Chem, volume 9

Supplemental information

Iron-Mediated Modular Decarboxylative Cross-Nucleophile Coupling

Grace A. Lutovsky, Samuel N. Gockel, Mark W. Bundesmann, Scott W. Bagley, and Tehshik P. Yoon

Table of Contents:

A. General information	S3
B. Select optimization results	S4
Optimization of C–C bond formation with (hetero)aryl nucleophiles	S4
Optimization of C–O bond formation with alcohol nucleophiles	S14
Optimization of C–N bond formation with sulfonamide nucleophiles	S18
Single set of conditions across three nucleophile families	S19
Reaction conducted under air	S20
Reaction sparged with N_2	S20
Reaction time course	S21
Comparison to Cu(II) conditions	S22
Mechanistic investigation into the role of iron(III)	S24
Mechanistic comparison to CuCl ₂	S27
Optimization of C–N bond formation with alkyl amines	S28
C. Additional isolated substrate combinations	S31
D. Substrate limitations	S32
E. Photo of laboratory set up	S34
F. Analysis of alkyl building blocks available from commercial vendors	S35
G. Evidence for decarboxylative triflation	S36
H. UV-vis experiments	S37
I. Substrate preparation	S40
J. Experimental procedures, isolation, and characterization	S41
K. References	S71
L. Spectral data	S74

Supplemental Experimental Procedures

A. General Information

Dichloromethane, tetrahydrofuran, diethyl ether, toluene, and acetonitrile were dried by elution through alumina as described by Grubbs.¹ Cu(OTf)₂ was purchased from Oakwood Chemical and stored in a glovebox. FeCl₃ was purchased from Millipore-Sigma and stored in a glovebox. Fe(OTf)₃ was purchased from Ambeed Inc. and stored in a glovebox. 2-phenylethanol was distilled under atmospheric pressure and stored over 3 Å molecular sieves overnight prior to use. Pyridine was distilled over CaH₂. All other chemicals were purchased from commercial suppliers and used as received unless otherwise stated. 40 W PR160L 427 nm LEDs from Kessil Lights were used as light sources. Flash chromatography was performed with Sigma Aldrich 60 Å silica gel (230-400 mesh) and thin layer chromatography (TLC) was performed utilizing pre-coated silica gel F254 plates from SiliCycle Inc. containing a fluorescent indicator. Visualization of plates were accomplished with 254 nm UV lamp or staining with *p*-anisaldehyde or KMnO₄. Automated flash chromatography was performed with the use of a Biotage Selekt instrument using Biotage branded columns. All NMR spectra were obtained using a Bruker Avance-400, Avance-500 or Avance-600 spectrometer, and the spectra were internally referenced according to CDCl₃ chemical shifts (7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR). The spectrometers used for this work are funded by the NSF (CHE-1048642), NIH (1S10 OD020022-1) and a generous gift from Paul J. and Margaret M. Bender. Mass spectrometry was performed with a Thermo Q Exactive[™] Plus (electrospray ionization, time-of-flight analyzer or electron impact) and is funded by the NIH (1S10 OD020022-1). Melting points were obtained using a Stanford Research Systems DigiMelt apparatus.

B. Select Optimization Results

Table S1. Cu(II) for arylation.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Cu(OTf)₂ (0.090 g, 2.5 equiv, 0.25 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), the arene nucleophile (if solid), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), the arene nucleophile (if liquid), and *i*-PrCN (50 μ L, 0.55 mmol, 5.5 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

Table S2. Metal mediator.

	Me			[M] (3 equi	v)	Me		
			\bigwedge	ligand (X eq	uiv)			
		+	OMe	base (5.0 eq]	
	~		<u>.</u>	CH ₂ Cl ₂ (0.10) M)	~ ~	OMe	
	1.0 equiv		3.0 equiv	kessil 427 nm, r	t, 24 h	pdt		
entry	[M]	base	Ligand		% rec	overed acid	% pdt	r.r.
1	CeCl ₃	Na ₃ PO ₄	20 mol%	TBACI	97		0	-
2	CeCl ₃	Na ₃ PO ₄	3.0 equiv	TBACI	100		0	-
3	CeCl ₃	none	3.0 equiv	Cs_2CO_3	77		0	-
4	Ce(OTf) ₄	Na ₃ PO ₄	_		100		0	-
5	Ce(OH) ₄	Na ₃ PO ₄	_		0		0	-
6	Ce(OH) ₄	Cs_2CO_3	_		0		0	-
7	Mn(OAc)₃	Na ₃ PO ₄	_		85		2	-
8	Mn(OAc)₃	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	82		1	-
9	NiCl₂∙dme	Na ₃ PO ₄	_		100		0	-
10	NiCl₂∙dme	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	96		0	-
11	CuCl ₂ •H ₂ O	Na ₃ PO ₄	_		27		0	-
12	CuCl ₂ •H ₂ O	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	33		0	-
13	CuCl ₂	Na ₃ PO ₄			47		0	-
14	CuBr ₂	Na ₃ PO ₄	_		89		0	-
15	CuBr ₂	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	98		0	-
16	Cu(OTf) ₂	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	21		14	5:1
17	CrCl ₃	Na ₃ PO ₄	_		86		0	-
18	CrCl₃	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	95		0	-
19	FePO ₄	Na ₂ CO ₃	_		84		0	-
20	FePO ₄	Na ₂ CO ₃	1.0 equiv	NaCl	90		0	-
21	FePO ₄	Na ₂ CO ₃	3.0 equiv	NaCl	89		0	-
22	FePO ₄	Na_2CO_3	1.0 equiv	TBACI	93		0	-
23	FePO ₄	Na ₂ CO ₃	3.0 equiv	TBACI	87		0	-
24	Fe ₂ (SO ₄) ₃ •5H ₂ O	DNa ₂ CO ₃	-		86		0	-
25	FeF₃	Na ₂ CO ₃	-		99		0	-
26	Fe(acac)₃	Na ₂ CO ₃	-		99		0	-
27	Fe(OTf) ₃	Na_3PO_4	-		9		79	4:1
28	Fe(OTf) ₃	Na ₃ PO ₄	5.5 equiv	<i>i</i> -PrCN	16		76	4:1
29	FeCl ₃	Na ₂ CO ₃	-		34		45	5:1
30	FeCl ₃	Na ₃ PO ₄	_		17		56	5:1

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with the metal salt (3.0 equiv), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol) or Na₂CO₃ (0.032 g, 3.0 equiv, 0.30 mmol), the ligand (if solid), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), anisole (32.6 μ L, 3.0 equiv, 0.30 mmol), and the ligand (if liquid). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

Commentary on reactions with poor mass balance:

We observed significant decomposition of the starting materials with no identifiable major products present for entries 5 and 6. We believe in entries 11-13 the poor recovery of the acid is due to it strongly coordinating the copper. Under our standard workup conditions, most of the unreacted acid is in the aqueous layer. For entry 16, the C–O dimer was the major product (27% yield from ¹H NMR analysis of the crude reaction mixture) which is formed upon nucleophilic attack of another equivalent of the carboxylic acid.

Table S3. Fe loading.

	CO ₂ H +	OMe	$FeX_3 (Y equiv)$ $Na_2CO_3 (3.0 equiv)$	Me	OMe
	1.0 equiv	X equiv	kessil 427 nm, rt, 24 h	pdt	
entry	Fe salt	Fe equiv	anisole equiv	% pdt	r.r.
1	FeCl ₃	2.0	5.0	50	4.8
2	FeCl ₃	3.0	5.0	54	5.0
3	FeCl ₃	4.0	5.0	53	4.9
4	FeCl ₃	5.0	5.0	65	5.1
5	FeCl₃	7.0	5.0	28	4.2
6	Fe(OTf) ₃	2.0	1.5	45	3.8
7	Fe(OTf) ₃	3.0	1.5	53	3.9
8	Fe(OTf) ₃	4.0	1.5	61	4.0
9	Fe(OTf) ₃	5.0	1.5	61	4.1
10	Fe(OTf) ₃	2.0	3.0	59	3.8
11	Fe(OTf) ₃	3.0	3.0	74	3.9
12	Fe(OTf) ₃	4.0	3.0	80	4.0
13	Fe(OTf) ₃	5.0	3.0	83	4.0
14	Fe(OTf) ₃	2.0	5.0	70	3.6
15	Fe(OTf) ₃	3.0	5.0	90	3.8
16	Fe(OTf) ₃	4.0	5.0	87	3.6
17	Fe(OTf) ₃	5.0	5.0	89	3.6

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with the Fe salt (2.0 - 7.0 equiv), Na₂CO₃ (0.032 g, 3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and anisole (1.5 - 5.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

Table S4. Arene nucleophile loading.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₂CO₃ (0.032 g, 3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and anisole (1.5 – 20 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S5. Base with 3.0 equiv anisole and FeCl₃.

	He CO ₂ H + 1.0 equiv	OMe 3.0 equiv	FeCl ₃ (3.0 equiv) base (3.0 equiv) CH ₂ Cl ₂ (0.10 M) kessil 427 nm, rt, 24 h	pdt	
entry	base		% pdt	r.r.	
1	Na ₃ PO ₄		54	5.0	
2	K ₃ PO ₄		77	5.1	
3	Na ₂ CO ₃		41	4.9	
4	K ₂ CO ₃		26	4.6	
5	Cs_2CO_3		3	6.7	
6	Na ₂ HPO ₄		5	5.1	
7	K ₂ HPO ₄		87	5.1	
8	NaH ₂ PO ₄		3	5.5	
9	KH ₂ PO ₄		1	6.6	
10	NaOAc		88	5.0	
11	Pyridine		37	4.7	
12	DABCO		29	6.4	

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), base (3.0 equiv), CH_2Cl_2 (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and anisole (32.6 µL, 3.0 equiv, 0.30 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S6. Base with 3.0 equiv anisole and Fe(OTf)₃.

	Me CO ₂ H + 1.0 equiv	OMe 3.0 equiv	Fe(OTf) ₃ (3.0 equiv) base (3.0 equiv) CH ₂ Cl ₂ (0.10 M) kessil 427 nm, rt, 24 h	pdt	
entry	base		% pdt	r.r.	
1	Na ₃ PO ₄		80	3.8	
2	K ₃ PO ₄		1	7.2	
3	Na ₂ CO ₃		76	3.9	
4	K_2CO_3		68	3.9	
5	Cs_2CO_3		2	0.5	
6	Na₂HPO	4	64	3.8	
7	K ₂ HPO ₄		72	3.8	
8	NaH₂PO	4	8	3.0	
9	KH ₂ PO ₄		4	2.6	
10	NaOAc		79	3.8	
11	Pyridine		47	4.4	
12	DABCO		10	3.5	

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Fe(OTf)₃ (0.151 g, 3.0 equiv, 0.30 mmol), base (3.0 equiv), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and anisole (32.6 μ L, 3.0 equiv, 0.30 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

 Table S7. Reactivity with less activated arenes.

	R CO ₂ H +		eCl ₃ (3.0 equiv) OAc (3.0 equiv)	R	Me R'	+ Re OAc	
	1.0 equiv	3-50 equiv kessi	il 427 nm, rt, 24 h	F	odt	acetoxylation	
entry	nuc	nuc equiv	R	% ndt	rr	% acetoxylatio	n
1	toluene	3	Me	52	5:1	12	
2	toluene	5	Me	62	5.1	6	
3	toluene	10	Me	77	6.1	6	
4	toluene	20	Me	75	5:1	0	
5	toluene	3	H	61	6:1	12	
6	toluene	5	Н	72	6:1	10	
7	toluene	10	Н	82	6:1	9	
8	toluene	20	Н	78	6:1	8	
9	benzene	3	Me	6	_	14	
10	benzene	5	Me	8	_	11	
11	benzene	10	Me	14	_	14	
12	benzene	20	Me	16	_	9	
13	benzene	3	Н	12	_	21	
14	benzene	5	Н	18	_	15	
15	benzene	10	Н	25	_	16	
16	benzene	20	Н	41	_	22	
17	fluorobenzene	5	Н	9	5:1	31	
18	fluorobenzene	10	Н	15	5:1	33	
19	fluorobenzene	20	Н	21	5:1	31	
20	fluorobenzene	50	Н	43	6:1	37	
21	bromobenzene	5	Н	0	_	0	
22	bromobenzene	10	Н	0	_	0	
23	bromobenzene	20	Н	0	_	0	
24	bromobenzene	50	Н	0	—	49	
25	chlorobenzene	5	Н	0	_	0	
26	chlorobenzene	10	Н	0	_	0	
27	chlorobenzene	20	Н	0	_	0	
28	chlorobenzene	50	Н	15	_	30	

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), NaOAc (0.025 g, 3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol) or 2-(*p*-tolyl)propanoic acid (0.016 g, 1.0 equiv, 0.10 mmol), and the arene nucleophile (1.0 – 20 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

 Table S8.
 Base screen with furan and thiophene.

	1.0 equiv	+ $ I_{X} = \frac{FeCl_{3} (3.0 \text{ e})}{CH_{2}Cl_{2} (0.1 \text{ e})} $ 5 equiv kessil 427 nm,	quiv) quiv) 0 M) rt, 24 h Me pdt	
entry	nuc	base	% pdt	r.r.
1	furan	Na ₃ PO ₄	8	>20:1
2	furan	K ₃ PO ₄	51	>20:1
3	furan	Na ₂ CO ₃	9	>20:1
4	furan	K ₂ CO ₃	18	>20:1
5	furan	NaOAc	22	>20:1
6	furan	K ₂ HPO ₄	24	>20:1
7	furan	Na ₂ HPO ₄	5	>20:1
8	furan	Pyridine	22	>20:1
9	thiophene	Na ₃ PO ₄	32	5.0:1
10	thiophene	K ₃ PO ₄	68	6.6:1
11	thiophene	Na ₂ CO ₃	31	6.8:1
12	thiophene	K ₂ CO ₃	10	4.5:1
13	thiophene	Cs_2CO_3	0	_
14	thiophene	Na ₂ HPO ₄	0	_
15	thiophene	K ₂ HPO ₄	27	6.6:1
16	thiophene	NaH ₂ PO ₄	0	_
17	thiophene	KH_2PO_4	0	_
18	thiophene	NaOAc	60	4.5:1
19	thiophene	Pyridine	11	3.0:1
20	thiophene	DABCO	32	7.0:1

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), base (3.0 equiv), CH_2Cl_2 (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and the arene nucleophile (5.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S9. Base screen with benzofuran.

entry	Fe salt	base	% pdt	r.r.	
1	FeCl ₃	K ₃ PO ₄	trace	>20:1	
2	FeCl ₃	Pyridine	17	3.7:1	
3	Fe(OTf) ₃	Na₃PO₄	67	5.1:1	
4	Fe(OTf) ₃	K ₃ PO ₄	3	1.6:1	
5	Fe(OTf) ₃	Na ₂ CO ₃	41	3.6:1	
6	Fe(OTf) ₃	K ₂ CO ₃	42	4.1:1	
7	Fe(OTf) ₃	NaOAc	56	3.6:1	
8	Fe(OTf) ₃	K ₂ HPO ₄	37	4.6:1	
9	Fe(OTf) ₃	Na ₂ HPO ₄	21	6.6:1	
10	Fe(OTf) ₃	Pyridine	67	3.8:1	

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with the Fe salt (3.0 equiv), base (3.0 equiv), CH_2CI_2 (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and benzofuran (53.9 µL, 5.0 equiv, 0.50 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

	Me	へ 。 Ph	Fe(III) salt (3.0 equiv) base (5.0 equiv)	Me	
	Me CO ₂ H T	но	solvent (0.10 M) kessil 427 nm, rt, 24 h	Me	
	1.0 equiv	3.0 equiv		pdt	
entry	solvent	Fe(III) sa	alt base	pdt	
1	CH_2CI_2	FeCl ₃	Na₃PO.	4 39%	
2	1,2-DCE	FeCl ₃	Na₃PO.	41%	
3	MeCN	FeCl ₃	Na₃PO.	4 70%	
4	toluene	FeCl ₃	Na₃PO.	₄ 18%	
5	CH_2CI_2	FeCl ₃	K ₃ PO ₄	37%	
6	CH_2CI_2	FeCl ₃	K₂HPO	4 70%	
7	CH_2CI_2	FeCl ₃	NaOAc	32%	
8	CH_2CI_2	FeCl ₃	pyridine	e 17%	
9	CH_2CI_2	Fe(acac)3 K ₂ HPO	4 61%	
10	CH_2CI_2	Fe(NO ₃)	3 K ₂ HPO	4 0%	
11	CH_2CI_2	Fe(OTf)	3 K ₂ HPO	4 77%	
15	1,2-DCE	Fe(OTf)	3 K ₂ HPO	4 74%	

Table S10. Optimization of α ,4-dimethylphenylacetic acid with 2-phenylethanol.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Fe(III) salt (3.0 equiv, 0.30 mmol), base (5.0 equiv, 0.50 mmol), solvent (1.0 mL, 0.10 M), α ,4-dimethylphenylacetic acid (1.0 equiv, 0.10 mmol), and 2-phenylethanol (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

	Me	Fe(III) salt Me base (5	: (3.0 equiv) .0 equiv)	Me Me Me
	Me CO ₂ H +	HO Me solvent kessil 427	(0.10 M) nm, rt, 24 h	Me
	1.0 equiv	3.0 equiv		pdt
entry	solvent	Fe(III) salt	base	pdt
1	CH_2CI_2	FeCl ₃	Na ₃ PO ₄	60%
2	MeCN	FeCl₃	Na ₃ PO ₄	77%
3	toluene	FeCl ₃	Na ₃ PO ₄	0%
4	CH ₂ Cl ₂	FeCl₃	K ₃ PO ₄	97%
5	CH_2CI_2	FeCl ₃	K ₂ HPO ₄	80%
6	CH ₂ Cl ₂	FeCl₃	Na ₂ CO ₃	64%
7	CH_2CI_2	FeCl ₃	NaOAc	72%
8	CH ₂ Cl ₂	FeCl ₃	pyridine	72%
9	CH_2CI_2	Fe(acac) ₃	K_2HPO_4	0%
10	CH ₂ Cl ₂	Fe(NO ₃) ₃	K ₂ HPO ₄	0%
11	CH_2CI_2	Fe(OTf) ₃	K_2HPO_4	74%
12	1,2-DCE	Fe(OTf) ₃	K ₂ HPO ₄	99%
13	CH_2CI_2	none	K ₂ HPO ₄	0%
14*	CH ₂ Cl ₂	Fe(OTf) ₃	K ₂ HPO ₄	0%
15	CH ₂ Cl ₂	Fe(OTf) ₃	none	0%

 Table S11. Optimization of ibuprofen with 3,3-dimethyl-1-butanol.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Fe(III) salt (3.0 equiv, 0.30 mmol), base (5.0 equiv, 0.50 mmol), solvent (1.0 mL, 0.10 M), ibuprofen (1.0 equiv, 0.10 mmol), and 3,3-dimethyl-1-butanol (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil® PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard. *Thermal control reaction. The reaction vial was wrapped in foil to block irradiation.

	Me	Fe(د م	III) salt (3.0 equiv) base (5.0 equiv)	Me	
	CO ₂ H +	HO' V s	olvent (0.10 M) sil 427 nm, rt, 24 h		
	1.0 equiv	3.0 equiv		pdt	
entry	solvent	Fe(III) salt	base	pdt	
1	CH_2CI_2	FeCl₃	Na ₃ PO ₄	64%	
2	1,2-DCE	FeCl₃	Na ₃ PO ₄	41%	
3	MeCN	FeCl ₃	Na ₃ PO ₄	0%	
4	toluene	FeCl₃	Na ₃ PO ₄	16%	
5	CH_2CI_2	FeCl ₃	K ₃ PO ₄	23%	
6	CH_2CI_2	FeCl₃	K ₂ HPO ₄	72%	
7	CH_2CI_2	FeCl₃	Na ₂ CO ₃	54%	
8	CH_2CI_2	FeCl₃	NaOAc	35%	
9	CH_2CI_2	FeCl₃	pyridine	0%	
10	CH_2CI_2	Fe(acac)₃	K ₂ HPO ₄	0%	
11	CH_2CI_2	Fe(NO ₃) ₃	K ₂ HPO ₄	0%	
12	CH_2CI_2	Fe(OTf) ₃	K ₂ HPO ₄	89%	
13	1,2-DCE	Fe(OTf) ₃	K_2HPO_4	44%	

 Table S12: Optimization of 2-phenylpropanoic acid with 2-phenylethanol.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Fe(III) salt (3.0 equiv, 0.30 mmol), base (5.0 equiv, 0.50 mmol), solvent (1.0 mL, 0.10 M), 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol), and 2-phenylethanol (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

	но со ₂ н + но 1.0 equiv	Br CH 3.0 equiv) salt (3.0 equiv) ase (X equiv) 1 ₂ Cl ₂ (0.10 M) 427 nm, rt, 24 h	pdt	
entry	Fe(III) salt	base	base equiv	% pdt	
1	Fe(OTf) ₃	NaOAc	3	55	
2	Fe(OTf)₃	pyridine	3	72	
3	Fe(OTf) ₃	K ₂ HPO ₄	5	36	
4	FeCl ₃	NaOAc	3	0	

Table S13: Optimization of etherification with tetrahydro-2-furoic acid.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Fe(III) salt (3.0 equiv, 0.30 mmol), base (X equiv), CH_2CI_2 (1.0 mL, 0.10 M), tetrahydro-2-furoic acid (1.0 equiv, 0.10 mmol), and 4-bromobenzyl alcohol (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S14. Miscellaneous screens with a sulfonamide nucleophile.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with the Fe salt (2.0 equiv), the ligand (20 mol%), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), the solvent (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and 4-methoxybenzene sulfonamide (0.056 g, 3.0 equiv, 0.30 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard. *Thermal control reaction. The reaction vial was wrapped in foil to block irradiation.

Table S15: Single set of reaction conditions across three nucleophile families.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol), and nucleophile (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard. *Isolated yield.

Table S16: Reaction conducted under air.

entry

1

83 open to air General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), NaOAc (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol), and nucleophile (3.0 equiv). The vial removed from the glovebox, and remained open to air for 10 minutes. The vial was capped and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄CI. Yields are determined by ¹H NMR analysis using 1methylnaphthalene (10 μ L) as an internal standard.

Table S17: Reaction sparged with N₂.

General procedure: An oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), NaOAc (3.0 equiv, 0.30 mmol), 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol), nucleophile (3.0 equiv), and CH_2Cl_2 (1.0 mL, 0.10 M). The vial is capped and sparged under N_2 for 5 minutes. The vial was wrapped in parafilm and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄CI. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard. Note: We store FeCl₃ in the glovebox to increase its lifetime as it is very hygroscopic. For this reaction, we removed a vial of excess FeCl₃ and kept it capped on the benchtop for 24 h. After 24 h, we opened the vial of FeCl₃ and added all reagents to a new vial as detailed in the General Procedure. The purpose of this reaction was to demonstrate this robust protocol can be applied in laboratory settings that do not contain a glovebox.

Table S18. Reaction time course.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), NaOAc (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol), and anisole (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. Seven identical reactions were irradiated and removed from irradiation at the specified time point. The crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

Figure S1. Plot of the reaction time course.

The reaction is complete after four hours and there is no degradation of the product over time. Small differences in the reaction yield (from 4-24 h) can be attributed to the slight variation in the set-up of seven reactions and the error in ¹H NMR analysis of crude reaction mixtures.

Table S19. Comparison to Cu(II) conditions with C- and O- nucleophiles.¹⁶

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Cu(OTf)₂ (2.5 equiv, 0.25 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), *i*-PrCN (5.5 equiv, 0.55 mmol), acid (1.0 equiv, 0.10 mmol), and nucleophile (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Cu(OTf)₂ (2.5 equiv, 0.25 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), *i*-PrCN (5.5 equiv, 0.55 mmol), acid (1.0 equiv, 0.10 mmol), and nucleophile (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S21. Decarboxylative chlorination of 2-phenylpropanoic acid.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), MeCN (1.0 mL, 0.10 M), and 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol) The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

 Table S22. Decarboxylative chlorination of flurbiprofen.

1 none 92	
entry deviation from rxn cond. % Cl	

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), MeCN (1.0 mL, 0.10 M), and flurbiprofen (1.0 equiv, 0.10 mmol) The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

	Cl	+ OMe	FeCl ₃ (3.0 equiv) NaOAc (3.0 equiv) CH ₂ Cl ₂ (0.10 M)	Me OMe	
	1.0 equiv	3.0 equiv	kessil 427 nm, rt, 24 h	pdt	
entrv	deviation	from rxn cond.	% pdt	r.r.	
1	none		94	5:1	
2*	no light		84	8:1	
3	no FeCl₃		no rxn	-	
4	no FeCl ₃ ,	no light	no rxn	_	

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), NaOAc (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), (1-chloroethyl)benzene (1.0 equiv, 0.10 mmol), and anisole (3.0 equiv, 0.30 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard. *Thermal control reaction. The reaction vial was wrapped in foil to block irradiation.

Table S24. Fe-mediated etherification from benzylic chloride.

entry

1

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (3.0 equiv, 0.30 mmol), K₂HPO₄ (5.0 equiv, 0.50 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), (1-chloroethyl)benzene (1.0 equiv, 0.10 mmol), and 2-phenylethanol (3.0 equiv, 0.30 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S25. Decarboxylative chlorination of 2-phenylpropanoic acid with CuCl₂.

entry	deviation from rxn cond.	% CI	% RSM
1	none	0	96

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with CuCl₂ (3.0 equiv, 0.30 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), and 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol) The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil® PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

Table S26. Cu-mediated arylation from benzylic chloride.

1

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with CuCl₂ (3.0 equiv, 0.30 mmol), Na₃PO₄ (3.0 equiv, 0.30 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), (1-chloroethyl)benzene (1.0 equiv, 0.10 mmol), and anisole (3.0 equiv, 0.30 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil® PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Me CO ₂ H	+ Nuc - k v 2.0 equiv	FeCl ₃ (3.0 equiv) Na ₃ PO ₄ (3.0 equiv) solvent (0.10 M) essil 427 nm, rt, 24 h	CI He +	+ (styrene	Me Nuc pdt
entry	nucleophile	solvent	% CI	% styrene	% pdt
1	morpholine	MeCN	59	20	0
2	morpholine	DMF	0	0	0
3	morpholine	DCM	54	1	0
4	<i>p</i> -toluidine	MeCN	31	1	4
5	<i>p</i> -toluidine	DMF	0	0	0
6	<i>p</i> -toluidine	DCM	0	0	20
7	n-butylamine	MeCN	66	10	0
8	n-butylamine	DMF	0	0	8
9	n-butylamine	DCM	0	1	21
10	2-methylimidazole	MeCN	41	0	0
11	2-methylimidazole	DMF	0	0	0
12	2-methylimidazole	DCM	15	1	14

 Table S27. One-pot, one-step decarboxylation with alkyl and aromatic amines.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), the solvent (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol), and the nucleophile (2.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

Table S28. Optimization of	one-pot, two-step	for alkyl and	aromatic amines.
----------------------------	-------------------	---------------	------------------

Me	P_2 FeCl ₃ (3.0 equiv) Na ₃ PO ₄ (3.0 equiv)	Me CI		+	H +	NHAc +	Me
1.0 equiv	MeCN (0.10 M) kessil 427 nm, rt, 24 h	ot isolated	CI	styren	e Ritter		pdt
entry	nucleophile	workup	equiv nuc	Cl (%)	styrene (%)	Ritter (%)	pdt (%)
1	morpholine	celite plug	5.0	9	0	0	57
2	morpholine	silica plug	5.0	13	0	0	56
3	morpholine	no workup	3.0	0	47	0	29
4	morpholine	no workup	5.0	0	23	0	54
5	morpholine	no workup	7.0	0	20	0	58
6	morpholine	no workup	10	0	1	0	64
7	<i>p</i> -toluidine	no workup	2.0	0	0	8	37
8	<i>p</i> -toluidine	no workup	5.0	0	0	9	35
9	<i>p</i> -toluidine	no workup	10	0	0	6	45
10	<i>p</i> -toluidine	NH₄CI wash	2.0	0	0	8	31
11	<i>p</i> -toluidine	K₂CO₃ wash	2.0	0	0	11	25
12	2-methylimidazole	no workup	3.0	0	0	36	1
13	2-methylimidazole	no workup	5.0	0	0	11	8
14	2-methylimidazole	no workup	7.0	4	0	6	31
15	2-methylimidazole	no workup	10	0	0	11	46
16	<i>n</i> -butylamine	no workup	3.0	0	4	16	11
17	n-butylamine	no workup	5.0	0	4	7	34
18	n-butylamine	no workup	7.0	0	2	10	51
19	<i>n</i> -butylamine	no workup	10	0	1	6	72

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), MeCN (1.0 mL, 0.10 M), and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil® PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is subjected to the corresponding workup (see below), charged with the nucleophile (3.0-10 equiv) and KI (0.025 g, 1.5 equiv, 0.15 mmol), and heated at 80 °C. After 16 h, the reaction is diluted with EtOAc and saturated aqueous K_2CO_3 . Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard. **Celite plug** workup: The crude reaction is pushed through a small pad of celite to remove the majority of the solids. The celite pad is rinsed with an additional 0.50 mL of MeCN. Silica plug workup: The crude reaction is pushed through a small pad of silica to remove the solids. The silica pad is rinsed with an additional 0.50 mL of MeCN. NH4CI wash workup: The crude reaction mixture is diluted with 1.5 mL diethyl ether and guenched with saturated agueous NH₄Cl. The organic laver is carefully removed with a glass pipette. The aqueous layer is washed 3x 1 mL with diethyl ether. The combined organic layers are concentrated under reduced pressure. MeCN (1.0 mL, 0.10 M) is then added. K₂CO₃ wash workup: The crude reaction mixture is diluted with 1.5 mL diethyl ether and guenched with saturated agueous K₂CO₃. The organic layer is carefully removed with a glass pipette. The aqueous layer is washed 3x1 mL with diethyl ether. The combined organic lavers are concentrated under reduced pressure. MeCN (1.0 mL, 0.10 M) is then added. No workup: The crude reaction is directly charged with the nucleophile. No other manipulations performed.

F.	Me OH Na ₃ PO ₄ (3.0 еq Na ₃ PO ₄ (3.0 еq MeCN (0.10 kessil 427 nm, rt	uiv) quiv) M t, 24 h Cl Me Me Me Me Me Me Me Me	F pdt	Me Bpin
entry	workup	borylation conditions	% pdt	% Cl
1	no workup	IPrCuCl (10 mol%), 1.2 equiv KOMe, THF (0.2 M), rt	0	78
2	NH₄Cl quench	IPrCuCl (10 mol%), 1.2 equiv KOMe, THF (0.2 M), rt	0	75
3	Celite filtration	IPrCuCl (10 mol%), 1.2 equiv KOMe, THF (0.2 M), rt	0	73
4	Celite filtration	IPrCuCl (10 mol%), 1.2 equiv KOMe, THF (0.2 M), 60 °C	0	61
5	Celite filtration	IPrCuCl (10 mol%), 1.2 equiv KOMe, THF (0.2 M), 80 °C	0	59
6	NH₄Cl quench	CuCl (10 mol%), Xantphos (10 mol%), 1.2 equiv KO <i>t</i> -Bu, THF (0.2 M), rt	0	0
7	NH₄Cl quench, then silica plug	CuCl (10 mol%), Xantphos (10 mol%) 1.2 equiv KO <i>t</i> -Bu, THF (0.2 M), rt	55	0
8	NH₄Cl quench, then silica plug	CuCl (10 mol%), Xantphos (10 mol%) 1.2 equiv KO <i>t</i> -Bu, THF (0.2 M), 60 °C	31	0

Me

Me

Table S29. Optimization of one-pot, two-step for borylation.

Г

General procedure: An oven-dried 4-mL vial equipped with a stir bar is brought into a nitrogenfilled glovebox and charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), flurbiprofen (0.024 g, 1.0 equiv, 0.10 mmol), and MeCN (1.0 mL, 0.10 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and placed into a EvoluChemTM PhotoRedOx Box. Stirring at 800 rpm is engaged and the vial is irradiated at 427 nm with a 40 W KessilTM lamp. After 24 h, the light is turned off, the vial is removed from the PhotoRedox Box, and subjected to the indicated workup to obtain the crude benzylic chloride intermediate.

A separate oven-dried 4-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with the Cu catalyst (10 mol%) and anhydrous THF (0.50 mL). The vial is next charged with bis(pinacolato)diboron (0.030 g, 1.2 equiv, 0.12 mmol) and the base (1.2 equiv) and swirled gently for ca. 5 min. Finally, the crude benzylic chloride from the first step is next added, the vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and stirred at the indicated temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄Cl. Yields are determined by GC or ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

C. Additional isolated substrate combinations

Figure S2. Additional cross-nucleophile products that were isolated and characterized. Reaction conditions are reported in the Experimental Procedures section of the SI. All yields are isolated unless otherwise noted. ^aYields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

D. Substrate limitations

Table S30. Sterically hindered alcohols.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with Fe(OTf)₃ (3.0 equiv, 0.30 mmol), K₂HPO₄ (5.0 equiv, 0.50 mmol), CH₂Cl₂ (1.0 mL, 0.10 M), 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol), and alcohol (3.0 equiv). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil® PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h. the crude reaction mixture is diluted with EtOAc and saturated aqueous NH₄CI. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard unless otherwise noted. *Isolated vield.

Table S31. Primary aliphatic carboxylic acid.

1

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with $FeCl_3$ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), the dichloromethane (1.0 mL, 0.10 M), 7-bromoheptanoic acid (0.021 g, 1.0 equiv, 0.10 mmol), and the anisole (0.033 mL, 3.0 equiv, 0.3 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil® PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and 1M HCI. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 µL) as an internal standard.

Table S32. Secondary aliphatic carboxylic acid.

General procedure: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), the dichloromethane (1.0 mL, 0.10 M), 4-(4-chlorophenyl)cyclohexane-1-carboxylic acid (0.024 g, 1.0 equiv, 0.10 mmol), and the anisole (0.033 mL, 3.0 equiv, 0.3 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with EtOAc and 1M HCI. Yields are determined by ¹H NMR analysis using 1-methylnaphthalene (10 μ L) as an internal standard.

E. Photo of laboratory set up for isolation reactions:

Figure S4. Vials are irradiated at 427 nm with two 40 W Kessil Lamp PR160 lamps at a distance of 10 cm.

F. Analysis of alkyl building blocks from commercial vendors

Structure of Fragment	Combi-Blocks	Alfa Chemistry	Ambeed
	18,873	17,109	15,624
	2,195	1,741	1,974
R–COOH sum	21,068	18,850	17,598
H GH* G*	16,611	20,498	14,775
G* OH G* G*	2,028	3,134	1,779
R–OH sum	18,639	23,632	16,6554
$\overset{H}{\underset{GH^{\star}}{\overset{NH_2}{\underset{G^{\star}}{\overset{NH_2}{}}}}$	16,556	11,048	15,224
G* NH ₂ G* G*	1,147	772	1,180
R–NH₂ sum	17,703	11,820	16,404
H Cl GH* G*	5,253	4,667	5,214
G* Cl G* G*	452	964	299
R–CI sum	5,705	5,631	5,513
H Br GH* G*	3,564	2,927	3,861
G* Br G* G*	325	377	193
R–Br sum	3,889	3,304	4,054
H GH* G*	422	182	298
	47	3	18
R–I sum	469	185	316
GH* H GH* G* GH*	382	572	206
G* G* G* G* G* G* G*	9	63	11
R–[B]	391	635	217

Table S33. The number of commercially available building blocks.

The number of commercially available building blocks was analyzed with Reaxy based on the fragments drawn below. Under the Commercial Substances filter, the fragments were counted by vendor through the Commercial Suppliers tab. The number of compounds from Combi-Blocks, Alfa Chemistry, and Ambeed was recorded for each part structure. The search identified primary and secondary building blocks separate from tertiary, therefore, the sum of both searches was calculated and reported. Data collected on Dec. 8, 2022.

G. Evidence for decarboxylative triflation

Figure S5. GC-MS trace of proposed benzylic triflate intermediate.

Operational notes: In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with $Fe(OTf)_3$ (3.0 equiv, 0.30 mmol), Na_3PO_4 (3.0 equiv, 0.30 mmol), CH_2Cl_2 (1.0 mL, 0.10 M), and 2-phenylpropanoic acid (1.0 equiv, 0.10 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is filtered through a plug of celite and analyzed by gas chromatography-mass spectrometry using 1-methylnaphthalene (10 µL) as an internal standard.

Figure S6. Gas chromatogram of the reaction.

Figure S7. Mass spectrum of proposed triflate at a retention time of 8.5.

Figure S8. Zoomed mass spectrum of proposed triflate at a retention time of 8.5.

Comment: When zooming in significantly on the mass spectrum at 8.5, 254 is observed. The benzylic triflate is our best explanation for this peak as the retention time and fragmentation pattern do not match any of the known by-products commonly formed in the absence of the nucleophile. This is consistent with the instability of benzylic triflates, for which we propose rapid fragmentation to the benzyl fragment (m/z 105).
H. UV-Vis experiments

Figure S9. Absorption spectra of $FeCl_3$, 2-phenylpropanoic acid (1), anisole (2), and NaOAc (B) dissolved in CH_2Cl_2 . The spectra were all recorded in quartz tubes under ambient conditions.

Operational notes: The solutions were prepared in a nitrogen-filled glovebox at reaction stoichiometry: FeCl₃ (0.049 g, 0.30 mmol), NaOAc (0.025 g, 0.30 mmol), dichloromethane (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 0.10 mmol), and anisole (0.033 mL, 0.30 mmol). The vials were sealed, removed from the glovebox, and stirred for 30 minutes. The solutions were filtered through a syringe filter to remove the undissolved iron and base. 0.070 mL of the filtered solution was added to a cuvette and diluted with 3.0 mL dichloromethane (2•10⁻³ M). To obtain the reported absorbance spectra, the prepared solution underwent a serial dilution where 1.0 mL of the solution was diluted to 3.0 mL with dichloromethane, three times. The approximate concentration of the analyzed solutions is $8•10^{-5}$ M.

Figure S10. Absorption spectra of $Fe(OTf)_3$, 2-phenylpropanoic acid (1), anisole (2), and NaOAc (B) dissolved in CH_2Cl_2 . The spectra were all recorded in quartz tubes under ambient conditions.

Operational notes: The solutions were prepared in a nitrogen-filled glovebox at reaction stoichiometry: $Fe(OTf)_3$ (0.151 g, 0.30 mmol), NaOAc (0.025 g, 0.30 mmol), dichloromethane (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 0.10 mmol), and anisole (0.033 mL, 0.30 mmol). The vials were sealed, removed from the glovebox, and stirred for 30 minutes. The solutions were filtered through a syringe filter to remove the undissolved iron and base. 0.070 mL of the filtered solution was added to a cuvette and diluted with 3.0 mL dichloromethane (2•10⁻³ M).

Figure S11. Absorption spectra of 2-phenylpropanoic acid (1), anisole (2), and NaOAc (B) dissolved in CH_2Cl_2 . The spectra were all recorded in quartz tubes under ambient conditions.

Operational notes: The solutions were prepared in a nitrogen-filled glovebox at reaction stoichiometry: NaOAc (0.025 g, 0.30 mmol), dichloromethane (1.0 mL, 0.10 M), 2-phenylpropanoic acid (0.015 g, 0.10 mmol), and anisole (0.033 mL, 0.30 mmol). The vials were sealed, removed from the glovebox, and stirred for 30 minutes. The solutions were filtered through a syringe filter to remove the undissolved iron and base. 0.070 mL of the filtered solution was added to a cuvette and diluted with 3.0 mL dichloromethane (2•10⁻³ M).

I. Substrate Preparation

4-chloro-2-phenylbutanoic acid² (S1)

A flame-dried round-bottomed flask was equipped with a stirbar and charged with phenyl acetic acid (0.681 g, 1 equiv, 5 mmol) and placed under N₂. Anhydrous THF (20 mL, 0.25 M) was added and the solution was cooled to -78 °C. *n*-BuLi (2.5 M in hexane, 4 mL, 2 equiv, 10 mmol) was added dropwise to the solution. The mixture was allowed to warm to 0 °C and was stirred for 1 h. 1-Bromo-2-chloroethane (0.42 mL, 1 equiv, 5 mmol) was added and the reaction was allowed to warm to room temperature over 16 hours. The reaction mixture was quenched with the addition of aqueous HCl (1 M, 25 mL). The aqueous phase was extracted with EtOAc (3 x 25 mL) and the combined organic fractions were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to give a pale yellow solid (0.815 g, 82% yield). The crude product was analytically pure and used without further purification. The spectral data matched those previously reported.² ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.40 – 7.27 (m, 5H), 3.99 – 3.87 (m, 1H), 3.55 (dt, *J* = 11.5, 5.9 Hz, 1H), 3.37 (ddd, *J* = 11.1, 8.2, 5.3 Hz, 1H), 2.61 – 2.43 (m, 1H), 2.24 (dddd, *J* = 14.5, 8.3, 6.3, 5.3 Hz, 1H).

Tosylproline (S2)

CO2H

L-Proline (0.460 g, 1 equiv, 4.0 mmol) was dissolved in 1.5 M aqueous NaOH (6.5 mL). Sulfonyl chloride (0.915 g, 1.2 equiv, 4.8 mmol) was added in Et2O (4 mL) and the resulting mixture was stirred overnight at room temperature. Concentrated HCl was added dropwise to the solution until the pH = 2. The organic layer was separated, and the aqueous layer was extracted with ether (3 x 10 mL). The combined organic fractions were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was recrystallized (DCM/hexanes) to afford a white solid (0.932 g, 86% yield). The spectral data matched those previously reported.³ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.25 (dd, *J* = 8.3, 3.5 Hz, 1H), 3.59 – 3.47 (m, 1H), 3.32 – 3.11 (m, 1H), 2.45 (s, 3H), 2.24 – 2.11 (m, 1H), 2.01 – 1.84 (m, 2H), 1.81 – 1.57 (m, 1H).

J. Experimental procedures, isolation, and characterization

General Procedure A:

An oven-dried 6-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with $FeCl_3$ (3.0 equiv), NaOAc (3.0 equiv), the carbon nucleophile (3.0 equiv), the carboxylic acid (1.0 equiv), and methylene chloride (0.10 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and placed on a stir plate. The vial is irradiated at 427 nm with two 40 W Kessil Lamp PR160 lamps at a distance of 10 cm with stirring at 800 rpm. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with 1.5 mL EtOAc and absorbed directly on diatomaceous earth (Celite®). The product is purified by flash chromatography.

General Procedure B:

An oven-dried 6-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with $Fe(OTf)_3$ (0.453 g, 3.0 equiv, 0.9 mmol), K₂HPO₄ (0.261 g, 5.0 equiv, 1.5 mmol), the alcohol nucleophile (3.0 equiv, 0.9 mmol), the carboxylic acid (1.0 equiv, 0.3 mmol), and methylene chloride (3.0 mL, 0.10 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and placed on a stir plate. The vial is irradiated at 427 nm with two 40 W Kessil Lamp PR160 lamps at a distance of 10 cm with stirring at 800 rpm. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with 1.5 mL EtOAc and absorbed directly on diatomaceous earth (Celite®). The product is purified by flash chromatography on silica gel.

General Procedure C:

An oven-dried 6-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with FeCl₃ (0.146 g, 3.0 equiv, 0.9 mmol), K₂HPO₄ (0.261 g, 5.0 equiv, 1.5 mmol), the alcohol nucleophile (3.0 equiv, 0.9 mmol), the carboxylic acid (1.0 equiv, 0.3 mmol), and 1,2-dichloroethane (3.0 mL, 0.10 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and placed on a stir plate. The vial is irradiated at 427 nm with two 40 W Kessil Lamp PR160 lamps at a distance of 10 cm with stirring at 800 rpm. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with 1.5 mL EtOAc and absorbed directly on diatomaceous earth (Celite®). The product is purified by flash chromatography on silica gel.

General Procedure D:

In a nitrogen-filled glovebox, an oven-dried 6-mL vial equipped with a stir bar is charged with FeCl₃ (0.097 g, 3.0 equiv, 0.60 mmol), Na₃PO₄ (0.098 g, 3.0 equiv, 0.60 mmol), the carboxylic acid (1.0 equiv, 0.20 mmol), the sulfonamide (3.0 equiv, 0.60 mmol), and methylene chloride (2.0 mL, 0.10 M). The vial is sealed, removed from the glovebox, and irradiated at 427 nm with two 40 W Kessil Lamp PR160 lamps at a distance of 10 cm with stirring at 1000 rpm. A fan is used to maintain the vial at room temperature. After 24 h, the crude reaction mixture is diluted with 1.5 mL EtOAc and adsorbed directly on diatomaceous earth (Celite[®]). The product is purified by flash chromatography on silica gel, eluting with mixtures of ethyl acetate in hexanes.

General Procedure E:

In a nitrogen-filled glovebox, an oven-dried 4-mL vial equipped with a stir bar is charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), MeCN (1.0 mL, 0.10 M), and the carboxylic acid (1.0 equiv, 0.10 mmol). The vial is sealed, removed from the glovebox, and irradiated, with stirring, at 427 nm with a Kessil[®] PR160 lamp in a PhotoRedox Box. A fan is used to maintain the vial at room temperature. After 24 h, the cap is removed, and the crude mixture is directly charged with the amine nucleophile (7.0–10 equiv, 0.70–1.0 mmol) and KI (0.025 g, 1.5 equiv, 0.15 mmol). The vial is resealed and heated, with stirring, at 80 °C for 16 h. The crude reaction mixture is diluted with 1.5 mL EtOAc and adsorbed directly on diatomaceous earth (Celite[®]). The product is purified by flash chromatography on silica gel, eluting with mixtures of ethyl acetate in hexanes.

1-methoxy-4-(1-phenylethyl)benzene (3)

Prepared according to **General Procedure A** with anisole (65.1 µL, 3.0 equiv, 0.60 mmol) and 2phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 2.5% ethyl acetate in hexanes, afforded a mixture of the two isomeric products as a clear oil (40 mg, 94% yield, 4:1 *para:ortho*). The spectral data matched that previously reported.⁴ Where resolved, signals for the minor isomer are given in brackets. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.24 (m, 2H), 7.24 – 7.18 (m, 3H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), [4.59 (q, *J* = 7.3 Hz, 0.25H)], 4.12 (q, *J* = 7.3 Hz, 1H), 3.79 (s, 3H), [3.78 (s, 0.75H)], 1.63 (d, *J* = 7.3 Hz, 3H), [1.59 (d, *J* = 7.3 Hz, 0.75H)]. ¹³C NMR (126 MHz, CDCl₃) δ 157.98, [156.98], 146.92, [146.53], 138.70, [135.06], 128.65, 128.47, [128.22], [127.86], [127.80], 127.67, [127.18], 126.07, [125.80], [120.64], 113.87, [110.74], [55.57], 55.38, 44.08, [37.53], 22.20, [21.02]. **HRMS** (FTMS + p ESI) m/z: $[M-H]^-$ calculated for $C_{15}H_{15}O$, 211.1117; found, 211.117.

1-methyl-4-(1-phenylethyl)benzene (4)

Prepared according to **General Procedure A** with toluene (213 µL, 10 equiv, 1.0 mmol) and 2phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 0–5% ethyl acetate in hexanes, afforded a mixture of the two isomeric products as a clear oil (30.9 mg, 79% yield, 8:1 *para:ortho*). The spectral data matched those previously reported.⁵ *Where resolved, signals for the minor isomer are given in brackets.* ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 – 7.04 (m, 11.62H), [4.32 (q, *J* = 7.2 Hz, 0.12H)], 4.12 (q, *J* = 7.2 Hz, 1H), [2.31 (s, 0.36H)], 2.31 (s, 3H), 1.62 (d, *J* = 7.2 Hz, 3H), [1.61 (d, *J* = 7.2 Hz, 0.36H)]. ¹³**C NMR** (126 MHz, CDCl₃) δ 146.75, [146.38], 143.56, [142.59], 135.63, 129.19, [128.89], [128.53], 128.47, [128.45], [127.82], [127.74], 127.71, 127.63, [126.90], [126.22], 126.08, [125.95], 44.51, [40.72], [24.01], 22.06, 21.11, [19.13]. **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₅H₁₅, 195.1168; found, 195.1168.

4-(1-(p-tolyl)ethyl)-1,1'-biphenyl (5)

Prepared according to **General Procedure A** with biphenyl (0.463 g, 10 equiv, 3.0 mmol) and α -4-dimethylphenylacetic acid (0.049 g, 1.0 equiv, 0.30 mmol). Purification by flash chromatography on silica gel, eluting with 0–5% ethyl acetate in hexanes, afforded the product as a clear oil (60 mg, 74% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.58 – 7.53 (m, 2H), 7.53 – 7.48 (m, 2H), 7.43 – 7.39 (m, 2H), 7.34 – 7.26 (m, 3H), 7.18 – 7.08 (m, 4H), 4.16 (q, *J* = 7.2 Hz, 1H), 2.31 (s, 3H), 1.66 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.90, 143.46, 141.20, 139.03, 135.74, 129.26, 128.84, 128.10, 127.64, 127.24, 127.16, 127.16, 44.23, 22.07, 21.13. HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₁H₂₁, 273.1638; found, 273.1636.

1-methyl-4-(1-phenylethyl)benzene (6)

Prepared according to **General Procedure A** with benzene (357 µL, 20 equiv, 2.0 mmol) and 2phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica, eluting with a slow gradient of 0–100% with H₂O/MeOH. The product eluted at ~90% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the product as a clear oil (15.0 mg, 41% yield). The spectral data matched those previously reported.⁵ ¹**H NMR** (500 MHz, CDCl₃) δ 7.35 – 7.27 (m, 4H), 7.25 – 7.21 (m, 4H), 7.21 – 7.13 (m, 2H), 4.16 (q, *J* = 7.3 Hz, 1H), 1.65 (d, *J* = 7.3 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.52, 128.50, 127.77, 126.16, 44.92, 22.00. **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₄H₁₃, 181.1012; found, 181.1011.

1-fluoro-4-(1-phenylethyl)benzene (7)

Prepared according to **General Procedure A** with fluorobenzene (942 µL, 50 equiv, 5.0 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica, eluting with a slow gradient of 0–100% with H₂O/MeOH. The product eluted at ~90% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford a mixture of the two isomeric products as a clear oil (19.2 mg, 48% yield, 11:1 *para:ortho*). The spectral data matched those previously reported.⁵ *Where resolved, signals for the minor isomer are given in brackets.* ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2.54H), 7.23 – 7.11 (m, 5.27H), 6.96 (t, *J* = 8.7 Hz, 2H), [4.48 (q, *J* = 7.3 Hz, 0.09H)], 4.14 (q, *J* = 7.3 Hz, 1H), [1.64 (d, *J* = 7.3 Hz, 0.27H)], 1.62 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.41 (d, *J* = 244.1 Hz), 146.32, 142.19 (d, *J* = 3.2 Hz), 129.12 (d, *J* = 7.8 Hz), 128.58, 127.66, 126.30, 115.21 (d, *J* = 21.1 Hz), 44.18, 22.15. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.52 (s, 1F), -117.88 (s, 0.09F). HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₄H₁₂F, 199.0918; found, 199.0917.

1-chloro-4-(1-phenylethyl)benzene (8)

Prepared according to **General Procedure A** with chlorobenzene (1.01 mL, 50 equiv, 5.0 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica, eluting with a slow gradient of 0–100% with H₂O/MeOH. The product eluted at ~90% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford a mixture of the two isomeric products as a clear oil (5.6 mg, 12% yield, 8:1 *para:ortho*). The spectral data matched those previously reported.⁶ *Where resolved, signals for the minor isomer are given in brackets.* ¹**H NMR** (500 MHz, CDCl₃) δ [7.37 – 7.32 (m, 0.52H)], 7.31 – 7.26 (m, 2.26H), 7.24 (d, *J* = 8.5 Hz, 2H), 7.22 – 7.17 (m, 3.39H), 7.14 (d, *J* = 8.5 Hz, 2H), [4.65 (q, *J* = 7.2 Hz, 0.13H)], 4.12 (q, *J* = 7.2 Hz, 1H), 1.62 (d, *J* = 7.2 Hz, 3.39H). ¹³**C NMR** (126 MHz, CDCl₃) δ 145.96, 145.02, 131.90, 129.13, 128.62, 128.60, 127.68, 126.39, 44.33, 21.93. **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₄H₁₂Cl, 215.0622; found, 215.0621.

1,2-dimethoxy-4-(1-(p-tolyl)ethyl)benzene (9)

Prepared according to **General Procedure A** with 1,2-dimethoxybenzene (76.7 µL, 3.0 equiv, 0.6 mmol) and 2-(*p*-tolyl)propanoic acid (0.033 g, 1.0 equiv, 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv,

0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 1–5% ethyl acetate in hexanes, afforded the product as a clear oil (50.2 mg, 98% yield). The spectral data matched those previously reported.⁷ ¹**H NMR** (500 MHz, CDCl₃) δ 7.14 – 7.07 (m, 4H), 6.83 – 6.77 (m, 2H), 6.73 (d, *J* = 1.9 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 2.31 (s, 3H), 1.61 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.93, 147.42, 143.79, 139.40, 135.59, 129.17, 127.48, 120.98, 119.41, 111.36, 56.04, 55.96, 44.09, 22.28, 21.11. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₇H₂₁O₂, 257.1536; found, 257.1533.

1,2-dimethoxy-4-(1-phenylethyl)benzene (10)

Prepared according to **General Procedure A** with 1,2-dimethoxybenzene (76.7 µL, 3.0 equiv, 0.6 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 1–5% ethyl acetate in hexanes, afforded the product as a clear oil (45.5 mg, 94% yield). The spectral data matched those previously reported.⁷ ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.27 (m, 2H), 7.24 – 7.15 (m, 3H), 6.86 – 6.76 (m, 2H), 6.72 (d, *J* = 1.8 Hz, 1H), 4.10 (q, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 1.63 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.95, 147.48, 146.76, 139.16, 128.49, 127.64, 126.13, 119.48, 111.41, 111.22, 56.04, 55.97, 44.48, 22.21. HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₉O₂, 243.1380; found, 243.1378.

4-(1-(4-fluorophenyl)ethyl)-1,2-dimethoxybenzene (11)

Prepared according to **General Procedure A** with 1,2-dimethoxybenzene (76.7 μ L, 3.0 equiv, 0.6 mmol) and 2-(4-fluorophenyl)propanoic acid (0.034 g, 1.0 equiv, 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 1–5% ethyl acetate in hexanes, afforded the product as a clear oil (44.7 mg, 86% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.16 (dd, *J* = 8.8, 5.4, 2H), 6.96 (t, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.75 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.68 (d, *J* = 2.0 Hz, 1H), 4.08 (q, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 1.60 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.39 (d, *J* = 243.9 Hz), 149.02, 147.57, 142.44 (d, *J* = 3.1 Hz), 138.97, 129.01 (d, *J* = 7.7 Hz), 119.39, 115.19 (d, *J* = 21.2 Hz), 111.29, 111.25, 56.04, 55.98, 43.74, 22.35. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.54 (s, 1F). HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₈FO₂, 261.1285; found, 261.1283.

4-(1-(4-chlorophenyl)ethyl)-1,2-dimethoxybenzene (12)

Prepared according to **General Procedure A** with 1,2-dimethoxybenzene (76.7 μ L, 3.0 equiv, 0.6 mmol) and 2-(4-chlorophenyl)propanoic acid (0.037 g, 1.0 equiv, 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 1–5% ethyl acetate in hexanes, afforded the product as a clear oil (49.9 mg, 90% yield). The spectral data matched those previously reported.⁷ ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.75 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.68 (d, *J* = 2.0 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 1.60 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.04, 147.64, 145.28, 138.56, 131.83, 129.01, 128.58, 127.72, 119.42, 111.27, 56.04, 55.99, 43.88, 22.13. HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₈ClO₂, 277.0990; found, 277.0987.

4-(1-(4-bromophenyl)ethyl)-1,2-dimethoxybenzene (13)

Prepared according to **General Procedure A** with 1,2-dimethoxybenzene (76.7 μ L, 3.0 equiv, 0.6 mmol) and 2-(4-bromophenyl)propanoic acid (0.046 g, 1.0 equiv, 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 1–5% ethyl acetate in hexanes, afforded the product as a clear oil (55.9 mg, 87% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.75 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.68 (d, *J* = 2.0 Hz, 1H), 4.05 (q, *J* = 7.2 Hz, 1H), 3.85 (s, 3H), 3.82 (s, 3H), 1.59 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.05, 147.65, 145.81, 138.45, 131.53, 129.43, 128.57, 119.90, 119.42, 111.27, 56.04, 56.00, 43.95, 22.07. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₈BrO₂, 321.0485; found, 321.0481.

1,2-dimethoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene (14)

Prepared according to **General Procedure A** with 1,2-dimethoxybenzene (76.7 μ L, 3.0 equiv, 0.6 mmol) and 2-(4-(trifluoromethyl)phenyl)propanoic acid (0.044 g, 1.0 equiv., 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 1–5% ethyl acetate in hexanes, afforded the product as a clear oil (18.0 mg, 29% yield). The spectral data matched those previously reported.⁸ ¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.76 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.69 (d, *J* = 2.1 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 1.64 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 150.87, 149.12, 147.79, 137.99, 128.48 (q, *J* = 32.4 Hz), 127.96, 125.46 (q, *J* = 3.8 Hz), 124.47 (q, *J* = 271.9 Hz), 119.52, 111.34, 111.31, 56.06, 56.03, 44.38, 21.98. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.32 (s, 3F). **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₈F₃O₂, 311.1253; found, 311.1251.

2-benzyl-1,4-dimethoxybenzene (15)

Prepared according to **General Procedure A** with 1,4-dimethoxybenzene (0.124 g, 3.0 equiv, 0.9 mmol) and phenylacetic acid (0.038 mL, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with a gradient of 1-5% ether in pentanes, afforded the product as a clear oil (14 mg, 21% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.23 (m, 2H), 7.23 – 7.14 (m, 3H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.71 (dd, *J* = 8.8, 3.1 Hz, 1H), 6.65 (d, *J* = 3.1 Hz, 1H), 3.94 (s, 2H), 3.77 (s, 3H), 3.71 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.68, 151.85, 140.91, 131.10, 129.09, 128.43, 125.99, 117.01, 111.59, 111.40, 56.20, 55.78, 36.13. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₅H₁₆O₂H, 229.1223; found, 229.1220.

1,4-dimethoxy-2-(1-phenylethyl)benzene (16)

Prepared according to **General Procedure A** with 1,4-dimethoxybenzene (0.124 g, 3.0 equiv, 0.9 mmol) and 2-phenylpropanoic acid (0.045 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with a gradient of 1-10% ether in pentanes, afforded the product as a clear oil (41 mg, 54% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.22 (m, 5H), 7.17 – 7.13 (m, 1H), 6.77 (d, *J* = 8.8 Hz, 1H), 6.74 (d, *J* = 3.0 Hz, 1H), 6.68 (dd, *J* = 8.8, 3.1 Hz, 1H), 4.54 (q, *J* = 7.2 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 1.56 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.78, 151.40, 146.25, 136.53, 128.27, 127.81, 125.89, 114.90, 111.82, 110.65, 56.34, 55.76, 37.71, 21.02. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₆H₁₈O₂Na, 265.1199; found, 265.1195.

1,4-dimethoxy-2-(1-phenylpropyl)benzene (17)

Prepared according to **General Procedure A** with 1,4-dimethoxybenzene (0.124 g, 3.0 equiv, 0.9 mmol) and 2-phenylbutyric acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 1% ether in pentanes, afforded the product as a clear oil (62 mg, 71% yield).¹**H NMR** (500 MHz, CDCl₃) δ 7.25 (dd, *J* = 5.7, 3.3 Hz, 4H), 7.16 – 7.10 (m, 1H), 6.82 (d, *J* = 3.1 Hz, 1H), 6.75 (d, *J* = 8.8 Hz, 1H), 6.67 (dd, *J* = 8.8, 3.1 Hz, 1H), 4.25 (t, *J* = 7.8 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 2.00 (p, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 153.80, 151.76, 145.03, 135.35, 128.30, 128.24, 125.89, 114.81, 111.94, 110.52, 56.41, 55.77, 45.33, 28.06, 12.87. **HRSM** (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₇H₂₀O₂Na, 279.1355; found, 279.1353.

(1-(2,5-dimethoxyphenyl)ethane-1,2-diyl)dibenzene (18)

Prepared according to **General Procedure A** with 1,4-dimethoxybenzene (0.124 g, 3.0 equiv, 0.9 mmol) and 2,3-diphenylpropanoic acid (0.068 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with a gradient of 1-10% ether in pentanes, afforded the product as a clear oil (59 mg, 55% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.25 – 7.18 (m, 4H), 7.17 – 7.07 (m, 4H), 7.06 – 7.03 (m, 2H), 6.86 (d, *J* = 3.0 Hz, 1H), 6.72 (d, *J* = 8.8 Hz, 1H), 6.66 (dd, *J* = 8.8, 3.0 Hz, 1H), 4.70 (t, *J* = 7.8 Hz, 1H), 3.73 (s, 3H), 3.61 (s, 3H), 3.29 (dd, *J* = 7.8, 3.4 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 153.71, 151.52, 144.05, 140.73, 134.82, 129.19, 128.49, 128.21, 128.08, 126.07, 125.86, 115.18, 112.03, 110.86, 56.33, 55.79, 45.38, 41.36. **HRSM** (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₂₂H₂₂O₂H, 319.1693; found, 319.1686.

((2,5-dimethoxyphenyl)methylene)dibenzene (19)

Prepared according to **General Procedure A** with 1,4-dimethoxybenzene (0.124 g, 3.0 equiv, 0.9 mmol) and diphenylacetic acid (0.064 g, 1.0 equiv, 0.3 mmol). Purification by flash

chromatography on silica gel, eluting with a gradient of 1-10% ether in pentanes, afforded the product as a clear oil (54 mg, 58% yield, 8:1). The spectral data matched those previously reported.⁹ *Where resolved, signals for the minor product are given in brackets.* ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.30 – 7.22 (m, 5.21H), 7.22 – 7.15 (m, 2.53H), 7.13 – 7.05 (m, 5.11H), 6.80 (d, *J* = 8.8 Hz, 1H), 6.72 (dd, *J* = 8.8, 3.1 Hz, 1H), 6.46 (d, *J* = 3.0 Hz, 1H), [6.43 (s, 0.24H)], 5.89 (s, 1H), [5.87 (s, 0.24H)], 3.66 (s, 3H), 3.64 (s, 3H), [3.43 (s, 0.72H)]. ¹³**C NMR** (126 MHz, CDCl₃) δ 153.53, 151.73, [151.22], [144.08], 143.81, 134.27, [131.54], 129.56, 128.28, [128.25], 126.22, [126.19], 117.57, [114.27], 111.99, 111.17, 56.51, 55.68, 49.91, [49.84].

4-chloro-1-methoxy-2-(1-phenylethyl)benzene (20)

Prepared according to **General Procedure A** with 4-chloroanisole (0.128 g, 3.0 equiv, 0.9 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with <5% ethyl acetate in hexanes, afforded a mixture of the product and 4-chloroanisole. Fractions that eluted between 0–5% ethyl acetate in hexanes were recombined and purified by reverse phase flash chromatography over C18 functionalized silica, eluting with a slow gradient of 0–100% with H₂O/MeCN. The product eluted at ~65% MeCN. The product containing fractions were combined, concentrated under reduced pressure, diluted with CH₂Cl₂, filtered through a plug of MgSO₄, and concentrated under reduced pressure to afford the product as a clear oil (55 mg, 74% yield). The spectral data matched those previously reported.^{10 1}H NMR (500 MHz, Chloroform-*d*) δ 7.32 – 7.08 (m, 7H), 6.75 (d, *J* = 8.5 Hz, 1H), 4.52 (q, *J* = 7.2 Hz, 1H), 3.75 (s, 3H), 1.56 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.60, 145.65, 136.95, 128.37, 127.85, 127.78, 126.85, 126.11, 125.66, 111.93, 55.88, 37.59, 20.90.

(3-(1-(6-bromo-2-methoxynaphthalen-1-yl)ethyl)phenyl)(phenyl)methanone (21)

Prepared according to **General Procedure A** with 2-bromo-6-methoxynaphthalene (0.213 g, 3.0 equiv, 0.9 mmol) and 2-(3-benzoylphenyl)propanoic acid (0.076 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 10% ethyl acetate in hexanes, afforded the product as a white solid (79 mg, 60% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 2.1 Hz, 1H), 7.73 – 7.63 (m, 5H), 7.59 – 7.50 (m, 2H), 7.45 – 7.39 (m, 1H), 7.40 – 7.35 (m, 3H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.27 (d, *J* = 9.1 Hz, 1H), 5.27 (q, *J* = 7.3 Hz, 1H), 3.81 (s, 3H), 1.83 (d, *J* = 7.3 Hz, 3H) ¹³C NMR (126 MHz, CDCl₃₂) δ 197.09, 155.20, 146.18, 137.81, 137.49, 132.44, 131.36, 131.26, 130.96, 130.78, 130.21, 129.41, 128.60, 128.27, 128.10, 127.98, 127.55, 126.25, 117.06, 115.32, 56.74, 34.61, 18.19. mp: 85 – 90 °C HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₂₆H₂₁BrO₂H, 445.0798; found, 445.0791.

phenyl(3-(1-phenylethyl)-1H-indol-1-yl)methanone (22)

Prepared according to **General Procedure A** with 1-benzoylindole (0.066 g, 3.0 equiv, 0.3 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Fe(OTf)₃ (0.150 g, 3.0 equiv, 0.30 mmol) and Na₂CO₃ (0.032 g, 3.0 equiv, 0.30 mmol) were used in place of FeCl₃ and NaOAc,

respectively. Purification by flash chromatography on silica gel, eluting with 0–2.5% ether in pentane, afforded the product as a white solid (24.9 mg, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, *J* = 8.3 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.65 – 7.58 (m, 1H), 7.57 – 7.51 (m, 2H), 7.35 – 7.23 (m, 6H), 7.23 – 7.13 (m, 3H), 4.27 (q, *J* = 7.1 Hz, 1H), 1.62 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.62, 145.23, 136.91, 135.03, 131.96, 130.59, 129.28, 128.76, 128.67, 127.46, 126.97, 126.53, 125.07, 124.02, 123.75, 120.11, 116.54, 36.96, 22.08. mp: 101.6 – 102.7 °C. HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₃H₂₀NO, 326.1539; found, 326.1536.

5-bromo-3-(1-phenylethyl)benzo[b]thiophene (23)

Prepared according to **General Procedure A** with 5-bromobenzo[b]thiophene (0.128 g, 3.0 equiv, 0.6 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. Purification by flash chromatography on silica gel, eluting with 5–10% ethyl acetate in hexanes, afforded a mixture of the two isomeric products as a pale yellow oil (44.3 mg, 70% yield, 11:1 *r.r.*). *Where resolved, signals for the minor isomer are given in brackets*. ¹**H NMR** (500 MHz, CDCl₃) δ [7.79 (d, *J* = 1.9 Hz, 0.09H)], 7.71 – 7.65 (m, 2H), [7.57 (d, *J* = 8.5 Hz, 0.09H)], 7.38 (dd, *J* = 8.5, 1.9 Hz, 1H), [7.35 – 7.32 (m, 0.27H)], 7.32 – 7.27 (m, 2.18H), 7.25 – 7.17 (m, 4.09H), [6.96 (m, 0.09H)], 4.38 (q, *J* = 7.1 Hz, 1.09H), [1.76 (d, *J* = 7.1 Hz, 0.27H)], 1.72 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ [153.83], [145.01], 144.93, [141.65], 140.42, 140.24, [139.51], 139.45, [138.23], [129.04], 128.80, [127.49], 127.44, 127.38, [127.06], [126.76], 126.66, [125.81], 125.34, 124.22, [123.60], 123.37, [119.45], 118.20, [41.62], 39.50, [22.80], 22.49. **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₆H₁₂BrS, 314.9838; found, 314.9836.

2-(1-(o-tolyl)ethyl)benzofuran (24)

Prepared according to **General Procedure A** with benzofuran (64.6 µL, 3.0 equiv, 0.6 mmol) and 2-(*o*-tolyl)propanoic acid (0.033 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) and Na₃PO₄ (0.098 g, 3.0 equiv, 0.60 mmol) were used in place of FeCl₃ and NaOAc, respectively. The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica, eluting with a slow gradient of 0–100% with H₂O/MeOH. The product eluted at ~80% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford a mixture of the two isomeric products as a clear oil (34.9 mg, 74% yield, 15:1 C2:C3) ¹**H NMR** (500 MHz, CDCl₃) δ 7.55 – 7.45 (m, 1H), 7.39 (m, 1H), 7.21 – 7.11 (m, 6H), 6.39 (t, *J* = 1.1 Hz, 1H), 4.50 (q, *J* = 7.1 Hz, 1H), 2.43 (s, 3H), 1.68 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.39, 154.97, 141.44, 135.75, 130.66, 128.83, 126.85, 126.78, 126.48, 123.49, 122.57, 120.53, 111.10, 102.41, 35.60, 19.58, 19.55. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₇H₁₇O, 237.1274; found, 237.1272.

2-(2-phenylpropan-2-yl)furan (25)

Prepared according to **General Procedure A** with furan (0.109 mL, 5.0 equiv, 1.5 mmol) and 2methyl-2-phenylpropanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeOH. The product eluted around ~90% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as a clear oil (27 mg, 48% yield). The spectral data matched those previously reported.¹¹ ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.33 – 7.26 (m, 3H), 7.24 – 7.16 (m, 3H), 6.30 (dd, *J* = 3.2, 1.8 Hz, 1H), 6.11 (dd, *J* = 3.2, 0.9 Hz, 1H), 1.66 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.53, 148.04, 141.38, 128.31, 126.22, 126.08, 109.87, 104.53, 40.35, 28.67.

2-(3-chloro-1-phenylpropyl)-1-tosyl-1*H*-pyrrole (26)

Prepared according to **General Procedure A** with 1-tosyl-*1H*-pyrrole (0.332 g, 5.0 equiv, 1.5 mmol) and **S1** (0.060 g, 1.0 equiv, 0.3 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeOH. The product eluted around ~90% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as a clear oil (70 mg, 62% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 3H), 7.20 – 7.09 (m, 3H), 7.08 – 7.00 (m, 4H), 6.28 (t, *J* = 3.4 Hz, 1H), 6.24 (dd, *J* = 3.6, 1.7 Hz, 1H), 4.74 (dd, *J* = 8.4, 6.9 Hz, 1H), 3.49 – 3.26 (m, 2H), 2.37–2.26 (m, 4 H), 2.21 (ddt, *J* = 14.3, 8.4, 6.2 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.52, 141.91, 136.85, 136.29, 129.77, 128.52, 128.10, 126.77, 126.60, 123.31, 112.73, 111.45, 42.75, 40.21, 39.98, 21.63. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₂₀H₂₀CINO₂SH, 374.0976; found, 374.0975.

2-(4-methoxyphenyl)-1-tosylpyrrolidine (27)

Prepared according to **General Procedure A** with anisole (0.163 mL, 5.0 equiv, 1.5 mmol) and **S2** (0.086 g, 1.0 equiv, 0.30 mmol). Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a pale yellow oil (36 mg, 33% yield). The spectral data matched those previously reported.¹² ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.68 – 7.63 (m, 2H), 7.27 (d, *J* = 9.6 Hz, 4H), 7.24 – 7.19 (m, 2H), 6.85 – 6.80 (m, 2H), 4.73 (dd, *J* = 7.9, 3.9 Hz, 1H), 3.79 (s, 3H), 3.63 – 3.55 (m, 1H), 3.46 – 3.37 (m, 1H), 2.42 (s, 3H), 2.02 – 1.74 (m, 3H), 1.71 – 1.59 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 158.82, 143.30, 135.45, 135.28, 129.66, 127.65, 127.48, 113.85, 62.97, 55.44, 49.44, 35.93, 24.15, 21.66.

1,2,3-trimethoxy-4-(1-(p-tolyl)ethyl)benzene (28)

Prepared according to **General Procedure A** with 1,2,3-trimethoxybenzene (0.151 g, 3.0 equiv, 0.9 mmol) and 2-(*p*-tolyl)propanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with a gradient of 0-15% ethyl acetate in hexanes, afforded the product as a clear oil (46 mg, 54% yield). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.11 (d, *J* = 8.3 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 8.6 Hz, 1H), 6.62 (d, *J* = 8.7 Hz, 1H), 4.41 (q, *J* = 7.3 Hz, 1H), 3.84 (d, *J* = 9.4 Hz, 6H), 3.65 (s, 3H), 2.29 (s, 3H), 1.54 (d, *J* = 7.3 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.11, 151.64, 144.04, 142.42, 135.26, 132.90, 129.00, 127.53, 121.91, 107.17, 60.86, 60.77, 56.07, 37.48, 21.89, 21.10. **HRSM** (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₈H₂₂O₃H, 287.1642; found, 287.1637.

3-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-2,6-dimethoxypyridine (29)

Prepared according to General Procedure A with 2,6-dimethoxypyridine (79.2 µL, 3.0 equiv, 0.6 mmol) and flurbiprofen (0.049 g, 1.0 equiv, 0.20 mmol). Na₃PO₄ (0.098 g, 3.0 equiv, 0.60 mmol) was used in place of NaOAc. After irradiation for 24 h, the lights were powered off, and the reaction was heated at 80 °C for an additional 16 h. The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica, eluting with a slow gradient of 0–100% with H₂O/MeOH. The product eluted at ~95% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure to afford the product as a clear oil (54.5 mg, 81% yield) ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.50 (m, 2H), 7.42 (t, J = 7.5 Hz, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.06 (dd, J = 8.0, 1.8 Hz, 1H), 7.00 (dd, J = 12.0, 1.8 Hz, 1H), 6.29 (d, J = 8.0 Hz, 1H),4.38 (q, J = 7.2 Hz, 1H), 3.93 (s, 3H), 3.90 (s, 3H), 1.57 (d, J = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, $CDCl_3$) δ 161.59, 159.85, 159.79 (d, J = 247.4 Hz), 147.97 (d, J = 7.1 Hz), 138.79, 136.03, 129.08, 128.52, 127.54, 126.57, 126.46, 123.61 (d, J = 3.2 Hz), 119.04, 115.19 (d, J = 23.1 Hz), 100.44, 53.63, 53.47, 36.73, 20.65. ¹⁹F NMR (377 MHz, CDCl₃) δ -118.59. HRMS (FTMS + p ESI) m/z: $[M+H]^+$ calculated for C₂₁H₂₁FNO₂, 338.1551; found, 338.1548.

(3r,5r,7r)-1-(4-methoxyphenyl)adamantane (30)

Prepared according to **General Procedure A** with anisole (0.098 mL, 3.0 equiv, 0.9 mmol) and (3*r*,5*r*,7*r*)-adamantane-1-carboxylic acid (0.054 g, 1.0 equiv, 0.3 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeOH. The product eluted around ~95% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as an off-white solid (34 mg, 47% yield). The spectral data matched those previously reported.¹³ ¹H NMR (500 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 8.9 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 2.13 – 2.06 (m, 3H), 1.91 – 1.86 (m, 6H), 1.83 – 1.69 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 157.49, 143.87, 125.93, 113.55, 55.36, 43.55, 36.97, 35.70, 29.16.

1-methoxy-4-(1-methylcyclohexyl)benzene (31)

Prepared according to **General Procedure A** with anisole (65.1 μ L, 3.0 equiv, 0.60 mmol) and 1methylcyclohexane-1-carboxylic acid (0.028 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 5% ethyl acetate in hexanes, afforded the product as a pale yellow oil (21.1 mg, 52% yield). The spectral data matched those previously reported.¹⁴ ¹**H NMR** (500 MHz, CDCl₃) δ 7.29 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 3.80 (s, 3H), 2.00 – 1.92 (m, 2H), 1.62 – 1.51 (m, 4H), 1.50 – 1.37 (m, 4H), 1.17 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 157.24, 142.27, 126.96, 113.62, 55.30, 38.19, 37.38, 30.72, 26.55, 22.79. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₄H₂₁O, 205.1587; found, 205.1586.

1-methyl-4-(1-phenethoxyethyl)benzene (32)

Prepared according to **General Procedure C** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-(*p*-tolyl)propanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ethyl acetate in hexanes, afforded the product as a clear oil (58 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.22 (m, 2H), 7.20 – 7.08 (m, 7H), 4.37 (q, *J* = 6.4 Hz, 1H), 3.54 – 3.44 (m, 2H), 2.93 – 2.79 (m, 2H), 2.32 (s, 3H), 1.41 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 141.04, 139.22, 137.07, 129.19, 129.07, 128.35, 126.23, 126.20, 78.03, 69.63, 36.71, 24.27, 21.24. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₇H₂₀ONa, 263.1406; found, 263.1403.

(1-phenethoxyethyl)benzene (33)

Prepared according to **General Procedure B** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-phenylpropanoic acid (0.045 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (45 mg, 61% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 7.27 – 7.23 (m, 5H), 7.21 – 7.14 (m, 3H), 4.40 (q, *J* = 6.5 Hz, 1H), 3.51 (t, *J* = 7.3 Hz, 2H), 2.95 – 2.80 (m, 2H), 1.42 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.10, 139.19, 129.08, 128.51, 128.38, 127.47, 126.27, 126.24, 78.24, 69.75, 36.71, 24.26. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₆H₁₈ONa, 249.1250; found, 249.125.

1-fluoro-4-(1-phenethoxyethyl)benzene (34)

Prepared according to **General Procedure B** with phenylethanol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-(4-fluorophenyl)propanoic acid (0.050 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (51 mg, 69% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.22 (m, 2H), 7.23 – 7.11 (m, 5H), 7.03 – 6.93 (m, 2H), 4.38 (q, *J* = 6.5 Hz, 1H), 3.55 – 3.39 (m, 2H), 2.87 (hept, *J* = 6.7 Hz, 2H), 1.40 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 163.20, 161.25, 139.80 (d, *J* = 3.1 Hz), 139.14, 129.07, 128.41, 127.82 (d, *J* = 8.0 Hz), 126.29, 115.39, 115.22, 77.55, 69.69,

36.69, 24.24. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -115.57. **HRSM** (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₆H₁₇FONa, 267.1155; found, 267.1152.

1-chloro-4-(1-phenethoxyethyl)benzene (35)

Prepared according to **General Procedure B** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-(4-chlorophenyl)propanoic acid (0.055 g, 1.0 equiv, 0.3 mmol). Reaction was irradiated for 48 h. Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (51 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.23 (m, 4H), 7.21 – 7.13 (m, 5H), 4.36 (q, *J* = 6.5 Hz, 1H), 3.57 – 3.42 (m, 2H), 2.92 – 2.78 (m, 2H), 1.39 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.66, 139.09, 133.07, 129.07, 128.67, 128.41, 127.62, 126.30, 77.55, 69.80, 36.68, 24.18. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₆H₁₇CIONa, 283.0860; found, 283.0858.

(1-phenethoxypropyl)benzene (36)

Prepared according to **General Procedure B** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-phenylbutanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Reaction was irradiated for 48 h. Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (50 mg, 69% yield). ¹H NMR (500 MHz, CDCl₃) 7.32 – 7.29 (m, 2H), 7.27 – 7.20 (m, 5H), 7.20 – 7.15 (m, 3H), 4.12 (t, J = 6.6 Hz, 1H), 3.54 (ddd, J = 9.4, 8.0, 6.5 Hz, 1H), 3.46 (ddd, J = 9.3, 8.0, 6.4 Hz, 1H), 2.94 – 2.79 (m, 2H), 1.85 – 1.76 (m, 1H), 1.70 – 1.60 (m, 1H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.87, 139.31, 129.10, 128.37, 128.35, 127.44, 126.84, 126.19, 84.07, 69.86, 36.68, 31.26, 10.40. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₇H₂₀OH, 241.1587; found, 241.1585.

(phenethoxymethylene)dibenzene (37)

Prepared according to **General Procedure B** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2,2-diphenylacetic acid (0.064 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (84 mg, 97% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.18 (m, 10H), 7.24 – 7.17 (m, 5H), 5.34 (s, 1H), 3.67 (t, *J* = 7.1 Hz, 2H), 2.96 (t, *J* = 7.1 Hz, 2H).¹³C NMR (126 MHz, CDCl₃) δ 142.51, 139.27, 129.19, 128.48, 128.41, 127.50, 127.06, 126.28, 83.91, 70.16, 36.69. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₂₁H₂₀ONa, 311.1406; found, 311.1402.

(2-phenethoxypropan-2-yl)benzene (38)

Me Me

Prepared according to **General Procedure C** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-methyl-2-phenylpropanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ethyl acetate in hexanes, afforded the product as a clear oil (37 mg, 51% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.12 (m, 10H), 3.36 (t, *J* = 7.4 Hz, 2H), 2.84 (t, *J* = 7.4 Hz, 2H), 1.51 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 146.57, 139.37,

129.20, 128.32, 128.25, 126.87, 126.20, 125.81, 76.81, 64.23, 37.27, 28.50. **HRSM** (FTMS + p ESI) m/z: $[M + Na]^+$ calculated for $C_{17}H_{20}ONa$, 263.1406; found, 263.1405.

2-(3-(1-(*p*-tolyl)ethoxy)propyl)isoindoline-1,3-dione (39)

Prepared according to **General Procedure B** with 2-(3-hydroxypropyl)isoindoline-1,3-dione (0.185 g, 3.0 equiv, 0.9 mmol) and 2-(*p*-tolyl)propanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 10% ethyl acetate in hexanes, afforded the product as a clear oil (64 mg, 71% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.69 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 4.31 (q, *J* = 6.4 Hz, 1H), 3.83 (dt, *J* = 13.8, 6.9 Hz, 1H), 3.75 (dt, *J* = 13.7, 6.9 Hz, 1H), 3.40 – 3.28 (m, 2H), 2.31 (s, 3H), 1.99 – 1.86 (m, 2H), 1.32 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.55, 140.94, 137.03, 133.89, 132.40, 129.15, 126.24, 123.22, 78.06, 66.22, 35.98, 28.82, 23.99, 21.22. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₂₀H₂₁NO₃Na, 346.1413; found, 346.1406.

3-(3,3-dimethylbutoxy)-2,3-dihydro-1*H*-inden-1-one (40)

t-Bu

Prepared according to **General Procedure B** with 3,3-dimethylbutan-1-ol (0.109 mL, 3.0 equiv, 0.9 mmol) and 3-oxo-2,3-dihydro-1*H*-indene-1-carboxylic acid (0.053 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 10% ethyl acetate in hexanes, afforded the product as a clear oil (54 mg, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.8 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.50 – 7.45 (m, 1H), 5.08 (dd, *J* = 6.4, 2.9 Hz, 1H), 3.68 (t, *J* = 7.3 Hz, 2H), 3.01 (dd, *J* = 18.5, 6.4 Hz, 1H), 2.66 (dd, *J* = 18.6, 2.9 Hz, 1H), 1.67 – 1.51 (m, 2H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 203.33, 153.79, 136.88, 135.09, 129.51, 126.63, 123.35, 75.57, 67.52, 44.25, 43.33, 29.93, 29.87. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₅H₂₀O₂H, 233.1536; found, 233.1532.

2-((4-bromobenzyl)oxy)tetrahydrofuran (41)

Prepared according to **General Procedure B** with (4-bromophenyl)methanol (0.168 g, 3.0 equiv, 0.9 mmol) and tetrahydrofuran-2-carboxylic acid (0.035 g, 1.0 equiv, 0.3 mmol). Pyridine (0.072 mL, 3.0 equiv, 0.9 mmol) was employed as the base in place of K₂HPO₄. The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeOH. The product eluted around ~60% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as a clear oil (53 mg, 71% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.21 (d, *J* = 8.3 Hz, 2H), 5.19 (dd, *J* = 3.7, 2.6 Hz, 1H), 4.65 (d, *J* = 12.1 Hz, 1H), 4.42 (d, *J* = 12.2 Hz, 1H), 3.98 – 3.84 (m, 2H), 2.06 – 1.99 (m, , 1H), 1.98 – 1.91 (m, 2H), 1.89 – 1.80 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 137.61, 131.57, 129.58, 121.45, 103.34, 68.14, 67.24, 32.50, 23.59. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₁H₁₃BrO₂H, 257.0172; found, 257.0167.

2-fluoro-4-((1-(*p*-tolyl)ethoxy)methyl)-1-(trifluoromethyl)benzene (42)

Prepared according to **General Procedure B** with (3-fluoro-4-(trifluoromethyl)phenyl)methanol (0.175 g, 3.0 equiv, 0.9 mmol) and 2-(*p*-tolyl)propanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 1% ethyl acetate in hexanes, afforded the product as a clear oil (83 mg, 89% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.53 (t, *J* = 7.6 Hz, 1H), 7.25 – 7.21 (m, 2H), 7.21 – 7.16 (m, 3H), 7.14 (d, *J* = 8.0 Hz, 1H), 4.46 (q, *J* = 6.6 Hz, 1H), 4.43 (d, *J* = 13.2 Hz, 1H), 4.33 (d, *J* = 12.9 Hz, 1H), 2.36 (s, 3H), 1.50 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 161.05 (q, *J* = 2.1 Hz), 159.01 (q, *J* = 2.1 Hz), 146.40 (d, *J* = 7.1 Hz), 140.07, 137.70, 129.46, 127.14 (qd, *J* = 4.6, 1.8 Hz), 126.39, 122.50 (d, *J* = 3.5 Hz), 117.24 (qd, *J* = 32.9, 12.5 Hz), 115.49 (d, *J* = 21.0 Hz), 78.02, 68.87 (d, *J* = 1.6 Hz), 24.18, 21.27. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -61.23 (d, *J* = 12.7 Hz, 3F), -114.71 (q, *J* = 12.5 Hz, 1F). HRSM (FTMS + p ESI) m/z: [M $-C_8H_5F$]⁺ calculated for $C_{17}H_{16}F_4O$, 119.0855; found, 119.0855.

4-(1-((4-chlorobenzyl)oxy)ethyl)-2-fluoro-1,1'-biphenyl (43)

Prepared according to **General Procedure B** with (4-chlorophenyl)methanol (0.128 g, 3.0 equiv, 0.9 mmol) and 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoic acid (0.073 g, 1.0 equiv, 0.3 mmol). Reaction was irradiated for 48 h. Purification by flash chromatography on silica gel, eluting with 5% ethyl acetate in hexanes, afforded the product as a clear oil (53 mg, 51% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.56 (dt, *J* = 8.1, 1.4 Hz, 2H), 7.48 – 7.40 (m, 3H), 7.40 – 7.34 (m, 1H), 7.34 – 7.30 (m, 2H), 7.29 – 7.24 (m, 2H), 7.20 – 7.13 (m, 2H), 4.51 (q, *J* = 6.4 Hz, 1H), 4.46 (d, *J* = 12.0 Hz, 1H), 4.33 (d, *J* = 12.0 Hz, 1H), 1.50 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-d) δ 160.07 (d, J = 248.5 Hz), 145.44 (d, J = 6.9 Hz), 137.02, 135.75 (d, J = 1.1 Hz), 133.50, 131.02 (d, J = 3.8 Hz), 129.12 (d, J = 3.5 Hz), 128.67 (d, J = 14.2 Hz), 128.51, 128.42, 128.31, 127.82, 122.31 (d, J = 3.3 Hz), 113.97 (d, J = 23.3 Hz), 76.80 (d, J = 1.5 Hz), 69.92, 24.12. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -117.68. HRSM (FTMS + p ESI) m/z: [M –C₇H₆ClO]⁺ calculated for C₂₁H₁₈ClO, 199.0918; found, 199.0916.

(3-(1-(benzyloxy)ethyl)phenyl)(phenyl)methanone (44)

Prepared according to **General Procedure B** with phenylmethanol (0.093 mL, 3.0 equiv, 0.9 mmol) and 2-(3-benzoylphenyl)propanoic acid (0.076 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 5% ethyl acetate in hexanes, afforded the product as a clear oil (80 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.82 – 7.79 (m, 3H), 7.74 – 7.71 (m, 1H), 7.64 – 7.56 (m, 2H), 7.50 – 7.46 (m, 3H), 7.36 – 7.24 (m, 5H), 4.58 (q, *J* = 6.5 Hz, 1H), 4.48 (d, *J* = 11.8 Hz, 1H), 4.35 (d, *J* = 11.8 Hz, 1H), 1.50 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.83, 144.34, 138.44, 137.98, 137.75, 132.58, 130.42, 130.18, 129.49, 128.69, 128.54, 128.44, 128.10, 127.81, 127.73, 77.01, 70.70, 24.25. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₂₂H₂₀O₂H, 317.1536; found, 317.1530.

2-(4-(1-(allyloxy)ethyl)benzyl)cyclopentan-1-one (45)

Prepared according to **General Procedure B** with prop-2-en-1-ol (0.061 mL, 3.0 equiv, 0.9 mmol) and 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoic acid (0.074 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 10% ethyl acetate in hexanes, afforded the product as a clear oil (45 mg, 60% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 5.96 – 5.85 (m, 1H), 5.24 (dd, *J* = 17.2, 1.7 Hz, 1H), 5.15 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.44 (q, *J* = 6.5 Hz, 1H), 3.88 (dd, *J* = 12.9, 5.2 Hz, 1H), 3.79 (dd, *J* = 12.7, 6.0 Hz, 1H), 3.14 (dd, *J* = 13.9, 4.1 Hz, 1H), 2.52 (dd, *J* = 13.9, 9.5 Hz, 1H), 2.41 – 2.27 (m, 2H), 2.19 – 2.04 (m, 2H), 2.02 – 1.92 (m, 1H), 1.79 – 1.69 (m, 1H), 1.63 – 1.52 (m, 1H), 1.44 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 220.32, 141.74, 139.31, 135.21, 129.07, 126.47, 116.78, 77.11, 69.50, 51.16, 51.15, 38.32, 35.44, 29.40, 24.11, 24.10, 20.69. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₇H₂₂O₂H, 259.1693; found, 259.1690.

cyclohexyl(1-phenylethyl)sulfane (46)

Prepared according to **General Procedure B** with cyclohexanethiol (0.110 mL, 3.0 equiv, 0.9 mmol) and 2-phenylpropanoic acid (0.041 mL, 1.0 equiv, 0.3 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeOH. The product eluted around ~75% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as a clear oil (35 mg, 53% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.38 – 7.27 (m, 4H), 7.24 – 7.18 (m, 1H), 4.04 (q, *J* = 7.0 Hz, 1H), 2.39 (tt, *J* = 10.5, 3.6 Hz, 1H), 2.02 – 1.87 (m, 1H), 1.77 – 1.69 (m, 2H), 1.70 – 1.61 (m, 1H), 1.55 (d, *J* = 7.0 Hz, 3H), 1.43 – 1.12 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 144.87, 128.56, 127.28, 126.99, 42.92, 42.61, 34.02, 33.45, 26.14, 26.00, 23.27. The spectral data matched those previously reported.¹⁵

benzyl ((1R,3R)-3-(1-(4-isobutylphenyl)ethoxy)cyclopentyl)carbamate (47)

An oven-dried 4-mL vial equipped with a stir bar is charged with Fe(OTf)₃ (0.152 g, 3.0 equiv, 0.3 mmol), Na₃PO₄ (0.050 g, 3.0 equiv, 0.3 mmol), benzyl ((1*R*,3*R*)-3-hydroxycyclopentyl)carbamate (0.071 g, 3.0 equiv, 0.3 mmol), and ibuprofen (0.021 g, 1.0 equiv, 0.3 mmol). The vial was purged with nitrogen and the solids suspended in methylenechloride (2.0 mL, 0.05 M). The vial is irradiated at 427 nm with one 40 W Kessil Lamp PR160 lamp in a EvoluChem photoreactor box for 24 h at room temperature. After 24 h, the crude reaction mixture is diluted with 2.0 mL saturated aqueous NH4Cl and extracted with EtOAc (2 x 5 mL). The combined organics were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel, eluting with a gradient of 0-20% EtOAc/heptane, to deliver the product as a clear oil (27 mg, 68% yield).¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 7.18 (d, *J* = 7.9 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 5.20 – 4.99 (m, *J* = 7.0 Hz, 2H), 4.71 – 4.48 (m, 1H), 4.45 – 4.34 (m, 1H), 4.26 – 4.09 (m, 1H), 3.93 – 3.79 (m, 1H), 2.46 (d, *J* = 7.2 Hz, 2H), 2.24 – 1.96 (m, 2H), 1.95 – 1.77 (m, 2H), 1.66 – 1.44 (m, 2H), 1.38 (d, *J* = 6.5 Hz, 3H), 1.35 – 1.19 (m, 1H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 157.30, 141.53, 141.49,

140.92, 140.90, 136.73, 129.39, 129.25, 129.24, 128.68, 128.66, 128.33, 128.25, 128.23, 126.14, 126.11, 77.36, 76.44, 75.67, 75.50, 45.29, 31.64, 30.55, 30.34, 24.64, 24.54, 22.57. **HRSM** (FTMS + p ESI) m/z: $[M + H]^+$ calculated for $C_{25}H_{33}NO_3H$, 396.2533; found, 396.2525.

7-(1-((4-chlorobenzyl)oxy)ethyl)-5*H*-chromeno[2,3-*b*]pyridine (48)

Prepared according to **General Procedure B** with (4-chlorophenyl)methanol (0.128 g, 3.0 equiv, 0.9 mmol) and 2-(*5H*-chromeno[2,3-b]pyridine-7-yl)propanoic acid (0.077 g, 1.0 equiv, 0.3 mmol). Pyridine (0.072 mL, 3.0 equiv, 0.9 mmol) was employed as the base in place of K₂HPO₄. Purification by flash chromatography on silica gel, eluting with gradient of 0-20% ethyl acetate in hexanes, afforded the product as a clear oil (54 mg, 48% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.22 – 8.14 (m, 1H), 7.55 (ddt, *J* = 7.3, 2.0, 1.1 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.26 – 7.21 (m, 2H), 7.19 – 7.13 (m, 3H), 7.04 (dd, *J* = 7.3, 4.8 Hz, 1H), 4.45 (q, *J* = 6.5 Hz, 1H), 4.40 (d, *J* = 12.0 Hz, 1H), 4.28 (d, *J* = 12.1 Hz, 1H), 4.12 (s, 2H), 1.47 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.64, 151.29, 146.89, 139.04, 138.52, 137.21, 133.40, 129.09, 128.67, 126.47, 126.31, 119.99, 119.77, 117.44, 115.52, 76.98, 69.65, 28.38, 24.23. HRSM (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₂₁H₁₈CINO₂H, 352.1099; found, 352.1096.

4-methoxy-N-(1-phenylethyl)benzenesulfonamide (49)

Prepared according to **General Procedure D** with 4-methoxybenzenesulfonamide (0.112 g, 3.0 equiv, 0.60 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a clear oil (57.6 mg, 99% yield). The spectral data matched those previously reported.¹⁶ ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.8 Hz, 2H), 7.24 – 7.16 (m, 3H), 7.15 – 7.06 (m, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.73 (br m, 1H. N–H), 4.45 (p, *J* = 6.8 Hz, 1H), 3.84 (s, 3H), 1.43 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.83, 142.17, 132.41, 129.36, 128.73, 127.67, 126.27, 114.13, 55.73, 53.75, 23.73. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₅H₁₆NO₃S, 290.0856; found, 290.0858.

N-(1-phenylethyl)-4-(trifluoromethyl)benzenesulfonamide (50)

Prepared according to **General Procedure D** with 4-(trifluoromethyl)benzenesulfonamide (0.135 g, 3.0 equiv, 0.60 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 20% ethyl acetate in hexanes, afforded the product as a white solid (65.5 mg, 99% yield). The spectral data matched those previously reported.¹⁶ ¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.18 – 7.10 (m, 3H), 7.07 – 6.96 (m, 2H), 4.97 (d, *J* = 7.0 Hz, 1H, N–H), 4.56 (m, 1H), 1.47 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.38, 141.27, 134.09 (q, *J* = 32.9 Hz), 128.77, 127.92, 127.64, 126.67, 125.98 (q, *J* = 3.7 Hz), 123.37 (q, *J* = 272.8 Hz), 54.24, 23.83. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -63.20 (s, 3F). **mp:** 117.8 – 118.6 °C (lit.¹⁶ 118.7 – 120.1 °C). **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₅H₁₃F₃NO₂S, 328.0625; found, 328.0625.

N-(adamantan-1-yl)-4-methylbenzenesulfonamide (51)

Prepared according to **General Procedure D** with *p*-toluenesulfonamide (0.051 g, 3.0 equiv, 0.60 mmol) and adamantane-1-carboxylic acid (0.036 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) and NaOAc (0.049 g, 3.0 equiv, 0.60 mmol) were used in place of FeCl₃ and Na₃PO₄, respectively. Purification by flash chromatography on silica gel, eluting with 20% ethyl acetate in hexanes, afforded the product as a white solid (42.5 mg, 70% yield). The spectral data matched those previously reported.¹⁷ ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 4.65 (s, 1H), 2.42 (s, 3H), 2.20 – 1.97 (m, 3H), 1.91 – 1.74 (m, 6H), 1.69 – 1.46 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 142.83, 141.27, 129.56, 127.06, 55.19, 43.20, 35.99, 29.62, 21.63. mp: 166.8 – 167.9 °C (lit.¹⁸ 168 – 169.5 °C). HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₇H₂₂NO₂S, 304.1377; found, 304.1377.

4-methoxy-N-(1-methylcyclohexyl)benzenesulfonamide (52)

Prepared according to **General Procedure D** with 4-methoxybenzenesulfonamide (0.056 g, 3.0 equiv, 0.60 mmol) and 1-methylcyclohexane-1-carboxylic acid (0.028 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) and NaOAc (0.049 g, 3.0 equiv, 0.60 mmol) were used in place of FeCl₃ and Na₃PO₄, respectively. Purification by flash chromatography on silica gel, eluting with 20–30% ethyl acetate in hexanes, afforded the product as a clear oil (24.3 mg, 43% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.9 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 4.48 (s, 1H), 3.86 (s, 3H), 1.76 – 1.30 (m, 10H), 1.19 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.57, 135.64, 129.16, 114.10, 56.92, 55.70, 38.59, 35.53, 25.38, 21.99. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₄H₂₀NO₃S, 282.1169; found, 282.1169.

N-(tert-butyl)-4-methoxybenzenesulfonamide (53)

Prepared according to **General Procedure D** with 4-methoxybenzenesulfonamide (0.056 g, 3.0 equiv, 0.90 mmol) and pivalic acid (0.031 g, 1.0 equiv, 0.30 mmol). NaOAc (0.074 g, 3.0 equiv, 0.90 mmol) was used in place of Na₃PO₄. Purification by flash chromatography on silica gel, eluting with 15% ethyl acetate in hexanes, afforded the product as a white solid (21 mg, 29% yield). The spectral data matched those previously reported.¹⁹ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.58 (s, 1H), 3.79 (s, 3H), 1.14 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 162.60, 135.23, 129.22, 114.12, 55.70, 54.61, 30.28.

N-benzhydryl-1-(benzo[d]isoxazol-3-yl)methanesulfonamide (54)

Prepared according to **General Procedure D** with zonisamide (0.042 g, 3.0 equiv, 0.60 mmol) and diphenylacetic acid (0.042 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) was used in place of FeCl₃. Purification by flash chromatography on silica gel, eluting with 20–30% ethyl acetate in hexanes, afforded the product as a white solid (55.9 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.1 Hz, 1H), 7.64 – 7.50 (m, 2H), 7.42 – 7.27 (m, 10H), 5.81 (d,

J = 7.2 Hz, 1H), 5.30 (d, J = 7.2 Hz, 1H), 4.45 (s, 2H). ¹³C NMR (126 MHz, CDCI₃) δ 163.72, 149.60, 140.31, 130.51, 129.01, 128.22, 127.68, 124.27, 122.47, 120.98, 110.04, 62.06, 50.72. mp: 172.6 − 173.0 °C. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₂₁H₁₇N₂O₃S, 377.0965; found, 377.0966.

((3aR,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl benzhydrylsulfamate (55)

Prepared according to **General Procedure D** with topirimate (0.102 g, 3.0 equiv, 0.60 mmol) and diphenylacetic acid (0.042 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) was used in place of FeCl₃. Purification by flash chromatography on silica gel, eluting with 20–30% ethyl acetate in hexanes, afforded the product as a white solid (53.5 mg, 53% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.27 (m, 10H), 5.75 (d, *J* = 6.6 Hz, 1H), 5.20 (d, *J* = 6.6 Hz, 1H), 4.54 (dd, *J* = 7.9, 2.6 Hz, 1H), 4.19 (dd, *J* = 7.9, 1.7 Hz, 1H), 4.16 (d, *J* = 2.6 Hz, 1H), 4.10 (d, *J* = 10.6 Hz, 1H), 4.02 (d, *J* = 10.6 Hz, 1H), 3.81 (dd, *J* = 13.0, 1.9 Hz, 1H), 3.66 (dd, *J* = 13.0, 0.8 Hz, 1H), 1.48 (s, 3H), 1.44 (s, 3H), 1.33 (s, 3H), 1.29 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.69, 129.00, 128.14, 127.52, 109.32, 109.30, 100.97, 70.79, 70.53, 70.25, 70.06, 62.18, 61.45, 26.55, 26.03, 25.23, 24.22. mp: 123.0 – 125.0 °C. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₂₅H₃₀NO₈S, 504.1698; found, 504.1699.

4-(1,1-dioxido-1,2-thiazinan-2-yl)-*N*-(1-(4-((2oxocyclopentyl)methyl)phenyl)ethyl)benzenesulfonamide (56)

Prepared according to **General Procedure D** with sultiame (0.087 g, 3.0 equiv, 0.60 mmol) and loxoprofen (0.049 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) was used in place of FeCl₃. Purification by flash chromatography on silica gel, eluting with 70% ethyl acetate in hexanes, afforded the product as a white solid (51.0 mg, 52% yield, 1:1 *d.r.*). ¹**H NMR** (500 MHz, CDCl₃) δ 7.68 (dd, *J* = 8.7, 3.4 Hz, 2H), 7.32 (dd, *J* = 8.7, 3.4 Hz, 2H), 7.07 – 6.97 (m, 4H), 4.77 (d, *J* = 6.9 Hz, 1H), 4.47 (td, *J* = 6.9, 3.5 Hz, 1H), 3.94 – 3.70 (m, 2H), 3.38 – 3.17 (m, 2H), 3.07 (ddd, *J* = 13.9, 4.3, 1.7 Hz, 1H), 2.47 (ddd, *J* = 14.1, 9.5, 1.4 Hz, 1H), 2.42 – 2.27 (m, 4H), 2.18 – 2.01 (m, 2H), 1.98 – 1.88 (m, 3H), 1.74 (m, 1H), 1.56 – 1.46 (m, 1H), 1.43 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 220.28, 144.33, 144.32, 139.77, 139.74, 139.73, 139.69, 138.91, 138.88, 129.26, 128.10, 126.36, 126.34, 53.67, 53.66, 53.25, 51.03, 51.01, 50.91, 38.29, 35.28, 35.26, 29.84, 29.40, 29.37, 24.55, 24.28, 23.70, 23.67, 20.66 (mixture of diastereomers). **mp:** 239 °C (decomp.). **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₂₄H₂₉N₂O₅S₂, 489.1523; found, 489.1522.

N-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(5-(p-tolyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide (57)

Prepared according to **General Procedure D** with celecoxib (0.114 g, 3.0 equiv, 0.60 mmol) and flurbiprofen (0.049 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a white solid (74.8 mg, 64% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.7 Hz, 2H), 7.48 – 7.33 (m, 7H), 7.27 (t, *J* = 7.9 Hz, 1H), 7.14 (d, *J* = 8.1 Hz, 2H), 7.05 (d, *J* = 8.1 Hz, 2H), 6.97 – 6.87 (m, 2H), 6.72 (s, 1H), 4.85 (d, *J* = 6.8 Hz, 1H), 4.55 (p, *J* = 6.8 Hz, 1H), 2.35 (s, 3H), 1.47 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.72 (d, *J* = 249.2 Hz), 145.35, 144.26 (q, *J* = 38.6 Hz), 143.07 (d, *J* = 7.1 Hz), 142.54, 140.10, 139.93, 135.21, 131.17, 131.14, 129.86, 129.00 (d, *J* = 2.9 Hz), 128.84, 128.62, 128.18, 127.99, 125.87, 125.32, 122.21 (d, *J* = 3.4 Hz), 121.23 (q, *J* = 269.1 Hz), 114.09 (d, *J* = 2.3 Hz), 106.53 (d, *J* = 2.2 Hz), 53.31, 23.57, 21.44. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.37 (s, 3F), -117.00 (s, 1F). mp: 111.3 – 112.9 °C. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₃₁H₂₄F₄N₃O₂S, 578.1531; found, 578.1535.

4-(3-(difluoromethyl)-5-(3-fluoro-4-methoxyphenyl)-1H-pyrazol-1-yl)-*N*-(1-(3-phenoxyphenyl)ethyl)benzenesulfonamide (58)

Prepared according to **General Procedure D** with deracoxib (0.119 g, 3.0 equiv, 0.60 mmol) and fenoprofen (0.048 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a white solid (53.1 mg, 45% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 8.7 Hz, 2H), 7.34 (d, *J* = 8.7 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.18 (t, *J* = 7.9 Hz, 1H), 7.13 – 7.06 (m, 1H), 6.97 (dd, *J* = 11.5, 2.0 Hz, 1H), 6.94 – 6.89 (m, 3H), 6.89 – 6.84 (m, 2H), 6.82 – 6.76 (m, 2H), 6.70 (d, *J* = 54.8 Hz, 1H), 6.69 (m, 1H), 4.70 (d, *J* = 6.9 Hz, 1H), 4.49 (t, *J* = 6.9 Hz, 1H), 3.90 (s, 3H), 1.43 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.81, 156.76, 152.25 (d, *J* = 248.5 Hz), 148.72 (d, *J* = 10.4 Hz), 148.33 (d, *J* = 30.0 Hz), 143.84, 143.80, 142.46, 140.06, 130.19, 129.96, 128.24, 125.30 (d, *J* = 3.7 Hz), 125.06, 123.77, 121.90 (d, *J* = 7.0 Hz), 120.89, 119.21, 117.87, 116.76 (d, *J* = 19.8 Hz), 116.53, 113.71 (d, *J* = 2.3 Hz), 111.12 (t, *J* = 234.5 Hz), 105.98, 56.39, 53.70, 23.70. ¹⁹F NMR (377 MHz, CDCl₃) δ -112.28 (s, 2F), -133.28 (s, 1F). mp: 115.9 – 117.8 °C. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₃₁H₂₅F₃N₃O₄S, 592.1523; found, 592.1528.

N-(1-(4-isobutylphenyl)ethyl)-4-(5-methyl-3-phenylisoxazol-4-yl)benzenesulfonamide (59)

Prepared according to **General Procedure D** with valdecoxib (0.094 g, 3.0 equiv, 0.60 mmol) and ibuprofen (0.041 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) was used in place of FeCl₃. Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a clear oil (87.8 mg, 92% yield). ¹H NMR (500 MHz, CDCl₃)

δ 7.71 (d, J = 8.4 Hz, 2H), 7.46 – 7.30 (m, 5H), 7.18 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 8.3 Hz, 2H), 4.86 (d, J = 5.1 Hz, 1H), 4.53 (m, 1H), 2.46 (s, 3H), 2.37 (d, J = 7.2 Hz, 2H), 1.86 – 1.68 (m, 1H), 1.47 (d, J = 6.8 Hz, 3H), 0.83 (d, J = 6.6 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 167.24, 161.17, 141.41, 140.13, 139.24, 134.99, 130.14, 129.85, 129.41, 128.81, 128.65, 128.58, 127.59, 126.01, 114.67, 53.67, 45.08, 30.28, 23.69, 22.42, 11.84. **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₂₈H₂₉N₂O₃S, 473.1904; found, 473.1905.

1-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)pyrrolidine (60)

Prepared according to **General Procedure E** with pyrrolidine (81.9 µL, 10 equiv, 1.0 mmol) and flurbiprofen (0.024 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a clear oil (18.3 mg, 68% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.49 – 7.40 (m, 2H), 7.40 – 7.32 (m, 2H), 7.23 – 7.12 (m, 2H), 3.23 (q, *J* = 6.7 Hz, 1H), 2.75 – 2.48 (m, 2H), 2.47 – 2.29 (m, 2H), 1.95 – 1.69 (m, 4H), 1.42 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.90 (d, *J* = 247.6 Hz), 147.82, 136.02, 130.58 (d, *J* = 3.8 Hz), 129.11 (d, *J* = 3.0 Hz), 128.53, 127.59, 127.41, 123.18 (d, *J* = 3.2 Hz), 114.84 (d, *J* = 23.2 Hz), 65.39, 53.03, 23.60, 23.30. ¹⁹F NMR (377 MHz, CDCl₃) δ - 118.52 (s, 1F). HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₁FN, 270.1652; found, 270.1647.

methyl 1-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)piperidine-4-carboxylate (61)

Prepared according to **General Procedure E** with methyl piperidine-4-carboxylate (94.4 μL, 7.0 equiv, 0.70 mmol) and flurbiprofen (0.024 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a clear oil (27.9 mg, 82% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.40 – 7.32 (m, 2H), 7.18 – 7.11 (m, 2H), 3.67 (s, 3H), 3.45 (q, J = 6.7 Hz, 1H), 3.08 – 2.91 (m, 1H), 2.87 – 2.76 (m, 1H), 2.27 (tt, J = 11.3, 4.1 Hz, 1H), 2.12 – 1.98 (m, 2H), 1.96 – 1.89 (m, 1H), 1.89 – 1.82 (m, 1H), 1.81 – 1.68 (m, 2H), 1.37 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 175.86, 159.88 (d, J = 247.6 Hz), 146.31 (d, J = 7.8 Hz), 135.96, 130.45 (d, J = 3.8 Hz), 129.10 (d, J = 3.0 Hz), 128.55, 127.63, 127.44 (d, J = 13.7 Hz), 123.55 (d, J = 3.2 Hz), 115.11 (d, J = 23.1 Hz), 64.04, 51.74, 50.53, 49.59, 41.41, 28.73, 19.17. ¹⁹F NMR (377 MHz, CDCl₃) δ -118.45 (s, 1F). HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₁H₂₅FNO₂, 342.1864; found, 342.1857.

1-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(pyridin-2-yl)piperazine (62)

Prepared according to **General Procedure E** with 1-(2-pyridyl)piperazine (106.4 μ L, 7.0 equiv, 0.70 mmol) and flurbiprofen (0.025 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a white solid (24.5 mg, 68% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.19 (ddd, *J* = 4.9, 2.0, 0.9 Hz, 1H), 7.56 (dt, *J* = 8.0, 1.5 Hz, 2H), 7.51 – 7.42 (m, 3H), 7.42 – 7.33 (m, 2H), 7.19 (d, *J* = 10.2 Hz, 2H), 6.74 –

6.56 (m, 2H), 3.54 (ddd, J = 11.0, 6.9, 3.8 Hz, 4H), 3.46 (q, J = 6.7 Hz, 1H), 2.64 (td, J = 7.0, 3.4 Hz, 2H), 2.56 (td, J = 7.0, 3.4 Hz, 2H), 1.42 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.93 (d, J = 247.9 Hz), 159.73, 148.13, 146.09 (d, J = 7.1 Hz), 137.54, 135.91, 130.61 (d, J = 3.8 Hz), 129.11 (d, J = 3.0 Hz), 128.56, 127.68, 127.60, 123.65 (d, J = 3.1 Hz), 115.18 (d, J = 23.2 Hz), 113.35, 107.14, 64.31, 50.46, 45.62, 19.76. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -118.25 (s, 1F). **mp:** 109.3 – 110.8 °C. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₃H₂₅FN₃, 362.2027; found, 362.2020.

4-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)morpholine (63)

Prepared according to **General Procedure E** with morpholine (86.1 µL, 10 equiv, 1.0 mmol) and flurbiprofen (0.025 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a clear oil (25.7 mg, 90% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.47 – 7.41 (m, 2H), 7.40 – 7.32 (m, 2H), 7.18 – 7.12 (m, 2H), 3.72 (ddd, *J* = 5.9, 3.6, 2.4 Hz, 4H), 3.35 (q, *J* = 6.7 Hz, 1H), 2.66 – 2.48 (m, 2H), 2.49 – 2.35 (m, 2H), 1.37 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.93 (d, *J* = 247.8 Hz), 146.13 (d, *J* = 7.0 Hz), 135.89 (d, *J* = 1.3 Hz), 130.62 (d, *J* = 3.8 Hz), 129.09 (d, *J* = 3.0 Hz), 128.56, 127.68 (d, *J* = 13.7 Hz), 127.68, 123.65 (d, *J* = 3.3 Hz), 115.14 (d, *J* = 23.2 Hz), 67.38, 64.79, 51.35, 19.76. ¹⁹F NMR (377 MHz, CDCl₃) δ -118.23 (s, 1F). HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₁FNO, 286.1602; found, 286.1896.

1-(2-fluoro-[1,1'-biphenyl]-4-yl)-N,N-dimethylethan-1-amine (64)

Prepared according to **General Procedure E** with dimethylamine (1.5 mL, 2.0 M in THF, 10 equiv, 3.0 mmol) and flurbiprofen (0.073 g, 1.0 equiv, 0.30 mmol). Reaction was conducted on a 0.3 mmol scale. Purification by flash chromatography on silica gel, eluting with 40-60% ethyl acetate in hexanes, afforded the product as a clear oil (77 mg, 94% yield). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.59 – 7.51 (m, 2H), 7.47 – 7.33 (m, 5H), 7.18 – 7.10 (m, 2H), 3.37 (q, *J* = 6.4 Hz, 1H), 2.26 (s, 6H), 1.41 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 159.84 (d, *J* = 247.9 Hz), 145.35 (d, *J* = 7.8 Hz), 135.85, 130.60 (d, *J* = 3.8 Hz), 129.10 (d, *J* = 2.9 Hz), 128.56, 127.83, 127.69, 123.70 (d, *J* = 3.2 Hz), 115.29 (d, *J* = 23.1 Hz), 65.29 (d, *J* = 1.5 Hz), 43.00, 19.83. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -118.24 (s, 1F). HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₆H₁₈FNH, 244.1496; found 244.1494.

N-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)butan-1-amine (65)

Prepared according to **General Procedure E** with butylamine (98.6 μ L, 10 equiv, 1.0 mmol) and flurbiprofen (0.025 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a clear oil (21.9 mg, 81% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.51 – 7.41 (m, 2H), 7.41 – 7.32 (m, 2H), 7.20 – 7.11 (m, 2H), 3.79 (q, *J* = 6.6 Hz, 1H), 2.53 (dt, *J* = 11.3, 7.3 Hz, 1H), 2.47 (dt, *J* = 11.3, 7.3 Hz, 1H), 1.51 – 1.43 (m, 2H), 1.37 (d, *J* = 6.6 Hz, 3H), 1.36 – 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 2.54 (t, *J* = 7.3 Hz, 1H), 2.54 (t, *J* = 7.3 Hz, 1H), 2.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.30 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.3 Hz, 1H), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.3 Hz), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.3 Hz), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.3 Hz), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.3 Hz), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.3 Hz), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, *J* = 7.5 Hz), 1.55 (t, *J* = 1.50 (m, 2H), 0.90 (t, J = 7.5 Hz), 1.55 (t, J = 1.50 (m, 2H), 0.90 (t, J = 7.5 Hz), 1.55 (t, J = 1.50 (m, 2H), 0.90 (t, J = 7.5 Hz), 1.55 (t, J = 1.50 (m, 2H), 0.50 (m, 2H), 0.50

3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.05 (d, *J* = 247.7 Hz), 148.14 (d, *J* = 7.8 Hz), 136.02, 130.73 (d, *J* = 3.8 Hz), 129.12 (d, *J* = 2.9 Hz), 128.54, 127.61, 127.46 (d, *J* = 13.6 Hz), 122.63 (d, *J* = 3.2 Hz), 114.19 (d, *J* = 23.0 Hz), 58.01, 47.77, 32.59, 24.53, 20.64, 14.16. ¹⁹**F NMR** (377 MHz, CDCl₃) δ -118.33 (s, 1F). **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₃FN, 272.1809; found, 272.1804.

2-methyl-1-(1-phenylethyl)-1H-imidazole (66)

Prepared according to **General Procedure E** with 2-methylimidazole (0.082 g, 10 equiv, 1.0 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a white solid (10.9 mg, 59% yield). The spectral data matched those previously reported.²⁰ ¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.30 – 7.23 (m, 1H), 7.05 (dd, *J* = 7.8, 1.2 Hz, 2H), 6.98 (dd, *J* = 7.6, 1.4 Hz, 2H), 5.30 (q, *J* = 7.1 Hz, 1H), 2.27 (s, 3H), 1.80 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 144.90, 141.91, 128.98, 127.83, 127.33, 125.84, 116.54, 55.10, 22.43, 13.61. **mp:** 87.5 – 88.3 °C (lit.²⁰ 85 – 86 °C). **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₅N₂, 187.1230; found, 187.1228.

N-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-methylaniline (67)

Prepared according to **General Procedure E** with *p*-toluidine (0.107 g, 10 equiv, 1.0 mmol) and flurbiprofen (0.025 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a pale yellow oil (19.2 mg, 63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.60 – 7.50 (m, 2H), 7.47 – 7.41 (m, 2H), 7.40 – 7.31 (m, 2H), 7.22 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.18 (dd, *J* = 11.7, 1.7 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.47 (d, *J* = 8.4 Hz, 2H), 4.48 (q, *J* = 6.7 Hz, 1H), 3.93 (br s, 1H), 2.21 (s, 3H), 1.54 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.17 (d, *J* = 248.1 Hz), 147.62 (d, *J* = 6.6 Hz), 144.86, 135.92 (d, *J* = 1.3 Hz), 131.05 (d, *J* = 3.8 Hz), 129.82, 129.10 (d, *J* = 2.9 Hz), 128.53, 127.63, 127.53 (d, *J* = 13.7 Hz), 126.89, 121.90 (d, *J* = 3.2 Hz), 113.60 (d, *J* = 23.5 Hz), 113.58, 53.36, 25.14, 20.49. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.79 (s, 1F). HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₁H₂₁FN, 306.1652; found, 306.1646.

2-fluoro-4-(1-tosylethyl)-1,1'-biphenyl (68)

An oven-dried 4-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with FeCl₃ (0.049 g, 3.0 equiv, 0.30 mmol), Na₃PO₄ (0.049 g, 3.0 equiv, 0.30 mmol), flurbiprofen (0.024 g, 1.0 equiv, 0.10 mmol), and MeCN (1.0 mL, 0.10 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and placed into a EvoluChemTM PhotoRedOx Box. Stirring at 800 rpm is engaged and the vial is irradiated at 427 nm with a 40 W KessilTM lamp. After 24 h, the light is turned off, the vial is removed from the PhotoRedox Box, and diluted with 1.5 mL diethyl ether and 1.5 mL saturated aqueous NH₄Cl. The biphasic mixture is thoroughly shaken, and the organic layer is removed and filtered through a short pad of

diatomaceous earth to remove trace water. The remaining aqueous laver is washed 1x1.5 mL with diethyl ether, and the organic wash is pushed through the same filter pad. The solvent is removed from the combined organic layers to afford the crude benzylic chloride intermediate. To this vial is added DMF (0.50 mL, 0.20 M) and sodium p-toluenesulfinate (0.089 g, 5.0 equiv, 0.50 mmol). The vial is sealed with a screwcap bearing a teflon septum and stirred at 80 °C for 16 h. The reaction was guenched by the addition of 1.5 mL 0.5 M agueous LiCl and is washed 3x1.5 mL ethyl acetate. The organic extracts are combined, and the solvent is removed under reduced pressure. Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a white solid (25.9 mg, 73% yield). The spectral data matched those previously reported.²¹ ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.43 (m, 4H), 7.41 – 7.36 (m, 2H), 7.35 – 7.24 (m, 2H), 7.22 – 7.16 (m, 2H), 6.96 (dd, J = 7.9, 1.9 Hz, 1H), 6.93 (dd, J = 11.4, 1.8 Hz, 1H), 4.17 (q, J = 7.2 Hz, 1H), 2.35 (s, 3H), 1.69 (d, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.48 (d, J = 249.0 Hz), 144.97, 135.26 (d, J = 6.3 Hz), 135.22, 133.95, 130.64 (d, J = 3.9 Hz), 129.61, 129.49, 129.39, 129.09 (d, J = 3.0 Hz), 128.66, 128.12, 125.67 (d, J = 3.5 Hz), 117.22 (d, J = 24.3 Hz), 65.52, 21.78, 14.45. ¹⁹F NMR (377 MHz, CDCl₃) δ -117.32 (s, 1F). mp: 137.2 – 138.5 °C. **HRMS** (FTMS + p ESI) m/z: [M+NH₄]⁺ calculated for [C₂₁H₁₉FO₂S][NH₄]⁺, 372.1428; found, 372.1422.

2-(1-(2-fluoro-[1,1'-biphenyl]-4-yl)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (69)

An oven-dried 6-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with FeCl₃ (0.097 g, 3.0 equiv, 0.60 mmol), Na₃PO₄ (0.098 g, 3.0 equiv, 0.60 mmol), flurbiprofen (0.049 g, 1.0 equiv, 0.20 mmol), and MeCN (2.0 mL, 0.10 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and placed into a EvoluChem[™] PhotoRedOx Box. Stirring at 800 rpm is engaged and the vial is irradiated at 427 nm with a 40 W Kessil[™] lamp. After 24 h, the light is turned off, the vial is removed from the PhotoRedox Box, and diluted with 1.5 mL diethyl ether and 1.5 mL saturated aqueous NH₄Cl. The biphasic mixture is thoroughly shaken, and the organic layer is removed and filtered through a short pad of diatomaceous earth to remove trace water. The remaining aqueous layer is washed 1x1.5 mL with diethyl ether, and the organic wash is pushed through the same filter pad. The solvent is removed from the combined organic layers to afford the crude benzylic chloride intermediate.

A separate oven-dried 4-mL vial equipped with a stir bar is brought into a nitrogen-filled glovebox and charged with CuCl (0.002 g, 10 mol%), Xantphos (0.012 g, 10 mol%), and anhydrous THF (0.40 mL). The mixture is swirled gently to promote solvation. Once the majority of the CuCl is dissolved, the vial is next charged with bis(pinacolato)diboron (0.061 g, 1.2 equiv, 0.24 mmol) and KOt-Bu (0.027 g, 1.2 equiv, 0.24 mmol) and swirled gently for ca. 5 min. The crude benzylic chloride from the first step is next added as a solution in 1.0 mL anhydrous THF (total reaction concentration 0.40 M). The vial is sealed with a screwcap bearing a teflon septum, removed from the glovebox, and stirred at room temperature for 24 h. The reaction is quenched by addition of 1 mL saturated aqueous NH₄Cl, and the mixture is washed 3x1 mL Et₂O. The combined organic extracts are dried with MgSO₄, filtered, and the solvent is removed under reduced pressure. Purification by flash chromatography on silica, eluting with 5% ethyl acetate in hexanes, afforded the product as a clear oil (33.3 mg, 51% yield). The spectral data matched with those previously reported.²² ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.52 (m, 2H), 7.45 – 7.39 (m, 2H), 7.36 – 7.30 (m, 2H), 7.06 (dd, J = 7.9, 1.8 Hz, 1H), 7.03 (dd, J = 12.1, 1.8 Hz, 1H), 2.48 (g, J = 7.5 Hz, 1H), 1.36 (d, J = 7.5 Hz, 3H), 1.24 (s, 6H), 1.23 (s, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.89 (d, J = 247.1Hz), 146.96 (d, J = 7.7 Hz), 136.24 (d, J = 1.3 Hz), 130.50 (d, J = 4.0 Hz), 129.08 (d, J = 3.0 Hz),

128.49, 127.39, 125.74 (d, J = 13.6 Hz), 123.97 (d, J = 3.1 Hz), 115.37 (d, J = 22.8 Hz), 83.67, 24.97, 24.80, 24.76, 16.96. ¹⁹**F NMR** (377 MHz, CDCI₃) δ -118.8. (s, 1F). ¹¹**B NMR** (128 MHz, CDCI₃) δ 33.43 (s). **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₀H₂₅BFO₂, 327.1926; found, 327.1922.

Extra Substrates

3-(1-phenylethyl)-1-tosyl-1H-indole (S3)

Prepared according to General Procedure A with 1-tosylindole (0.163 g, 3.0 equiv, 0.6 mmol) and 2-phenylpropanoic acid (0.030 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) and Na₂CO₃ (0.064 g, 3.0 equiv, 0.60 mmol) were used in place of FeCl₃ and NaOAc. respectively. Purification by flash chromatography on silica gel, eluting with 0-2.5% ether in pentane, enabled the separation of the two isomers, each isolated as a white solid (55.6 mg combined mass, 74% yield, 6:1 r.r.). Major isomer: ¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, J = 8.3 Hz, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 1.0 Hz, 1H), 7.29 – 7.20 (m, 5H), 7.20 – 7.14 (m, 4H), 7.07 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 4.22 (g, J = 7.7, 7.1 Hz, 1H), 2.35 (s, 3H), 1.66 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.07, 144.88, 135.85, 135.46, 130.60, 129.94, 128.66, 127.86, 127.42, 126.91, 126.54, 124.72, 123.14, 123.04, 120.48, 113.90, 37.01, 22.16, 21.71. mp: 121.0 – 122.6 °C. HRMS (FTMS + p ESI) m/z: [M+Na]⁺ calculated for C₂₃H₂₁NO₂SNa, 398.1185; found, 398.1183. Minor isomer: ¹H NMR (500 MHz, CDCl₃) δ 8.11 (dd, J = 8.3, 1.0 Hz, 1H), 7.45 (dd, J = 8.1, 1.3 Hz, 1H), 7.28 (t, J = 8.3 Hz, 3H), 7.25 – 7.15 (m, 6H), 7.01 (d, J = 8.3 Hz, 2H), 6.54 (d, J = 1.0 Hz, 1H), 5.00 (q, J = 7.1 Hz, 1H), 2.28 (s, 3H), 1.66 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.20, 144.80, 144.44, 137.46, 136.15, 129.66, 129.62, 128.55, 127.92, 126.54, 126.48, 124.26, 123.62, 120.53, 115.27, 109.62, 38.45, 23.87, 21.60,

(5-bromo-3-(1-phenylethyl)-1H-indol-1-yl)(phenyl)methanone (S4)

Prepared according to **General Procedure A** with 1-benzoyl-5-bromoindole (0.090 g, 3.0 equiv, 0.3 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Fe(OTf)₃ (0.150 g, 3.0 equiv, 0.30 mmol) and Na₂CO₃ (0.032 g, 3.0 equiv, 0.30 mmol) were used in place of FeCl₃ and NaOAc, respectively. Purification by flash chromatography on silica gel, eluting with 0–2.5% ether in pentane, afforded the product as a clear oil (26.3 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 8.3 Hz, 1H), 7.81 – 7.71 (m, 2H), 7.68 – 7.59 (m, 1H), 7.62 – 7.51 (m, 2H), 7.45 – 7.38 (m, 2H), 7.35 – 7.24 (m, 2H), 7.24 – 7.11 (m, 4H), 4.22 (q, *J* = 7.1 Hz, 1H), 1.61 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.45, 144.67, 135.61, 134.51, 132.32, 132.24, 129.31, 128.85, 128.82, 127.98, 127.35, 126.77, 126.26, 125.09, 122.78, 117.98, 117.11, 36.79, 22.09. HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₂₃H₁₉BrNO, 404.0645; found, 404.0643.

2-(1-(4-fluorophenyl)ethyl)thiophene (S5)

Prepared according to General Procedure A with thiophene (0.120 mL, 5.0 equiv, 1.5 mmol) and2-(4-fluorophenyl)propanoic acid (0.050 g, 1.0 equiv, 0.3 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeOH. The product eluted around ~80% MeOH. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as a clear oil (20 mg, 33% yield, 10:1). Where resolved, signals for the minor product are given in brackets. ¹H NMR (500 MHz, Chloroform-d) δ 7.25 – 7.18 (m, 2.14H), 7.17 – 7.12 (m, 1H), 7.02 – 6.94 (m, 2.59H), 6.92 (dd, J = 5.2, 3.5 Hz, 1H), [6.85 (dd, J = 4.9, 1.3 Hz, 0.17H)], 6.81 – 6.76 (m, 1H), 4.33 (g, J = 7.1 Hz, 1H), [4.14 (q, J = 7.2 Hz, 0.19H)], 1.68 (d, J = 7.2 Hz, 3H), [1.61 (d, J = 7.2 Hz, 0.55H)]. ¹³C NMR $(126 \text{ MHz}, \text{CDCI}_3) \delta 162.64, [162.47], 160.70, [160.53], 150.65, [147.19], [142.10 (d, J = 3.0 \text{ Hz})],$ 141.92 (d, J = 3.1 Hz), [128.93 (d, J = 7.9 Hz)], 128.84 (d, J = 7.9 Hz), 127.84, 126.71, 125.70, 123.78, 123.76, 120.04, 115.45, [115.37], 115.29, [115.20], [40.20], 40.15, 23.60. ¹⁹F NMR (377 MHz, CDCl₃) δ -116.74, [-117.29]. **HRSM** (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₂H₁₁FSH, 207.0638; found, 207.0637.

1-ferrocenyl-1-phenylethane (S6)

Prepared according to **General Procedure A** with ferrocene (0.059 g, 3.0 equiv, 0.3 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 0–5% ethyl acetate in hexanes, afforded the product as an orange oil (16.7 mg, 56% yield). The spectral data matched those previously reported.²³ ¹**H NMR** (500 MHz, CDCl₃) δ 7.30 – 7.22 (m, 2H), 7.19 – 7.11 (m, 3H), 4.20 (dt, *J* = 2.6, 1.3 Hz, 1H), 4.12 – 4.11 (m, 6H), 4.08 (td, *J* = 2.4, 1.3 Hz, 1H), 3.99 (dt, *J* = 2.5, 1.4 Hz, 1H), 3.86 (q, *J* = 7.2 Hz, 1H), 1.59 (d, *J* = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 147.69, 128.34, 127.24, 126.06, 94.47, 68.70, 68.04, 67.69, 67.06, 66.51, 39.95, 22.72. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₉Fe, 289.0877; found, 289.0874.

1-isobutyl-4-(1-phenethoxyethyl)benzene (S7)

Prepared according to **General Procedure B** with 2-phenylethan-1-ol (0.108 mL, 3.0 equiv, 0.9 mmol) and 2-(4-isobutylphenyl)propanoic acid (0.062 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (57 mg, 67% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.23 (m, 2H), 7.20 – 7.12 (m, 5H), 7.08 – 7.07 (m, 2H), 4.38 (q, *J* = 6.4 Hz, 1H), 3.50 (td, *J* = 7.3, 2.9 Hz, 2H), 2.93 – 2.78 (m, 2H), 2.45 (d, *J* = 7.2 Hz, 2H), 1.85 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.42 (d, *J* = 6.5 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.24, 140.90, 139.25, 129.21, 129.08, 128.36, 126.20, 126.06, 78.07, 69.63, 45.28, 36.72, 30.35, 24.14, 22.55. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₂₀H₂₆ONa, 305.1876; found, 305.1871.

1-methoxy-4-(2-(1-phenylethoxy)ethyl)benzene (S8)

Prepared according to **General Procedure B** with 2-(4-methoxyphenyl)ethan-1-ol (0.137 g, 3.0 equiv, 0.9 mmol) and 2-phenylpropanoic acid (0.045 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ether in hexanes, afforded the product as a clear oil (38 mg, 45% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.28 (m, 2H), 7.27 – 7.23 (m, 3H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 4.39 (q, *J* = 6.5 Hz, 1H), 3.77 (s, 3H), 3.50 – 3.44 (m, 2H), 2.87 – 2.75 (m, 2H), 1.42 (d, *J* = 6.5 Hz, 3H).¹³C NMR (126 MHz, CDCl₃) δ 158.16, 144.14, 131.27, 129.99, 128.51, 127.46, 126.27, 113.83, 78.22, 70.00, 55.39, 35.79, 24.26. HRSM (FTMS + p ESI) m/z: [M + Na]⁺ calculated for C₁₇H₂₀O₂Na, 279.1355; found, 279.1351.

1-(1-ethoxyethyl)-4-isobutylbenzene (S9)

Prepared according to **General Procedure B** with ethanol (0.053 mL, 3.0 equiv, 0.9 mmol) and 2-(4-isobutylphenyl)propanoic acid (0.062 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 2% ethyl acetate in hexanes, afforded the product as a clear oil (27 mg, 44% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.1 Hz, 2H), 4.38 (q, *J* = 6.5 Hz, 1H), 3.38 – 3.30 (m, 2H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.91 – 1.80 (m, 1H), 1.43 (d, *J* = 6.5 Hz, 3H), 1.18 (t, *J* = 7.0 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.55, 140.88, 129.23, 126.03, 77.72, 63.93, 45.30, 30.37, 24.30, 22.56, 15.57. HRSM (FTMS + p ESI) m/z: [M – H]⁺ calculated for C₁₄H₂₁O, 205.1587; found, 205.1586.

2-(4-(1-(3,3-dimethylbutoxy)ethyl)benzyl)cyclopentan-1-one (S10)

Prepared according to **General Procedure B** with 3,3-dimethylbutan-1-ol (0.109 mL, 3.0 equiv, 0.9 mmol) and 2-(4-((2-oxocyclopentyl)methyl)phenyl)propanoic acid (0.074 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 10% ethyl acetate in hexanes, afforded the product as a clear oil (71 mg, 77% yield, 1:1 d.r.). ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 4.35 (q, *J* = 6.5 Hz, 1H), 3.39 – 3.28 (m, 2H), 3.14 (dd, *J* = 13.9, 4.1 Hz, 1H), 2.53 (dd, *J* = 13.9, 9.5 Hz, 1H), 2.41 – 2.28 (m, 2H), 2.15 – 2.04 (m, 2H), 2.01 – 1.89 (m, 1H), 1.78 – 1.69 (m, 1H), 1.62 – 1.45 (m, 3H), 1.41 (d, *J* = 6.5 Hz, 3H), 0.86 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 220.40, 142.29, 142.27, 139.08, 129.01, 126.35, 77.85, 77.84, 66.03, 51.15, 43.39, 38.36, 35.45, 29.86, 29.78, 29.38, 29.36, 24.26, 24.24, 20.70 (mixture of diastereomers). HRSM (FTMS + p ESI) m/z: [M –C₆H₁₃O + H]⁺ calculated for C₁₄H₁₇OH, 201.1274; found, 201.1273.

1-(1-(cyclohexyloxy)ethyl)-4-methylbenzene (S11)

Prepared according to **General Procedure B** with cyclohexanol (0.095 mL, 3.0 equiv, 0.9 mmol) and 2-(*p*-tolyl)propanoic acid (0.049 g, 1.0 equiv, 0.3 mmol). Purification by flash chromatography on silica gel, eluting with 5% ether in hexanes, afforded the product as a clear oil (67 mg, 76%)

yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 4.56 (q, *J* = 6.5 Hz, 1H), 3.15 (tt, *J* = 9.7, 3.9 Hz, 1H), 2.34 (s, 3H), 2.00 – 1.91 (m, 1H), 1.80 – 1.63 (m, 3H), 1.53 – 1.45 (m, 1H), 1.39 (d, *J* = 6.5 Hz, 3H), 1.32 – 1.22 (m, 3H), 1.20 – 1.10 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 142.22, 136.80, 129.11, 126.18, 74.80, 74.14, 33.66, 31.94, 25.99, 25.08, 24.60, 24.37, 21.27. **HRSM** (FTMS + p ESI) m/z: [M + H]⁺ calculated for C₁₅H₂₂OH, 219.1743; found, 219.1742.

1-(1-phenylethoxy)adamantane (S12)

Prepared according to **General Procedure B** with (3s, 5s, 7s)-adamantan-1-ol (0.137 g, 3.0 equiv, 0.9 mmol) and 2-phenylpropanoic acid (0.041 mL, 1.0 equiv, 0.3 mmol). The crude reaction mixture was purified by reverse phase flash chromatography over C18 functionalized silica with H₂O/MeCN. The product eluted around ~50% MeCN. Product-containing fractions were combined, diluted with EtOAc, and washed with brine (1x). The aqueous layer was washed with EtOAc (3x). The combined organic layers were dried over MgSO₄, filtered through a plug of celite, and concentrated under reduced pressure to afford the product as a clear oil (12 mg, 16% yield). The spectral data matched those previously reported.²⁴ ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.23 – 7.17 (m, 1H), 4.82 (q, *J* = 6.5 Hz, 1H), 2.11 – 2.05 (m, 3H), 1.78 – 1.65 (m, 6H), 1.66 – 1.50 (m, 6H), 1.36 (d, *J* = 6.6 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 147.89, 128.18, 126.57, 125.74, 73.58, 67.95, 42.75, 36.57, 30.74, 26.91.

2-methyl-*N*-(4-methylbenzyl)benzenesulfonamide (S13)

Prepared according to **General Procedure D** with *o*-toluenesulfonamide (0.051 g, 3.0 equiv, 0.60 mmol) and 2-(*p*-tolyl)acetic acid (0.030 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) was used in place of FeCl₃. Purification by flash chromatography on silica gel, eluting with 30–60% ethyl acetate in hexanes, afforded the product as a clear oil (21.0 mg, 38% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.47 (td, *J* = 7.4, 1.4 Hz, 1H), 7.32 (dd, *J* = 9.0, 7.4 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 7.04 (d, *J* = 8.2 Hz, 2H), 4.62 (t, *J* = 6.1 Hz, 1H), 4.07 (d, *J* = 6.0 Hz, 2H), 2.62 (s, 3H), 2.31 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.95, 137.90, 137.20, 133.36, 132.96, 132.69, 129.85, 129.55, 128.04, 126.34, 47.10, 21.22, 20.44. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₅H₁₆NO₂S, 274.0907; found, 274.0909.

4-methyl-*N*-(1-(*p*-tolyl)ethyl)benzenesulfonamide (S14)

Prepared according to **General Procedure D** with *p*-toluenesulfonamide (0.051 g, 3.0 equiv, 0.60 mmol) and 2-(*p*-tolyl)propanoic acid (0.033 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 20–30% ethyl acetate in hexanes, afforded the product as a white solid (32.4 mg, 56% yield). The spectral data matched those previously reported.^{25 1}**H NMR** (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.19 (d, *J* = 8.2 Hz, 2H), 7.10 – 6.95 (m, 4H), 4.80 (d, *J* = 6.8 Hz, 1H), 4.41 (p, *J* = 6.8 Hz, 1H), 2.39 (s, 3H), 2.28 (s, 3H), 1.41 (d, *J* = 6.8 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 143.21, 139.22, 137.86, 137.37, 129.55, 129.32, 127.27, 126.18, 53.52, 23.59, 21.61, 21.13. **mp:** 113.9 – 115.0 °C (lit.²⁶ 114 – 115 °C). **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₆H₁₈NO₂S, 288.1064; found, 288.1064.

4-chloro-*N*-(1-(*p*-tolyl)ethyl)benzenesulfonamide (S15)

Prepared according to **General Procedure D** with *p*-toluenesulfonamide (0.051 g, 3.0 equiv, 0.60 mmol) and 2-(4-chlorophenyl)propanoic acid (0.037 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a white solid (45.7 mg, 74% yield). The spectral data matched those previously reported.²⁷ ¹H **NMR** (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.2 Hz, 2H), 7.18 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 1H), 7.03 (d, *J* = 8.5 Hz, 2H), 4.98 (d, *J* = 6.9 Hz, 1H), 4.44 (p, *J* = 6.9 Hz, 1H), 2.40 (s, 3H), 1.38 (d, *J* = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 143.51, 140.65, 137.62, 133.37, 129.61, 128.73, 127.73, 127.22, 53.15, 23.60, 21.61. **mp:** 128.0 – 129.7 °C (lit.²⁸ 129 – 130 °C). **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₅H₁₅CINO₂S, 308.0518; found, 308.0518.

4-methyl-*N*-(1-phenylpropyl)benzenesulfonamide (S16)

Prepared according to **General Procedure D** with *p*-toluenesulfonamide (0.051 g, 3.0 equiv, 0.60 mmol) and 2-phenylbutanoic acid (0.033 g, 1.0 equiv, 0.20 mmol). Purification by flash chromatography on silica gel, eluting with 30% ethyl acetate in hexanes, afforded the product as a white solid (45.0 mg, 78% yield). The spectral data matched those previously reported.²⁵ ¹**H NMR** (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.3 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.11 (d, *J* = 8.3 Hz, 2H), 7.06 – 6.98 (m, 2H), 5.00 (d, *J* = 7.3 Hz, 1H), 4.19 (q, *J* = 7.3 Hz, 1H), 2.35 (s, 3H), 1.81 (dp, *J* = 13.9, 7.3 Hz, 1H), 1.71 (dp, *J* = 13.9, 7.3 Hz, 1H), 0.78 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 143.02, 140.81, 137.84, 129.37, 128.48, 127.40, 127.15, 126.67, 59.93, 30.70, 21.54, 10.54. **mp:** 107.2 – 108.2 °C (lit.²⁹ 107 – 108 °C). **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₆H₁₈NO₂S, 288.1064; found, 288.1064.

4-(1,1-dioxido-1,2-thiazinan-2-yl)-N-(1-(4-isobutylphenyl)ethyl)benzenesulfonamide (S17)

Prepared according to **General Procedure D** with sultiame (0.087 g, 3.0 equiv, 0.60 mmol) and ibuprofen (0.041 g, 1.0 equiv, 0.20 mmol). Fe(OTf)₃ (0.302 g, 3.0 equiv, 0.60 mmol) was used in place of FeCl₃. Purification by flash chromatography on silica gel, eluting with 70% ethyl acetate in hexanes, afforded the product as a white solid (58.6 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 7.07 – 6.95 (m, 4H), 4.73 (d, *J* = 6.8 Hz, 1H), 4.48 (p, *J* = 6.8 Hz, 1H), 3.88 – 3.69 (m, 2H), 3.44 – 3.14 (m, 2H), 2.40 (d, *J* = 7.2 Hz, 2H), 2.39 – 2.31 (m, 2H), 2.10 – 1.87 (m, 2H), 1.87 – 1.75 (m, 1H), 1.44 (d, *J* = 6.8 Hz, 3H), 0.88 (s, 3H), 0.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.30, 141.41, 139.12, 138.95, 129.49, 128.12, 126.33, 126.01, 53.73, 53.21, 51.00, 45.08, 30.26, 24.53, 24.29, 23.68, 22.51, 22.49. mp: 121.0 – 123.3 °C. HRMS (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₂₂H₂₉N₂O₄S₂, 449.1574; found, 449.1576.

4-(1-phenylethyl)morpholine (S18)

Prepared according to **General Procedure E** with morpholine (86.1 µL, 10 equiv, 1.0 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a clear oil (12.1 mg, 63% yield). The spectral data matched those previously reported.³⁰ ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.29 (m, 4H), 7.28 – 7.20 (m, 1H), 3.69 (ddd, *J* = 5.5, 3.7, 1.4 Hz, 4H), 3.30 (q, *J* = 6.7 Hz, 1H), 2.61 – 2.42 (m, 2H), 2.40 – 2.32 (m, 2H), 1.35 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.11, 128.43, 127.77, 127.11, 67.39, 65.54, 51.46, 19.97. HRMS (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₈NO, 192.1383; found, 192.1382.

N-(1-phenylethyl)butan-1-amine (S19)

Prepared according to **General Procedure E** with butylamine (98.6 µL, 10 equiv, 1.0 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a clear oil (11.9 mg, 67% yield). The spectral data matched those previously reported.³¹ ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.28 (m, 4H), 7.27 – 7.19 (m, 1H), 3.75 (q, *J* = 6.6 Hz, 1H), 2.50 (ddd, *J* = 11.3, 8.0, 6.2 Hz, 1H), 2.42 (ddd, *J* = 11.3, 8.1, 6.8 Hz, 1H), 1.61 – 1.38 (m, 3H), 1.36 (d, *J* = 6.6 Hz, 3H), 1.34 – 1.21 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 146.12, 128.52, 126.93, 126.68, 58.55, 47.73, 32.60, 24.52, 20.64, 14.14. **HRMS** (FTMS + p ESI) m/z: [M+H]⁺ calculated for C₁₂H₂₀N, 178.1590; found, 178.1587.

4-methyl-*N*-(1-phenylethyl)aniline (S20)

Prepared according to **General Procedure E** with *p*-toluidine (0.107 g, 10 equiv, 1.0 mmol) and 2-phenylpropanoic acid (0.015 g, 1.0 equiv, 0.10 mmol). Purification by flash chromatography on silica gel, eluting with 5-20% ethyl acetate in hexanes, afforded the product as a white solid (10.3 mg, 49% yield). The spectral data matched those previously reported.³² ¹**H NMR** (500 MHz, CDCl₃) δ 7.43 – 7.35 (m, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.26 – 7.20 (m, 1H), 6.91 (d, *J* = 8.3 Hz, 2H), 6.45 (d, *J* = 8.3 Hz, 2H), 4.47 (q, *J* = 6.7 Hz, 1H), 3.91 (br s, 1H), 2.20 (s, 3H), 1.52 (d, *J* = 6.7 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 145.57, 145.17, 129.73, 128.74, 126.93, 126.50, 126.00, 113.56, 53.82, 25.18, 20.47. **mp:** 68.9 – 70.7 °C (lit.³³ 68 – 68.5 °C). **HRMS** (FTMS + p ESI) m/z: [M-H]⁻ calculated for C₁₅H₁₆N, 210.1288; found, 210.1286.

K. References

1. Pangborn, A. B., Giardello, M. A., Grubbs, R. H., Rosen, R. K., and Timmers. F. J. (1996). Safe and convenient procedure for solvent purification. Organometallics *15*, 1518. <u>10.1021/om9503712.</u>

2. Greenhalgh, M. D., Smith, S. M., Walden, D. M., Taylor, J. E., Brice, Z., Robinson, E. R. T., Fallan, C., Cordes, D. B., Slawin, A. M. Z., Richardson, H. C., et al. (2018). A C=O•••Isothiouronium Interaction Dictates Enantiodiscrimination in Acylative Kinetic Resolutions Of Tertiary Heterocyclic Alcohols. Angew. Chem. Int. Ed. 57, 3200–3206. 10.1002/anie.201712456.

3. Zhao, G. and Li, G.-I. (2006). Allylation of Aldehydes and Imines: Promoted by Reusable Polymer-Supported Sulfonamide of *N*-Glycine. Org. Lett. *8*, 633–636. <u>10.1021/ol0528235</u>.

4. Li, L. and Hilt, G. (2020). Regiodivergent DH or HD Addition to Alkenes: Deuterohydrogenation versus Hydrodeuterogenation. Org. Lett. *22*, 1628–1632. <u>10.1021/acs.orglett.0c00213</u>.

5. Xiao, L.-J., Cheng, L., Feng, W.-M., Li, M.-L., Xie, J.-H., and Zhou, Q.-L. (2018). Nickel(0)-Catalyzed Hydroarylation of Styrenes and 1,3-Dienes with Organoboron Compounds. Angew. Chem. Int. Ed. *57*, 461–464. <u>10.1002/anie.201710735</u>.

6. Duan, H., Meng, L., Bao, D., Zhang, H., Li, Y., and Lei, A. (2010). Zinc Chloride Enhanced Arylations of Secondary Benzyl Trifluoroacetates in the Presence of β -Hydrogen Atoms. Angew. Chem. Int. Ed. *49*, 6387–6390. <u>10.1002/ange.201002116</u>.

7. Sato, Y., Aoyama, T., Takido, T., and Kodomari, M. (2012). Direct alkylation of aromatics using alcohols in the presence of NaHSO₄/SiO₂. Tetrahedron, *68*, 7077–7081. 10.1016/j.tet.2012.06.063.

8. Qi, C., Gandon, V., and Leboeuf, D. (2018). Calcium(II)-Catalyzed Intermolecular Hydroarylation of Deactivated Styrenes in Hexafluoroisopropanol. Angew. Chem. Int. Ed. *57*, 14245–14249. <u>10.1002/anie.201809470.</u>

9. Watanabe, N., Natsugi, A., Nakano, K., Ichikawa, Y., and Kotsuki, H. (2014). Organocatalytic Friedel–Crafts Benzylation of Heteroaromatic and Aromatic Compounds via an S_N1 Pathway. Synlett 25, 0438–0442. <u>10.1055/s-0033-1340343</u>.

10. Mertins, K., Iovel, I., Kischel, J., Zapf, A., and Beller, M. (2006). Gold-Catalyzed Benzylation of Arenes and Heteroarenes. Adv. Synth. Catal. *348*, 691–695. <u>10.1002/adsc.200505433</u>.

11. Majer, J., Kwiatkowski, P., and Jurczak, J. (2008). Highly Enantioselective Synthesis of 2-Furanyl-hydroxyacetates from Furans via the Friedel-Crafts Reaction. Org. Lett. *10*, 2955–2958. <u>10.1021/ol800927w.</u>

12. Pandey, G., Laha, R., and Kumar Mondal, P. (2019). Heterocyclization involving benzylic C(sp³)–H functionalization enabled by visible light photoredox catalysis. *55*, 9689–9692. <u>10.1039/C9CC04287C</u>.

13. Lohre, C., Dröge, T., Wang, C., and Glorius, F. (2011). Nickel-Catalyzed Cross-Coupling of Aryl Bromides with Tertiary Grignard Reagents Utilizing Donor-Functionalized N-Heterocyclic Carbenes (NHCs). Chem. Eur. J. *17*, 6052–6055. <u>10.1002/chem.201100909</u>.

14. Lee, S. Y., Villani-Gale, A., and Eichman, C. C. (2016). Room Temperature Catalyst System for the Hydroarylation of Olefins. Org. Lett. *18*, 5034–5037. <u>10.1021/acs.orglett.6b02492.</u>

15. Taniguchi, N. (2021). Zinc-Catalyzed Regioselective Addition of Alkyl Thiols to Alkenes via Anion or Radical Reactions. Arkivoc 125–137. <u>10.24820/ark.5550190.p011.447.</u>

16. Li, Q. Y., Gockel, S. N., Lutovsky, G. A., DeGlopper, K. S., Baldwin, N. J., Bundesmann, M. W., Tucker, J. W., Bagley, S. W., and Yoon, T. P. (2022). Decarboxylative cross-nucleophile coupling via ligand-to-metal charge transfer photoexcitation of Cu(II) carboxylates. Nat. Chem. *14*, 94–99. <u>10.1038/s41557-021-00834-8</u>.

17. Nakagawa, M., Nagao, K., Ikeda, Z., Reynolds, M., Ibanex, I., Wang, J., Tokunaga, N., Sasaki, Y., and Ohmiya, H. (2021). Organophotoredox-Catalyzed Decarboxylative N-Alkylation of Sulfonamides. ChemCatChem *13*, 3930–3933. <u>10.1002/cctc.202100803.</u>

18. Barton, D. H. R., Hay-Motherwell, R. S., and Motherwell, W. B. (1983). Functionalisation of saturated hydrocarbons. Part 1. Some reactions of a ferrous chloride–chloramine-T complex with hydrocarbons. J. Chem. Soc., Perkin Trans. 1 445–451. <u>10.1039/P19830000445</u>.

19. Born, K. and Doye, S. (2011). Zirconium-Catalyzed Intermolecular Hydroamination of Alkynes with Primary Amines. Eur. J. Org. Chem. 764–771. <u>10.1002/ejoc.201101298</u>.

20. Maccallini, C., Patruno, A., Lannutti, F., Ammazzalorso, A., De Filippis, B., Fantacuzzi, M., Franceshelli, S., Giampietro, L., Masella, S., Felaco, M, et al. (2010). N-Substituted acetamidines and 2-methylimidazole derivatives as selective inhibitors of neuronal nitric oxide synthase. Bioorg. Med. Chem. Lett. *20*, 6495–6499. <u>10.1016/j.bmcl.2010.09.059</u>.

21. He, J., Chen, G., Zhang, B., Li, Y., Chen, J.-R., Xiao, W.-J., Liu, F., and Li, C. (2020). Catalytic Decarboxylative Radical Sulfonylation. Chem *6*, 1149–1159. <u>10.1016/j.chempr.2020.02.003.</u>

22. Gevorgyan, A., Hopmann, K. H., and Bayer, A. (2020). Exploration of New Biomass-Derived Solvents: Application to Carboxylation Reactions. ChemSusChem *13*, 2080–2088. <u>10.1002/cssc.201903224.</u>

23. Liu, Y., Ma, X., Liu, Y., Liu, P., and Dai, B. (2018). Synthesis of α-arylalkylferrocenes through cesium fluoride-promoted coupling of arylboronic acids with N-tosylhydrazones. Synthetic Communications *48*, 921–928. <u>10.1080/00397911.2018.1428816</u>.

24. Xiang, J., Shang, M., Kawamata. Y., Lundberg, H., Reisberg, S. H., Chen, M., Mykhailiuk, P., Beutner, G., Collins, M. R., Davies, A. et al. (2019). Hindered dialkyl ether synthesis with electrogenerated carbocations. Nature *573*, 398–402. <u>10.1038/s41586-019-1539-y</u>.

25. Yang, P., Zhang, L., Fu, K., Sun, Y., Wang, X., Yue, J., Ma, Y., and Tang, B. (2020). Nickel-Catalyzed Asymmetric Transfer Hydrogenation and α -Selective Deuteration of N-Sulfonyl Imines with Alcohols: Access to α -Deuterated Chiral Amines. Org. Lett. 22, 8278–8284. 10.1021/acs.orglett.0c02921.
26. Dal Zotto, C., Michaux, J., Zarate-Ruiz, A., Gayon, E., Virieux, D., Campagne, J.-M., Terrasson, V., Pieters, G., Gaucher, A., and Prim, D. (2010). FeCl₃-catalyzed addition of nitrogen and 1,3-dicarbonyl nucleophiles to olefins. J. Organomet. Chem. 696, 296–304. 10.1016/j.jorganchem.2010.09.031.

27. Fu, W., Shen, R., Bai, E., Zhang, L., Chen, Q., Fang, Z., Li, G., Yi, X., Zheng, A., and Tang, T. (2018). Reaction Route and Mechanism of the Direct N-Alkylation of Sulfonamides on Acidic Mesoporous Zeolite β -Catalyst. ACS Catal. *8*, 9043–9055. <u>10.1021/acscatal.8b02030.</u>

28. Taylor, J. G., Whittall, N., and Hii, K. K. (2006). Copper-catalyzed intermolecular hydroamination of alkenes. Org. Lett. *8*, 3561–3564. <u>10.1021/ol061355b.</u>

29. Yamada, K., Yamamoto, Y., Maekawa, M., Akindele, T., Umeki, H., and Tomioka, K. (2006). Tin-Free Intermolecular Addition of Primary Alkyls to Imines via the Dimethylzinc-Air Radical Process. Org. Lett. *8*, 87–89. <u>10.1021/ol062499t.</u>

30. Hamid, M. H. S. A., Allen, C. L., Lamb, G. W., Maxwell, A. C., Maytum, H. C., Watson, A. J. A., and Williams, J. M. J. (2009). Ruthenium-Catalyzed N-Alkylation of Amines and Sulfonamides Using Borrowing Hydrogen Methodology. J. Am. Chem. Soc. *131*, 1766–1774. <u>10.1021/ja807323a</u>.

31. Watson, A. J. A., Maxwell, A. C., and Williams, J. M. J. (2011). Borrowing Hydrogen Methodology for Amine Synthesis under Solvent-Free Microwave Conditions. J. Org. Chem. *76*, 2328–2331. <u>10.1021/jo102521a</u>.

32. Duan, H., Sengupta, S., Peterson, J. L., Akhmedov, N. G., and Shi, X. (2009). Triazole-Au(I) Complexes: A New Class of Catalysts with Improved Thermal Stability and Reactivity for Intermolecular Alkyne Hydroamination. J. Am. Chem. Soc. *131*, 12100–12102. <u>10.1021/ja9041093</u>.

33. Hart, H., and Kosak, J. R. (1962). Mechanism of rearrangement of N-alkylanilines. J. Org. Chem. 27, 116–121. <u>10.1021/jo01048a029.</u>

L. NMR spectra

74

Figure S47. 500 MHz ¹H NMR spectrum of **19** in CDCl₃.

