (n = 76) (Supplementary Table 1), which are of varying sequencing depths. To

match the default read count threshold used in Bambu, StringTie2 was run with the

recommended “-L -G '' parameters as well as “-c” at 2 which represents the minimum reads

per bp coverage to consider for multi-exon transcript. Similarly, TALON was run withdefault

parameters except for --minCount at 2 as part of talon_filter_transcripts which represents the

number of minimum occurrences (reads) required for a novel transcript.

To benchmark the performance of Bambu in transcript discovery, we generated a partial

annotation where we randomly removed 50% of the annotations on chromosome 1. We then
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ran transcript discovery with Bambu, FLAIR 5, StringTie2, IsoQuant 6 and TALON with default

parameters where applicable using all core SG-NEx samples (n = 76) (Supplementary Table

1). For Bambu, we varied the NDR threshold from 0.1 to 1 (0.1, 0.15, 0.2, 0.25, 0.3, 0.35,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), For StringTie2 we varied the “-c” parameter choosing values

between 2 and 50 (2, 4, 6, 8, 10, 15, 20, 30, 50). IsoQuant (green) was run using the

“--model_construction_strategy” parameter of reliable default_ont and sensitive_ont. Due to

the higher running time for TALON and FLAIR, we only varied “--minCount” and “-s” in as

part of “flair collapse” which represents the minimum number of supporting reads for an

isoform from 2 to 10 with a step of 2 respectively. All the novel isoforms were combined with

the partial annotations to provide the final output annotation. For each tool, we then

evaluated the sensitivity and precision using gffCompare 7 with default parameters by

comparing the final output annotation with the complete annotations of chromosome 1.

gffCompare measured sensitivity as the proportion of transcripts in the reference annotations

that were detected. As 50% of the annotations of chromosome 1 are provided, a minimum of

50% is expected. As starts and ends are usually very challenging to determine, we focused

on the intron chain level performance which also ignores the presence of single exon

transcripts in all tools. To test the performance of these tools across multiple samples, we

repeated the above analysis but with all SG-NEx HepG2 samples together (n=12)

(Supplementary Table 1). TALON was excluded from this analysis as we could not

successfully run the tool using these samples. For StringTie2, we used “--merge” to combine

the output annotations from all samples at the different “-c” thresholds described above.

StringTie2 was additionally run using “-T” which represents the minimum input

transcript-per-million to include in the merge and was performed on the isoforms discovered

at “-c 2”.
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2. Transcript quantification with context-specific annotations
To assess the impact of context-specific annotations on quantification, we generated a

partial annotation for the Sequin chromosome 8,9 by removing 1 transcript at random for each

multiple-isoform gene, and removing single-isoform genes at a random 50% probability. By

doing so, we expected that the partial annotation would be missing 40-50% of its transcripts.

The partial sequin annotations were then added to the Grch38 Ensembl annotations release

version 9110 . We varied the novel discovery rates (NDRs) from 0 to 1 with a 10% increasing

gap and applied it on the samples with Sequins (MixA V2) in the SG-NEx core cell line

samples (HEYA8 samples, n = 10). The estimated transcript expression levels are then

compared against the expected transcript expression levels per million, calculated by the

relative concentration levels times the expected number of Sequin reads per million (1% x 1

million, where 1% is the spike-in percentage), and the estimates when the Sequin

chromosome is provided at full. For the full annotation analysis, we applied Bambu without

discovery, i.e., NDR = 0.

We benchmarked Bambu against transcript-discovery assisted quantification approaches,

StringTie2, FLAIR, TALON, and quantification-only approaches, LIQA 11, NanoCount 12,

Salmon 13 and featureCounts. Genome bam files and unmapped fastq files are used as

input per condition as described below. For StringTie2, we first performed StringTie2 with the

recommended “-L -G” parameters on bam files to discover novel transcripts in each sample.

We then performed “ stringtie --merge ” to combine novel transcripts across samples. Lastly,

we repeated the first step with “-B -e” parameters added and the merged gtf following “ -G ”

parameter to quantify the transcripts across samples. For FLAIR, we generated bed12 files

using bam files with secondary alignments removed, and then performed “flair correct” on

those bed12 files to obtain psl files. With psl files, we then performed “flair collapse” on all

samples concatenated fastq file to obtain a collapsed fasta file. Lastly, we performed “flair

quantify” with the collapsed fasta file and each fastq file again to quantify for each sample.

For TALON, we first initialised the database with “talon_inititalize_database” and we then
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performed “talon_label_reads” for each sample bam file with a MD tag added. We then

performed “talon” to discover novel transcripts and after which, “talon_abundance” to

quantify transcript expression for each sample. For LIQA, we first filtered bam files with

“samtools -F 2308 -q 50” and then performed “liqa -task quantify” with filtered bam files and

“-max-distance 10 -f_weight 1” as recommended in the manual. For NanoCount, we used

the recommended “-ax map-ont -p 0 -N 10” to align reads to transcriptome reference with

minimap2 (version 2.17) 14 and output TPM values are used in comparison. Note that for

NanoCount, we excluded the top three largest samples as we were unable to run

NanoCount successfully due to memory issues. For Salmon, we followed the ONT pipeline

(https://github.com/nanoporetech/pipeline-transcriptome-de) where we used “-ax map-ont -p

1.0 -N 100” parameters to align reads to transcriptome reference with minimap2 (version

2.17) and then “quant --ont -l U” parameters for salmon. For completeness, we have also

included FLAMES 15 and IsoQuant, two other available long read transcript discovery and

quantification methods for the quantification benchmark. For FLAMES, we processed fastq

files following the usage with bulk data analysis suggestion with example SIRV_config.json.

For IsoQuant, we processed bam files with “--data-type nanopore” parameter. For

StringTie2, FLAIR, IsoQuant and Salmon, the output transcript per million (TPM) expression

levels are used for comparison. For TALON, FLAMES, LIQA and featureCounts, the

reported counts per transcript were normalised to counts per million (CPM) for comparison.

For NanoCount, the output abundance estimates were used for comparison.

3. Full-length and unique read support

Bambu provides full-length and unique read support estimation for each transcript in each

sample. To assess the impact of estimation uncertainty due to missing data, we performed

two analyses.
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In the first analysis, we applied CPM, unique read count, and full-length read count based

filtering on the v0.3 SG-NEx samples with sufficient number of aligned reads (400000, n =

73) to assess the influence of filtering in providing more stable estimation. For samples

generated using the same protocol within each cell line, we calculated the intra-sample CPM

estimates correlation on filtered transcripts based on average CPM, unique read count, or

full-length read count passing varying thresholds from 1 to 20, and we took the average

correlation.

To evaluate the efficacy of quantification of tools in the presence of in-active transcripts, we

generated artificial spliced-isoforms which could be assigned read support without full-length

and unique reads. To avoid overly complex scenarios, we selected genes with average

expression levels greater than 100 CPM, a partial read support fraction greater than 30%,

less than 8 isoforms, and with no isoforms having 3 or more exons. For the selected genes,

we identified the most abundant isoform as the reference isoform on which to base the

artificial spliced-isoform. From the internal exons of this isoform, we removed the two most

commonly used exons among the other isoforms of this gene generating an artificial

exon-skipping event. When there are four or more equally commonly used internal exons,

we will randomly choose four to remove to mitigate the complexity in such cases. We run

Bambu without discovery on the v0.3 SG-NEx Hct116 samples (n = 13) using the complete

annotations that included the artificial transcripts.

To assess the performance of using full-length and unique support to determine if a

transcript is truly expressed, we compared CPM, full-length read count, full-length CPM,

unique read count, and unique CPM filters at thresholds from 1 to 20. As an additional

comparison check, we also ran Salmon and NanoCount using the same artificial

annotations, using both SalmonTPM, and NanoCountCPM as filters respectively. For

NanoCount, we excluded the two largest samples for this analysis as we were unable to run
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them with NanoCount due to memory issues. We measured sensitivity as the percentage of

transcripts that pass the thresholds for each filtering method among all annotated transcripts,

and the precision is calculated as the percentage of valid (non-artificial) transcripts among all

transcripts that pass the thresholds for each filtering method. We averaged the sensitivity

and precision across the Hct116 samples.

4. Quantification of retrotransposon-derived isoforms

To identify retrotransposon-derived genes and isoforms, we focused on the v0.3 SG-NEx

hESC samples (n = 14) and ran Bambu with a NDR threshold of 0.3 as we expected an

enrichment of novel transcripts due to the abundance of repeat elements compared to the

other v0.3 SG-NEx cell line samples (n = 51). The extended annotation output from Bambu

was then overlapped with the RepeatMasker 16 sequences matching the Grch38 Ensembl

annotations release version 91 10. To identify the top expressed repeat element types, we

ranked the number of novel spliced isoforms expressed with a CPM level greater than or

equal to that do not overlap with any canonical annotations in any of the hESC samples for

each repeat element type.

To quantify the overlapping percentage of repeat elements for each transcript, we looked at

the overlap for each exon within each transcript for each repeat. Exons not overlapping with

canonical annotations are noted as novel exons. The average overlap percentages were

calculated within annotated or novel exons first and then summed up to provide the overall

overlap percentage for the transcript. We then compared the distribution of overlapping

percentages between annotated isoforms and novel isoforms. We focused on annotated

exons in annotated isoforms and novel exons in novel isoforms for this comparison to reduce

the potential biasing towards the null hypothesis. A paired t-test 17 with unequal variance

assumption was then conducted to assess the level of significance between the mean
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overlapping percentages, with two-sided two-sample Kolmogrov-Smirnov test 18 performed

to test the differences in the distributions of the overlapping percentages.

To identify the number of novel genes transcribed from HERVH-LTR7 repeats, we shortlisted

novel isoforms, including non-canonical overlapping novel isoforms, re-arranged, or novel

spliced canonical isoforms that are overlapping with HERVH-LTR7 repeats, and ranked them

by their average expression levels across the hESC samples. We then identified the top

expressed isoforms that constitute 90% of the overall isoform expression. To understand the

expression of these retro-transposon isoforms in cancer cell lines, we performed Bambu with

the extended annotation obtained from hESC samples on cancer cell lines for quantification.

Note that for this analysis, HEYA8 samples were not included due to a sample

cross-contamination in reads caused by the embedded de-multiplexing protocol used by

Guppy (version 3.2.10) 19 during the basecalling process. We also performed Bambu on

hESC samples without discovery to understand the impact of not discovering these

retro-transposon genes/isoforms.
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