
Biostatistics (2021), 0, 0, pp. 1–7
doi:10.1093/biostatistics/output

Overcoming the impacts of two-step batch effect

correction on gene expression estimation and

inference

Supplementary Material

TENGLONG LI, YUQING ZHANG, PRASAD PATIL, W. EVAN JOHNSON∗,

Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China, Division

of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA and

Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA

wej@bu.edu

1. Derivation of the sample covariance matrix for the two-step approach

Based on the Frisch-Waugh-Lovell theorem (Frisch and Waugh, 1933; Lovell, 1963, 2008), the

estimate for batch effect β̂2g in the regression model Yg = X1β1g +X2β2g + εg, εg ∼ N(0, σ2
gI), is

the same as the β̂2g in the following regression model:

PYg = PX2β2g + εg, εg ∼ N(0, σ2
gI) (1.1)

where P = I −X1(XT
1 X1)−1XT

1 . We will also have β̂2g = (XT
2 PX2)−1XT

2 PYg.

Model (1.1) the first step of the two-step batch adjustment. In the second step of the two-step

batch adjustment, the batch adjusted data Ỹg is obtained as:

Ỹg = Yg −X2β̂2g = (I −X2(XT
2 PX2)−1XT

2 P )Yg = (I −H12)Yg (1.2)
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where H12 is:

H12 = X2(XT
2 PX2)−1XT

2 P = X2(XT
2 (I −X1(XT

1 X1)−1XT
1 )X2)−1XT

2 (I −X1(XT
1 X1)−1XT

1 )

(1.3)

Therefore, the batch adjusted data has covariance matrix σ2
g(I −H12)(I −H12)T .

It is noteworthy that X1 should also include the all-ones vector 1 when there is an reference

batch. That is H12 = X2(XT
2 (I−X0(XT

0 X0)−1XT
0 )X2)−1XT

2 (I−X0(XT
0 X0)−1XT

0 ) where X0 =

[1, X1].

2. The relationship between biological effect estimates and batch design

In this section, we will show the relationship between biological effect estimates and batch design.

Without loss of generality, the regression model (for each gene) is formulated as Y = α+X1β1 +

X2β2 + ε, ε ∼ N(0, σ2I), where α is the background gene expression. X1 represents the biological

groups (assume there are two biological groups) and X2 represents the batch design. Furthermore,

we define the matrix X = [X2, X1] and the matrix V = [1, X]. We also define sample variance

σ̂xx and covariances σ̂xy as follows:

σ̂xx =
1

n

n∑
i=1

(xi − x̄)2 (2.4)

σ̂xy =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) (2.5)

Our goal is to derive the least square estimate β̂1 and its variance based on the sample

variance-covariance matrix of X. It’s known that the least square estimate has the matrix form

(V TV )−1V TY . Specifically, V TV is the following block matrix:

V TV =

(
n nX̄T

nX̄ XTX

)
(2.6)

where X̄ = [X̄2, X̄1]T .
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The inverse of V TV then becomes:

(V TV )−1 =

n−1 + n−1X̄TS−1
XXX̄ −n−1X̄TS−1

XX

−n−1S−1
XXX̄ n−1S−1

XX

 (2.7)

Furthermore, the covariance matrix SXX is the following block matrix:

SXX =

(
S22 S21

S12 σ̂11

)
(2.8)

where S22 is the covariance matrix of X2, S21 is the covariance matrix between X2 and X1 (b

rows and 1 column; b is the number of batch indicators), and S12 is just the transpose of S21.

The inverse of SXX is:

S−1
XX =

S−1
22 + S−1

22 S21(σ̂11 − S12S
−1
22 S21)−1S12S

−1
22 −S−1

22 S21(σ̂11 − S12S
−1
22 S21)−1

−(σ̂11 − S12S
−1
22 S21)−1S12S

−1
22 (σ̂11 − S12S

−1
22 S21)−1

 (2.9)

Plugging in the above expression of S−1
XX into the block matrix in (2.7) will give the complete form

of (V TV )−1, whose elements are all sample means or sample variances/covariances. To isolate

β̂1, only the last row of (V TV )−1 is needed:

(V TV )−1
(b+2)1 = n−1[(σ̂11 − S12S

−1
22 S21)−1S12S

−1
22 X̄2 − X̄1(σ̂11 − S12S

−1
22 S21)−1] (2.10)

[(V TV )−1
(b+2)2, . . . , (V

TV )−1
(b+2)(b+1)] = −n−1(σ̂11 − S12S

−1
22 S21)−1S12S

−1
22 (2.11)

(V TV )−1
(b+2)(b+2) = n−1(σ̂11 − S12S

−1
22 S21)−1 (2.12)

β̂1 is straightforward given the following expression of V TY :

V TY =


nȲ

nS2Y + nȲ X̄2

nσ̂1Y + nX̄1Ȳ

 (2.13)

The expression of β̂1 is then:

β̂1 =
σ̂1Y − S12S

−1
22 S2Y

σ̂11 − S12S
−1
22 S21

(2.14)

and its variance is:

Var(β̂1) =
σ̂2

n
(σ̂11 − S12S

−1
22 S21)−1 (2.15)

where σ̂2 is the estimated residual variance in regression.
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3. The relationship between H12 and S12

Without loss of generality, we assume there is a reference batch and thus H12 = X2(XT
2 (I −

X0(XT
0 X0)−1XT

0 )X2)−1XT
2 (I −X0(XT

0 X0)−1XT
0 ) where X0 = [1, X1]. Following the regression

framework in the previous section, we can derive the expression of (XT
0 X0)−1XT

0 X2. First, we

have:

(XT
0 X0)−1 =

n−1 + n−1X̄2
1 σ̂

−1
11 −n−1X̄1σ̂

−1
11

−n−1X̄1σ̂
−1
11 n−1σ̂−1

11

 (3.16)

and:

XT
0 X2 =

(
nX̄2

nS12 + nX̄1X̄2

)
(3.17)

where X̄2 = [X̄21, X̄22, . . . , X̄2b], a 1 by b vector whose elements are means of the batch indicators

in X2.

Taken together, we have the expression of (XT
0 X0)−1XT

0 X2 as follows:

(XT
0 X0)−1XT

0 X2 =

X̄2 − X̄1σ̂
−1
11 S12

σ̂−1
11 S12


2×b

(3.18)

3.1 Special case: balanced designs

For a balanced group-batch design, the elements in S12 are all 0, which means:

(XT
0 X0)−1XT

0 X2 =

(
X̄2

0

)
2×b

(3.19)

Based on (3.19), we can derive the expression of (I −X0(XT
0 X0)−1XT

0 )X2 as follows:

(I −X0(XT
0 X0)−1XT

0 )X2 =



X211 − X̄21 X212 − X̄22 · · · X21b − X̄2b

X221 − X̄21 X222 − X̄22 · · · X22b − X̄2b

...
... · · ·

...

X2n1 − X̄21 X2n2 − X̄22 · · · X2nb − X̄2b


n×b

(3.20)

It is clear that (3.20) is just the centered version of X2 (denoted as Xc
2), and so we can express

H12 as:

H12 = X2(XT
2 X

c
2)−1(Xc

2)T (3.21)
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With H12 in the form of (3.21), the correlation between two samples from two different batches in

the matrix M is 1
nr

where nr is the sample size of the reference batch. If a reference batch is not

used, as is the case with most applications of ComBat, the correlations are not as straightforward,

but can be derived using a similar procedure, and lead to the same conclusion (covariance only

depends on the batch design).

To summarize, when the group-batch design is balanced, H12 is solely a function of the batch

design X2 and has nothing to do with the group design X1. Therefore, removing batch effects

in the first step won’t result in the endogeneity issue for the second step. When the group-batch

design is unbalanced, H12 depends on both the batch design X2 and the group design X1. The

relationship between H12 and S12 (and thus X1) can be derived by plugging the expression (3.18)

into the expression of H12, which will not be detailed here. Most importantly, when the group-

batch design is unbalanced, the covariance vector S12 will not be 0 and thus H12 will depend on

X1 and the strength of such dependence is characterized by S12.

4. Additional analysis of the example 4

We ran a simulation based on the example 4: progressors versus non-progressors in tuberculosis

and compared the performances of ComBat, ComBat+Cor, SVA and RUV. The results are

presented in Table 1 and Figure 1.

References

Frisch, Ragnar and Waugh, Frederick V. (1933). Partial time regressions as compared

with individual trends. Econometrica: Journal of the Econometric Society 1(4), 387–401.

Lovell, Michael C. (1963). Seasonal adjustment of economic time series and multiple regres-

sion analysis. Journal of the American Statistical Association 58(304), 993–1010.



6 REFERENCES

Lovell, Michael C. (2008). A simple proof of the fwl theorem. The Journal of Economic

Education 39(1), 88–91.

[]



REFERENCES 7

Table 1. The false positive rates (FPR) and the true positive rates (TPR) of the methods in
comparison for the simulation based on the example 4: progressors versus non-progressors in

tuberculosis.

Approach FPR TPR

T-test 17.5% 96.6%
Benchmark 5.0% 96.8%
One-step 4.4% 96.5%
ComBat 1.9% 96.8%

ComBat+Cor (ζ = 0.1%) 1.1% 96.4%
SVA 10.9% 86.5%
RUV 16.5% 96.5%
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Fig. 1. Distributions of the p-values for the methods in comparison for the simulation based on the
example 4: progressors versus non-progressors in tuberculosis.


