Supplementary Information

Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: The METS-Microbiome Study

Gertrude Ecklu-Mensah^{1*}, Candice Choo-Kang^{2*,} Maria Gjerstad Maseng^{3,4,5}, Sonya Donato¹, Pascal Bovet^{6, 7}, Bharathi Viswanathan⁷, Kweku Bedu-Addo⁸, Jacob Plange-Rhule⁸, Prince Oti Boateng⁸, Terrence E. Forrester⁹, Marie Williams⁹, Estelle V. Lambert¹⁰, Dale Rae¹⁰, Nandipha Sinyanya¹⁰, Amy Luke², Brian T. Layden^{,11, 12}, Stephen O'Keefe¹³, Jack A. Gilbert^{1**}, Lara R. Dugas ^{2, 14**}

¹Department of Pediatrics, Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA

² Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA

³ Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway

⁴ Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway

⁵ Bio-Me, Oslo, Norway

⁶ University Center for Primary Care and Public Health (Unisanté), Lausanne University Hospital, Lausanne, Switzerland

⁷ Ministry of Health, Victoria, Republic of Seychelles

⁸Department of Physiology, SMS, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

⁹Solutions for Developing Countries, University of the West Indies, Mona, Kingston, Jamaica

¹⁰Research Unit for Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa

¹¹Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA

¹²Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.

¹³Department of Medicine, University of Pittsburgh, PA, USA

¹⁴Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.

	non-		Observed ASVs	Shannon	Faith's PD
Country	Obese	Obese	Р	Р	Р
Ghana South	243	89	0.0439	0.268	0.0393
Africa	233	141	0.0488	0.0686	0.12
Jamaica	208	179	0.338	0.494	0.239
Seychelles	217	147	0.206	0.752	0.186
USA	112	195	0.759	0.246	0.901

Supplementary Table 1. Alpha diversity between obese and non-obese groups

Alpha diversity estimated by Shannon, Observed ASVs and Faith's PD (Phylogenetic Diversity) between obese and non-obese in each country (Wilcoxon rank sum test; two-sided). Statistical significance adjusted for multiple comparisons using false discovery rate (FDR) correction are presented. Statistical significance, p < 0.05. n= 1764 samples. Source data are provided as a Source Data file. Exact p-values are provided.

Supplementary Table 2. Gut microbiota Beta Diversity

	Weight	ted UniF	Frac Dist	tance								
	Ove	erall	Gh	ana	South	Africa	Jam	aica	Seycl	helles	US	SA
	R^2	Р	R^2	Р	R^2	Р	R^2	Р	R^2	Р	R^2	Р
Obese	0.001	0.031	0.004	0.208	0.003	0.415	0.002	0.732	0.001	0.903	0.007	0.043
Sex	0.003	0.001	0.002	0.549	0.004	0.19	0.009	0.009	0.023	0.001	0.011	0.004
Age	0.002	0.001	0.101	0.815	0.08	0.737	0.102	0.062	0.053	0.894	0.098	0.283
Country	0.118	0.001										
	Unwei	ghted U	niFrac									
	Distan	се										
	ove	erall	Gh	ana	South	Africa	Jam	aica	Seycl	helles	US	SA
	R^2	Р	R^2	Р	R^2	Р	R^2	Р	R^2	Р	R^2	Р
Obese	0.003	0.001	0.004	0.032	0.007	0.002	0.002	0.732	0.003	0.279	0.004	0.154
Sex	0.003	0.001	0.005	0.018	0.007	0.002	0.009	0.009	0.01	0.001	0.01	0.001
Age	0.001	0.135	0.113	0.471	0.083	0.708	0.102	0.062	0.063	0.576	0.094	0.252
Country	0.083	0.001										

Adjusted multivariable analysis in the entire cohort (overall) and by each country. Statistical significance from permutational multivariate analysis of variance (PERMANOVA, two-tailed test, p < 0.05). n= 1764 samples. All *p*-values are generated based on 999 permutations and exact p-values are provided.

	Bacteroides type	<i>Prevotella</i> type	p-value	q-value
Ν	820	866		
BMI	29(25,35)	28(23,34)	0.003	0.004
Country			<0.001	<0.001
Ghana	61 (7.4%)	265(31%)		
Jamaica	243(30%)	117(14%)		
Seychelles	149(18%)	176(20%)		
South				
Africa	142(17%)	232(27%)		
USA	225(27%)	76(8.8%)		
Sex	564(69%)	503(58%)	<0.001	<0.001
Age	44(38,50)	42(36,48)	0.032	0.032
Obese	370(45%)	346(40%)	<0.001	<0.001
Total SCFA	3547(2325,4891)	5300(3591,7672)	<0.001	<0.001
Bacteroides	1299(315,7521)	92(18,526)	<0.001	<0.001
Prevotella	98(25,319)	1246(198,10382)	<0.001	<0.001

Supplementary Table 3 – Description of study participants by microbial enterotypes

Data are presented as median (interquartile range) for continuous variables and percentages (%) for categorical variables. n= 1686 samples. p values are based on Wilcoxon rank-sum test or Pearson's Chi-squared test (two-tailed). Exact q values are shown. Source data are provided as a Source Data file. Statistical significance, q < 0.05. q = False Discovery Rate correction, BMI = Body Mass Index, SCFA = short chain fatty acids

Supplementary Table 4. Confusion matrix table showing the average prediction accuracy of gut microbiota in estimating the different countries using a Random Forest model

Prediction label									
	Ghana	South Africa	Jamaica	Seychelles	USA	Overall accuracy			
Ghana	0.88	0.03	0.02	0.05	0.03				
South Africa	0.03	0.77	0.04	0.13	0.03				
Jamaica	0	0.1	0.88	0	0.03				
Seychelles	0.03	0.03	0.06	0.82	0.06				
USA	0	0.03	0.07	0.05	0.85				
Overall accur	асу					0.84			
Baseline accu	uracy					0.22			
Accuracy ratio	C					3.79			
n=1694									

Predicted label						
Overall						
	Diabetic	Non-Diabetic	accuracy			
Diabetic	0	1				
Non-Diabetic	0	1				
Overall accuracy			0.89			
Baseline accurac	ÿ		0.89			
Accuracy ratio	-		1			
	Elevated		Overall			
	glucose	Normal glucose	accuracy			
Elevated						
glucose	0	1				
Normal glucose	0.01	0.99				
Overall accuracy			0.75			
Baseline accurac	;у		0.76			
Accuracy ratio			0.99			
		Non-	Overall			
	Hypertensive	Hypertensive	accuracy			
Hypertensive Non-	0.67	0.33				
Hypertensive	0.47	0.53				
Overall accuracy			0.6			
Baseline accurac	ÿ		0.5			
Accuracy ratio			1.2			
			Overall			
	Obese	Non-Obese	accuracy			
Obese	0.38	0.62				
Non-Obese	0.19	0.81				
Overall accuracy			0.63			
Baseline accurac	ÿ		0.58			
Accuracy ratio			1.09			
			Overall			
	Female	Male	accuracy			
Female	0.94	0.06				
Male	0.7	0.3				
Overall accuracy			0.7			
Baseline accurac	ÿ		0.63			
Accuracy ratio			1.11			

Supplementary Table 5. Confusion matrix table showing the average prediction accuracy of gut microbiota in a Random Forest model

Prediction accuracy for estimating diabetes status (n=1657); glucose status (n=1657); hypertensive status (1694); obese status (n = 1694); sex (n=1694) in the entire cohort is presented.

	Diabetes	Glucose	HTN		
	Status	Status	Status	Sex	
Ghana	0.69	0.55	0.63	0.76	
South					
Africa	0.57	0.78	0.54	0.74	
Jamaica	0.66	0.58	0.56	0.63	
Seychelles	0.54	0.56	0.48	0.75	
USA	0.53	0.59	0.47	0.66	

Supplementary Table 6. The classification accuracy of gut microbiota for estimating metabolic disease indicators using a Random Forest model at each study site

Classification accuracy is presented as average area under the curve (AUC) values. HTN = Hypertension.

Supplementary Table 7. Confusion matrix table showing the average prediction accuracy of gut microbiota for estimating metabolic disease indicators in the Ghanaian cohort using a Random Forest model

Predicted value						
					Overall	
	Diabetic		Non-Diabetic		accuracy	
Diabetic		0		1		
Non-Diabetic		0		1		
Overall accuracy						0.93
Baseline accurac	ÿ					0.93
Accuracy ratio	-					1
	Elevated				Overall	
	glucose		Normal glucose		accuracy	
Elevated						
glucose	0		1			
Normal glucose	0		1			
Overall accuracy					0.72	
Baseline accurac	;y				0.72	
Accuracy ratio					1	
			Non-		Overall	
	Hypertensive		Hypertensive		accuracy	
Hypertensive	0.24		0.76			
Non-	0.05		0.05			
Hypertensive	0.05		0.95			
Overall accuracy					0.75	
Baseline accurac	у				0.72	
Accuracy ratio					1.05	
	Ohaaa		New Oheee		Overall	
	Obese		Non-Obese		accuracy	
Obese	0		1			
Non-Obese	0.02		0.98			
Overall accuracy					0.72	
Baseline accurac	;y				0.73	
Accuracy ratio					0.98	
	_ .				Overall	
	Female		Male		accuracy	
Female	0.9		0.1			
Male	0.8		0.2			
Overall accuracy					0.67	
Baseline accurac	;у				0.67	
Accuracy ratio					1	

Supplementary Table 8. Confusion matrix table showing the average prediction accuracy of gut microbiota for estimating metabolic disease indicators in the South African cohort using a Random Forest model

Predicted value					
			Overall		
	Diabetic	Non-Diabetic	accuracy		
Diabetic	0	1			
Non-Diabetic	0	1			
Overall accuracy			0.96		
Baseline accurac	х у		0.96		
Accuracy ratio	-		1		
.	Elevated		Overall		
	glucose	Normal glucose	accuracy		
Elevated	-				
glucose	0	1			
Normal glucose	0	1			
Overall accuracy			0.92		
Baseline accurac	у		0.92		
Accuracy ratio			1		
		Non-	Overall		
	Hypertensive	Hypertensive	accuracy		
Hypertensive Non-	0.16	0.84			
Hypertensive	0.25	0.75			
Overall accuracy			0.51		
Baseline accurac	SV		0.59		
Accuracy ratio			0.86		
			Overall		
	Obese	Non-Obese	accuracy		
Obese	0.14	0.86			
Non-Obese	0.15	0.85			
Overall accuracy			0.59		
Baseline accurac	х у		0.63		
Accuracy ratio	-		0.94		
			Overall		
	Female	Male	accuracy		
Female	0.86	0.14			
Male	0.58	0.42			
Overall accuracy			0.68		
Baseline accurac	х у		0.59		
Accuracy ratio	-		1.16		

Supplementary Table 9. Confusion matrix table showing the average prediction accuracy of gut microbiota for estimating metabolic disease indicators in the Jamaican cohort using a Random Forest model

Predicted label							
						Overall	
	Diabetic		Non-E	Diabeti	С	accuracy	
Diabetic	0			1			
Non-Diabetic	0			1			
Overall accuracy						0.9	
Baseline accurac	су (0.9	
Accuracy ratio						1	
	Elevated					Overall	
	glucose		Norma	al gluc	ose	accuracy	
Elevated	0						
glucose	0			1			
Normal glucose	0			1			
Overall accuracy						0.8	
Baseline accurac	су У					0.8	
Accuracy ratio						1	
			Non-			Overall	
	Hypertensive	9	Hyper	tensiv	е	accuracy	
Hypertensive Non-	0.92			0.08			
Hypertensive	0.84			0.16			
Overall accuracy						0.58	
Baseline accurac	;y					0.55	
Accuracy ratio						1.05	
						Overall	
	Obese		Non-C	Dbese		accuracy	
Obese	(0.41			0.59		
Non-Obese	(0.36			0.64		
Overall accuracy							0.53
Baseline accurac	су У						0.53
Accuracy ratio							1
						Overall	
	Female		Male			accuracy	
Female	0.91			0.01			
Male	0.88			0.12			
Overall accuracy						0.65	
Baseline accurac	;y					0.66	
Accuracy ratio	-					0.98	

Supplementary Table 10. Confusion matrix table showing the average prediction accuracy of gut microbiota for estimating metabolic disease indicators in the Seychellois cohort using a Random Forest model

Predicted label					
			Overall		
	Diabetic	Non-Diabetic	accuracy		
Diabetic	0	1			
Non-Diabetic	0	1			
Overall accuracy			0.83		
Baseline accurac	SV		0.83		
Accuracy ratio	-		1		
	Elevated		Overall		
	glucose	Normal glucose	accuracy		
Elevated					
glucose	0.53	0.47			
Normal glucose	0.53	0.47			
Overall accuracy			0.5		
Baseline accurac	^{су}		0.52		
Accuracy ratio			0.97		
		Non-	Overall		
	Hypertensive	Hypertensive	accuracy		
Hypertensive	0.68	0.32			
Non-	0.00	0.40			
Hypertensive	0.82	0.18	0.47		
Overall accuracy			0.47		
Baseline accurac	су У		0.58		
Accuracy ratio			0.82		
	Ohaaa	Non Ohaaa	Overall		
	Obese	Non-Obese	accuracy		
Obese	0	1			
Non-Obese	0.03	0.97			
Overall accuracy			0.59		
Baseline accurac	су Су		0.61		
Accuracy ratio			0.98		
		N <i>A</i> 1	Overall		
	Female	Male	accuracy		
Female	0.86	0.14			
Male	0.52	0.48			
Overall accuracy			0.7		
Baseline accurac	^{су}		0.56		
Accuracy ratio			1.24		

Supplementary Table 11. Confusion matrix table showing the average prediction accuracy of gut microbiota for estimating metabolic disease indicators in the US cohort using a Random Forest model

Predicted label					
			Overall		
	Diabetic	Non-Diabetic	accuracy		
Diabetic	0	1			
Non-Diabetic	0	1			
Overall accuracy			0.8		
Baseline accurac	;y		0.8		
Accuracy ratio			1		
	Elevated		Overall		
	glucose	Normal glucose	accuracy		
Elevated	-				
glucose	0	1			
Normal glucose	0	1			
Overall accuracy			0.77		
Baseline accurac	;y		0.77		
Accuracy ratio			1		
		Non-	Overall		
	Hypertensive	Hypertensive	accuracy		
Hypertensive	1	1			
Non-	٥	0			
	0	0	0.00		
Overall accuracy			0.69		
Baseline accurac	сy		0.69		
Accuracy ratio			1		
	Oboso	Non Oboso			
Ohaaa			accuracy		
Upese	0.9	0.1			
Non-Obese	0.77	0.23	0.00		
Overall accuracy			0.66		
Baseline accurac	;y		0.64		
Accuracy ratio			1.03		
	Fomolo	Mala	Overall		
			accuracy		
	0.93	0.07			
Male	0.7	0.3	. =.		
Overall accuracy			0.72		
Baseline accurac	;у		0.67		
Accuracy ratio			1.07		

	WOMEN									
	Ghana	South Africa	Jamaica	Seychelles	US					
	n=254	n=228	n=263	n=196	n=213					
PROPIONATE (UG/G)	30.4 ± 18.0	11.6 ± 6.9	11.5 ± 8.5	14.5 ± 8.5	9.1 ± 6.0					
BUTYRATE (UG/G)	22.1 ± 11.8	10.6 ± 6.6	8.5 ± 6.8	7.0 ± 5.4	9.0 ± 6.5					
ACETATE (UG/G)	61.3 ± 22.8	15.6 ± 7.4	24.4 ± 13.3	40.9 ± 25.4	16.8 ± 11.1					
TOTAL SCFA (UG/G)	115.5 ± 45.0	39.5 ± 19.0	46.0 ± 26.3	63.8 ± 35.1	36.4 ± 21.5					
		ME	N							
	Ghana	South Africa	Jamaica	Seychelles	US					
	n=117	n=171	n=133	n=164	n=107					
PROPIONATE (UG/G)	34.3 ± 15.9	18.6 ± 13.1	18.3 ± 13.2	21.0 ± 13.9	13.1 ± 9.9					
BUTYRATE (UG/G)	23.1 ± 14.2	14.5 ± 9.0	13.2 ± 10.1	8.6 ± 4.7	11.3 ± 6.8					
ACETATE (UG/G)	68.9 ± 22.5	22.1 ± 9.3	27.0 ± 13.3	42.2 ± 17.2	22.3 ± 13.7					
TOTAL SCFA (UG/G)	128.0 ± 44.2	57.3 ± 27.9	60.3 ± 30.1	72.8 ± 32.0	48.4 ± 27.3					

Supplementary Table 12. Weight adjusted fecal SCFA levels by country

Data are presented as mean <u>+</u>standard deviation. Source data are provided as a Source Data file.

NON-OBESE									
	Ghana	South Africa	Jamaica	Seychelles	US				
	n=254	n=228	n=263	n=196	n=213				
PROPIONATE (UG/G)	34.1 ± 18.3	16.8 ± 11.8	16.6 ± 13.0	19.2 ± 13.2	12.7 ± 9.6				
BUTYRATE (UG/G)	23.8 ± 13.2	14.3 ± 8.6	12.2 ± 9.7	8.4 ± 5.9	11.1 ± 7.4				
ACETATE (UG/G)	69.3 ± 22.4	21.4 ± 9.2	28.3 ± 15.3	45.9 ± 24.1	23.1 ± 14.2				
TOTAL SCFA (UG/G)	129.1 ± 45.0	54.6 ± 26.3	59.0 ± 32.6	74.8 ± 37.6	48.9 ± 28.4				
OBESE									
	Change Couth Africa Investor Couchelles 110								
	Gnana	South Africa	Jamaica	Seychelles	03				
	n=89	n=141	n=178	n=132	n=201				
PROPIONATE (UG/G)	24.9 ± 12.4	10.7 ± 6.3	10.3 ± 5.9	14.6 ± 8.1	9.1 ± 6.1				
BUTYRATE (UG/G)	18.7 ± 10.2	8.7 ± 5.0	7.7 ± 5.6	6.6 ± 3.3	9.0 ± 6.1				

Supplementary Table 13. Total fecal SCFA by adiposity status

48.7 ± 16.9

93.9 ± 33.9

ACETATE

TOTAL SCFA

(UG/G)

(UG/G)

Data are presented as mean <u>+</u>standard deviation. Source data are provided as a Source Data file.

21.6 ± 9.5

40.9 ± 18.0

34.9 ± 16.8

57.1 ± 24.0

16.0 ± 10.1

35.4 ± 19.9

13.2 ± 4.9

34.1 ± 14.5

		Ghana		South Africa		Jamaica		Seychelles		USA	
		r	р	r	р	r	р	r	р	r	р
	Total										
BMI	SCFA	0.01	0.82	-0.02	0.73	0.08	0.16	0.02	0.76	0.07	0.20
Shannon	Total	-0.04	0.44	-0.11	0.05	-0.01	0.03	-0.10	0.06	0.06	0.27
Observed	SCFA	-0.12	0.03	-0.19	0.00	-0.29	0.00	-0.20	0.00	-0.17	0.00
Shannon		0.05	0.33	-0.03	0.57	-0.21	0.00	-0.11	0.03	0.04	0.51
Observed	Acetate	-0.01	0.84	-0.07	0.17	-0.35	0.00	-0.19	0.00	-0.18	0.00
Shannon		-0.10	0.06	-0.14	0.01	0.02	0.77	-0.05	0.36	0.08	0.19
Observed	Butyrate	-0.20	0.00	-0.25	0.00	-0.14	0.01	-0.10	0.05	-0.10	0.07
Shannon		-0.14	0.01	-0.16	0.00	0.06	0.28	-0.10	0.05	0.03	0.61
Observed	Propionate	-0.18	0.00	-0.26	0.00	-0.13	0.02	-0.23	0.00	-0.21	0.00
Shannon		0.41	0.00	0.14	0.01	0.19	0.00	0.21	0.00	0.12	0.04
Observed	Valerate	0.46	0.00	0.24	0.00	0.32	0.00	0.32	0.00	0.19	0.00

Supplementary Table 14. Associations between concentrations of the different types of fecal short chain fatty acids (SCFAs) with alpha diversity and BMI within each country

r = Spearman correlation, BMI = body mass index, SCFA = short chain fatty acids

Supplementary Table 15: The effect of	short chain fatty acids on obesity through the
mediating effects of Shannon diversity	y in the entire cohort

		95% CI	95% CI	
	Estimate	lower	upper	p value
ACME	0	0	0	1
ADE	-0.0003	-0.0004	0	< 2e-16
Total effect Prop.	-0.0003	-0.0004	0	< 2e-16
mediated	0	0	0	1

Boostrap 95% confidence interval with the percentile method (Mediation test, two-sided). Exact p-values are provided. n= 1655. ACME = Average Causal Mediation Effects; ADE = Average Direct Effects; Prop. mediated = Proportion mediated. CI = Confidence Interval

Log fold change

Log fold change

Supplementary Fig 1. Differentially abundant taxa among countries

(a-d) Differentially abundant taxa among countries with US as the reference. ANCOM-BC analyses adjusted for BMI, age, and sex. Data are presented by effect size (log fold change) with 95% confidence interval (CI) calculated from the beta coefficient (effect size) and standard errors estimated from the ANCOM-BC log-linear model (two-sided; FDR-adjusted). Colored dot indicates effect size (log fold change) and whiskers indicate 95% CI. ASVs with log fold change >1.4 are shown for country. FDR-adjusted (q < 0.05) effect sizes are indicated by *, ** and ***, corresponding to q < 0.05, <0.01 and <0.001 respectively. The exact *p*-values are available in the source data file. n = 1694 samples. Source data are provided as a Source Data file. BMI = Body Mass Index. ANCOM-BC = Analysis of Compositions of Microbiomes with Bias Correction. FDR= False Discovery Rate.

Supplementary Fig. 2. Heatmap representations of the 30 most predictive microbial features identified by Random Forest analysis

a Heatmap of predictive microbial features classifying countries. **b** Heatmap of predictive microbial features classifying obese and non-obese groups. Microbial features in rows. Source data are provided as a Source Data file. n= 1694 samples

Supplementary Fig. 3. Variation in predicted PICRUSt2 MetaCyc pathways

a Differentially abundant predicted MetaCyc pathways among countries with US as the reference (n = 1694). **b** Differentially abundant predicted MetaCyc pathways between obese and non-obese group in entire cohort (n = 1694). **c** Differentially abundant predicted MetaCyc pathways between obese and non-obese group within Jamaica (n = 361). ANCOM-BC analyses adjusted for BMI, age, sex and country. Data are presented by effect size (log fold change) with 95% confidence interval (CI) calculated from the beta coefficient (effect size) and standard errors estimated from the ANCOM-BC log-linear model (two-sided; FDR-adjusted). Colored dot indicates effect size (log fold change) and whiskers indicate 95% CI. Representative predicted pathways with log fold change >1.4 in at least one group are shown for country. FDR-adjusted (q < 0.05) effect sizes are indicated by *, ** and ***, corresponding to q < 0.05, <0.01 and <0.001 respectively. The exact *p*-values are available in the source data file. Source data are provided as a Source Data file. BMI = Body Mass Index. ANCOM-BC = Analysis of Compositions of Microbiomes with Bias Correction. FDR= False Discovery Rate

Supplementary Fig. 4. Variation in predicted PICRUSt2 KEGG orthology in butanoate metabolism pathway

(a) Differentially abundant predicted butanoate KO among countries with US as the reference (n= 1694). (b) Differentially abundant butanoate KO between obese and non-obese group in entire cohort. Differentially abundant butanoate KO between obese and non-obese group within (c) Ghana (n = 328); (d) South Africa (n = 374); (e) Jamaica (n = 361). ANCOM-BC analyses adjusted for BMI, age, sex and country using ANCOM-BC. Data are presented by effect size (log fold change) with 95% confidence interval (CI) calculated from the beta coefficient (effect size) and standard errors estimated from the ANCOM-BC log-linear model (two-sided; FDR-adjusted). Colored dot indicates effect size (log fold change) and whiskers indicate 95% CI. Representative predicted pathways with log fold change >1.4 in at least one group are shown for country. FDR-adjusted (q < 0.05) effect sizes are indicated by *, ** and ***, corresponding to q < 0.05, <0.01 and <0.001 respectively. The exact *p*-values are available in the source data file. Source data are provided as a Source Data file. KO = KEGG orthology. BMI = Body Mass Index. ANCOM-BC = Analysis of Compositions of Microbiomes with Bias Correction. FDR= False Discovery Rate

Supplementary Fig. 5. Variation in predicted PICRUSt2 KEGG orthology in LPS biosynthesis pathway

(a) Differentially abundant predicted LPS KO among countries with US as the reference. (b) Differentially abundant LPS KO between obese and non-obese group in entire cohort. ANCOM-BC analyses adjusted for BMI, age, sex and country. Data are presented by effect size (log fold change) with 95% confidence interval (CI) calculated from the beta coefficient and standard errors estimated from the ANCOM-BC log-linear model (two-sided; FDR-adjusted). Colored dot indicates effect size (log fold change) and whiskers indicate 95% CI. Representative predicted pathways are shown for country. FDR-adjusted (q < 0.05) effect sizes are indicated by *, ** and ***, corresponding to q < 0.05, <0.01 and <0.001 respectively. The exact *p*-values are available in the source data file. n= 1694 samples. Source data are provided as a Source Data file. BMI = Body Mass Index. KO = KEGG orthology. LPS = Lipopolysaccharides. ANCOM-BC = Analysis of Compositions of Microbiomes with Bias Correction. FDR= False Discovery Rate.

	Total SCFA	Acetate	Butyrate	Propionate	Valerate
Entire cohort	0.55	0.53	0.52	0.53	0.51
Ghana	0.51	0.53	0.46	0.49	0.60
South Africa	0.51	0.51	0.51	0.55	0.54
Jamaica	0.56	0.56	0.51	0.49	0.55
Seychelles	0.44	0.53	0.51	0.53	0.40
USA	0.48	0.52	0.51	0.51	0.48

Supplementary Figure 6. The utility of SCFAs to predict obesity using an XGBoost machine learning model.

The model was tested with 10-fold cross validation in 100 repetitions and the average AUC (area under the receiver operating characteristic curve) for the entire cohort or at each site is presented. Color gradient (red to deep green) represents increasing average AUC values. red: 0.40 - 0.43; light red: 0.44 - 0.46; orange: 0.47 - 0.49; yellow: 0.50 - 0.52; light green: 0.53 - 0.54; green: 0.55 - 0.56; deep green: 0.60. SCFAs = Short chain fatty acids.