
Supporting Information for

Stress-dependent activation entropy in thermally activated cross-slip of dislocations

Yifan Wang and Wei Cai

Corresponding Author Wei Cai.
E-mail: caiwei@stanford.edu

This PDF file includes:

Supporting text
Figs. S1 to S6
Table S1
SI References

Yifan Wang and Wei Cai 1 of 14



Supporting Information Text

I. Correction to the soft vibrational modes

The harmonic transition state theory (HTST) described in Eq. 3 only applies when all the relevant phonon modes appear to be
harmonic oscillators (3N − 3 modes for the initial state A, and 3N − 4 for the saddle state S). However, besides the three
rigid-body translational modes for both states A and S, and the imaginary mode along the reaction coordinate direction for
state S, there are two soft vibrational modes that cannot be approximated by harmonic oscillators for a single dislocation
cross-slip process. One mode is the constriction of the partials moves along the dislocation line (Goldstone mode) for the saddle
state S, and another mode is the entire dislocation moves along the gliding direction on the original slip plane (Gliding mode)
for the initial state A. This section discusses the theoretical and numerical treatments of these two soft vibrational modes that
correct the rate predicted by HTST.

Fig. S1(a) shows the Goldstone mode of the saddle state S, in which the constriction can move along the dislocation line
direction. To obtain the energy profile along the Goldstone mode, we start from the atomic configuration of transition state
S, as shown in Fig. 1A. We first move all the atoms along the dislocation line direction by one Burger’s vector magnitude
b to obtain the next repeated configuration. Now the atoms away from the dislocation core are overlapping with their next
repeated neighbor, while the atoms in the dislocation core are moved slightly (� b) away from their next neighbor, due to
the motion of the constriction. The atom IDs are then reassigned to these closest next neighbors, so that effectively only the
constriction is moved by b along the dislocation line direction. Note that although this new configuration S′ effectively moves
the constriction by b, most of the atoms have not moved. The atoms away from the dislocation core are not moved while the
motion of the atoms in the dislocation core is much smaller than b. The energy profile of the Goldstone mode is then obtained
by linear interpolation between states S and S′, shown as a solid line in Fig. S1(b), with its harmonic approximation of the
local minimum illustrated as the dashed line.

On the one hand, it is readily seen that the Goldstone mode in cross-slip process has a non-zero stiffness. Hence, this mode
cannot be simply excluded from the Hessian matrix as a 4th zero-frequency mode (after the three rigid-body translation modes)
like in SI Ref. (1). On the other hand, it can be seen that the actual energy profile is significantly deviating from the harmonic
approximation that is accounted for in the HTST. Therefore, we correct the HTST rate by multiplying a factor ν̃S , which can
be written as the ratio between the partition functions of the 1D energy profile (G) and the harmonic approximation (H),

ν̃S = zH
S
zG

S
=

∫∞
−∞ exp[−EH

S (x)/kBT ] dx

Nx
∫ R/2
−R/2 exp[−EG

S (x)/kBT ] dx
= b

Lx

√
2πkBT/K∫ R/2

−R/2 exp[−EG
S (x)/kBT ] dx

[10]

where K is the stiffness(curvature) of the harmonic approximation at x = 0, indicated by the dashed quadratic curve in
Fig. S1(b). R is the total atom displacement of one period, in which the constriction effectively moves by a Burger’s vector
b along the dislocation line direction (See Fig. S2). Note that Fig. S1(b) only shows one period of EG

S , since the lattice in
the [11̄0] direction is repeated for Nx = Lx/b times in the dislocation line direction, as shown in Fig. S2. The denominator is
evaluated by numerical integration of the energy profile EG

S (r) illustrated as the solid curve. The correction factor for 300 K is
evaluated as ν̃S ∼ 0.15, contributing about one-order-of-magnitude error to the rate prediction.

Similarly, the gliding mode of the initial state is shown in Fig. S1(c). We move the dislocation along the gliding direction by
one gliding vector h = a

6 [1̄1̄2] to obtain the next repeated configuration A′. To achieve this, the atoms are first moving along
the repeated lattice direction along the zig-zag line direction as shown in Fig. S2, so that the atoms are close to their next
neighbor. The atom IDs are then reassigned to their closest next neighbor, so that only the atoms near the dislocation core are
moved and effectively the dislocation is moved by h in the gliding direction. The energy profile of gliding is then obtained
by MEP search, as shown in Fig. S1(d). It is readily seen that the energy barrier is much higher than the Goldstone mode,
and the harmonic approximation is working better estimating the partition function compared to the Goldstone mode. The
correcting factor of the gliding mode ν̃A can be written as,

ν̃A = zH
A
zGl

A
=

∫∞
−∞ exp[−EH

A(z)/kBT ] dz∫ R/2
−R/2 exp[−EGl

A (z)/kBT ] dz
=

√
2πkBT/KA∫ R/2

−R/2 exp[−EGl
A (z)/kBT ] dz

[11]

where KA is the curvature of the harmonic approximation. The correction factor ν̃A is estimated around ∼ 1.3 at 300 K,
indicating that the harmonic approximation is pretty good in estimating the partition function of the gliding mode. It is worth
noting that the gliding mode does not need to multiply by the number of repeat lattices Nz in the z-direction. The reason is
that while the dislocation can cross-slip from any of the Nz equivalent locations on the original slip plane, for each one of these
equivalent configurations of the initial state A, there is a set of Nx saddle configurations corresponding to the saddle state S.
In total, state S has NxNz equivalent sites while state A has Nz equivalent sites. Therefore, the Nz factor is canceled and
only an Nx factor need to be multiplied in calculating the Goldstone mode. This is consistent with the fact that the cross-slip
rate is proportional to the dislocation line length (Nx) but is independent from the length of the simulation cell in the gliding
direction (Nz).

These two vibrational soft modes are accounted for by numerically evaluating the partition function based on their energy
profile. Their effect can be significant, for example, the correction factor ν̃A/ν̃S ≈ 0.2 under τapp = (−0.6,−0.8, 0.8)GPa and at
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300 K. We believe that these two terms in the prefactor ν0(ε) = νHTST ν̃A/ν̃S cover all the important vibrational contribution
to the free energy difference Fc(ε).

II. Additional calculations for different applied stresses

To assess the generality of the conclusions, we repeat the MD simulations and MEP calculations for cross-slip at two different
applied stress conditions of τapp = (−0.8,−0.8, 0.8)GPa and τapp = (−0.8,−0.8, 0.6)GPa, as shown in Fig. S3. After using the
finite-temperature strain εT to calculate the activation energy, the HTST estimate (blue squares) of the cross-slip rate matches
with the MD results (orange stars) for different applied stress conditions. This result indicates that the thermal expansion and
the thermal softening effects contribute primarily to the large activation entropy at a given applied stress. The activation
entropy Sc is evaluated as the negative slope of the activation energy decrease with increasing temperature.

To examine the stress-dependence of the activation entropy Sc described in Eq. 18, we perform the MEP calculations of
27 applied stress conditions, where the three shear stress components −σg

e , −σc
s , and σc

e varies among 0.0, 0.4, 0.8 GPa. The
calculated activation entropy is marked as solid markers in Fig. 3, as a function of the effective shear stress τ∗ from Eq. 15.
It is readily seen that the activation entropy can be grouped into three curves by the value of σc

s . These stress-dependent
activation entropy values are then modeled by Eq. 6(SI Text V) and shown as dashed lines in Fig. 3.

III. Constant-strain activation entropy from HTST

Based on TST, the cross-slip rate can be written as a function of constant strain ε and temperature T (2),

rTST(ε, T ) = kBT

h
exp
[
−Fc(ε, T )

kBT

]
= kBT

h
exp
[
Sc(ε)
kB

]
exp
[
−Ec(ε)
kBT

]
[12]

where Fc = FS − FA is the activation Helmholtz free energy, the free energy difference between the transition state S and
initial state A. The activation Helmholtz free energy can be expressed as Fc(ε, T ) = Ec(ε)− TSc(ε), where Ec and Sc are the
activation energy and activation entropy as functions of strain ε, respectively (2). Combining Eq. 4 and Eq. 12, the activation
entropy can be obtained from HTST calculation,

Sc = kB ln
(
νHTST

ν̃A

ν̃S

h

kBT

)
[13]

IV. Analytical expressions for stress-dependent activation enthalpy Hc

As we discussed in the main text (Fig. 3), the activation energy at finite temperature strain is equivalent to the activation
enthalpy at zero temperature with excess stress applied. Since the MEP search algorithm is computationally expensive, it is
not possible to calculate activation enthalpy everytime with a new applied stress condition. In this section, we will build an
analytical formula for the activation enthalpy as a function of applied stress. Kuykendall et al. (3) and Esteban-Manzanares et
al. (4) studied the zero-temperature stress-dependence of the cross-slip activation enthalpy, but the isotropic stress −σ̂I is not
considered in both works. Here we develop an Hc function based on Kuykendall et al. (2020)’s (3) expression, considering the
applied Escaig-Schmid stress components τapp = (σg

e , σ
c
s , σ

c
e) and the isotropic stress σ̂:

Hc(τ∗, τ̂0) = A

[
1−

(
τ∗

τ̂0

)p]q
[14]

where the effective shear stress τ∗ and the effective cross-slip stress τ̂0 (where the energy barrier is zero) are defined as,

τ∗(σg
e , σ

c
e , σ

c
s ) = Cg

eσ
g
e + Cc

eσ
c
e + (Dc

sσ
c
s )2 [15]

τ̂0(−σ̂, σc
s ) = τ0 −K1(−σ̂)(σc

s )2 −K2(−σ̂)K3 [16]

We fit this expression based on 500(5× 5× 5× 4) MEP calculations, with −σg
e , −σc

s , and σc
e varies among 0.0, 0.2, 0.4, 0.6,

and 0.8 GPa, and the hydrostatic stress −σ̂ varies among 0.0, 2.0, 4.0, and 6.0 GPa. In these simulations, σg
e is negative (when

it is non-zero), to promote constriction of the stacking fault, while σc
e is positive (when it is non-zero) to promote expansion of

the stacking fault on the cross-slip plane. In our simulations, σc
s is negative (when it is non-zero), though both positive and

negative Schmid stresses on the cross-slip plane are expected to promote cross-slip. Each MEP relaxation is performed for 800
iterations (which takes 8 hours on 32 cores) and is considered converged if (1) the slope of the linear fit of energy barrier over
the last 400 steps is less than 10−5 eV/step; and (2) the mean squared error of the linear fit is less than 10−3 eV2. If convergence
is not reached, the MEP relaxation is restarted for another 400 iterations. If the energy barrier during relaxation becomes
negative, we consider the calculation has failed to converge. All these 500 simulations (whose initial paths are constructed
based on the FE mechanism) converge to MEPs that are consistent with the FE mechanism.
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The fitted numerical values for the seven fitting parameters (A, p, q, τ0, C
g
e , C

c
e , D

c
s ) are given in Table S1. It is worth noting

that except for the magnitude A due to the smaller simulation cell in this work, the values of the parameters are the same
as Kuykendall et al. (2020) (3), indicating the consistency of this analytical expression. Fig. S4 shows the fitted activation
enthalpy as a function of τ∗ and τ̂0. The formula accurately predicts the activation enthalpy at any given applied stress σ̃
within the fitting range.

V. Analytical expressions for stress-dependent activation entropy Sc

The activation entropy Sc is defined as the reduction of activation energy with increasing temperature and fixed stress condition
σ = τapp. Using Legendre transformation, the activation energy as a function of strain can be written in terms of activation
enthalpy as a function of stress, i.e., Ec(εT ) = Hc(σ̃). Here the σ̃ is the corresponding stress for the finite-temperature strain
εT at 0 K, i.e., σ̃ = σ(εT , 0 K), where εT = ε(τapp, T ) is the finite-temperature strain. At 0 K, excess stresses need to be
applied for the system to remain the strain εT , as shown in Fig. S5(b)(c),

σ̃ = σ̂I + τ = τapp + σ̂I + τex [17]

where σ̂I is the excess isotropic stress and τex is the excess shear stress. As a result, the activation entropy can be decomposed
as,

Sc =
(
∂Ec(εT )
∂T

)
σ=τapp

=
(
∂Hc(σ̃)
∂T

)
τapp

=
(
∂Hc

∂σ̃

)(
∂σ̃

∂εT

)(
∂εT
∂T

)
τapp

[18]

where the first term (∂Hc/∂σ̃) is the stress gradient of the activation enthalpy, which can be calculated from the analytical
expression Eq. 14, 15, and 16 in the previous section. The second term (∂σ̃/∂εT ) comes from the constitutive relationship at
0 K. The last term (∂εT /∂T )σ=τapp is the strain change with increasing temperature given the system remains at the applied
stress τapp, as shown in Fig. S5(b)(c). This entropic effect can be further decomposed according to the isotropic component
and the shear component of the stress,

Sc =
[(

∂Hc

∂(−σ̂)

)(
∂(−σ̂)
∂εT

)
+
(
∂Hc

∂τ

)(
∂τ

∂εT

)](
∂εT
∂T

)
τapp

=
(

∂Hc

∂(−σ̂)

)[(
∂(−σ̂)
∂εT

)(
∂εT
∂T

)
τapp

]
+
(
∂Hc

∂τ

)[(
∂τ

∂εT

)(
∂εT
∂T

)
τapp

]
[19]

With the analytical expression Eq. 14, 15, and 16, ∂Hc/∂(−σ̂) and ∂Hc/∂τ can be evaluated analytically at any stress
state. Here we estimate the rest of the expression based on the following assumptions: First, the isotropic component refers to
the thermal expansion effect (5),[(

∂(−σ̂)
∂εT

)(
∂εT
∂T

)
τapp

]
= ∂P

∂T
= V

(
∂P

∂V

)
· 1
V

(
∂V

∂T

)
= KαV [20]

where P is the hydrostatic pressure; αV is the volumetric thermal expansion coefficient; and K is the bulk modulus. Second, the
shear component expresses the thermal softening effect due to the decreasing shear modulus with increasing temperature (2),
assuming that the shear modulus does not change significantly with temperature,[(

∂τ

∂εT

)(
∂εT
∂T

)
τapp

]
=
[
∂τ

∂T

]
εT

=
[
∂(µεT )
∂T

]
εT

= εT

(
∂µ

∂T

)
εT

≈ 1
µ

(
∂µ

∂T

)
εT

· τ [21]

where µ is the shear modulus, and (∂µ/∂T ) is the gradient of shear modulus respect to temperature. Combining Eq. 20 and 21
into Eq. 19, we reach the analytical model for predicting stress-dependent activation entropy Eq. 6. It is worth noting that the
parameters we used here only includes the material’s properties, without any fitting from direct MD simulations.

Note that the activation entropy contribution from the second term (Eq. 21) is relatively small comapred to the first term
(Eq. 20). The activation entropy increases with increasing shear stress τ∗ because both terms increases with τ∗. While it is
readily seen that the second term increases with τ∗, the first term also increases with τ∗, as shown in Fig. S4(b)(c).

Figure 3 shows the comparison between the activation entropy (solid dots) from MEP calculations and the estimated
values (dashed lines) from Eq. 18. The materials properties from the interatomic potential (6) are given as K = 183 GPa,
αV = 3.9× 10−5 K−1, and µ = 81.4 GPa. The gradient of the shear modulus as a function of temperature is obtained from
molecular dynamics of perfect crystal (7) as ∂µ/∂T = 1.77× 10−2 GPa ·K−1. The perfect agreement indicates that the
activation entropy can be well explained by the thermal expansion and thermal softening effects in the HTST with constant
applied stress τapp.

4 of 14 Yifan Wang and Wei Cai



VI. The determinant method for calculating the product of harmonic vibrational frequencies

For the eigendecomposition of an non-singular matrix K = VΛVT , the eigenmatrix is Λ = diag({λi, i = 1, . . . , 3N}), and the
eigen-frequencies are νi ≡ ωi/2π =

√
λi/m/2π. If we have the LU decomposition K = LU, the product of the eigenvalues can

be written as,

3N∏
i=1

λi = det(K) = det(L) det(U)

=
3N∏
i=1

(LiUi) [22]

where Li and Ui are the diagonal elements of the L and U matrices.
After the Hessian matrix is modified with Eq. 9 the resulting matrix K becomes non-singular, and the product of the eigen

frequencies can be obtained by the determinant (LU decomposition),

3∏
j=1

λkj ·
3N−3∏
i=1

λi = det(K) [23]

where νkj are the three eigen values corresponding to the added spring forces. It can be proved that the spring forces are
independent to all the vibrational modes in the system. The modified matrix K′ can be written as,

K′ = K + kĨ3 [24]

where Ĩ3 = diag(1, 1, 1, 0, . . . , 0) is a diagonal matrix with only three 1’s on the main diagonal. Since the diagonalization of
K = VΛVT satisfies VVT = I, we can write,

Ĩ3 = VĨ3VT [25]

Therefore, the modified matrix can be eigendecomposed into,

K′ = V(Λ + kĨ3)VT [26]

It is proved that the eigenvalues corresponding to the added spring forces λkj = k. The vibrational frequency term νHTST
is then calculated by the ratio between the determinants of states A and S since the frequencies from the spring forces are
cancelled out:

νHTST =
∏3N−3
i=1 νA

i∏3N−4
j=1 νS

j

=
∏3N−3
i=1

1
2π

√
λA
i /m∏3N−4

j=1
1

2π

√
λS
i /m

= 1
2π

√
det(K̃A) · λS−
det(K̃S) ·m

[27]

where λS− is the negative eigenvalue that is obtained directly using the ‘eigs’ method in MATLAB, and the determinant is
calculated by LU decomposition in MATLAB. In this work, we select k = 10−4 eV/Å to avoid round-off errors.

VII. Statistical estimation of the dislocation cross-slip rate and the effect of thermostat

Dislocation cross-slip is a thermally activated process which follows the Poisson’s process (8). The probability distribution
function of the occurrence N is written as,

f(N) = (λt)N

N ! exp(−λt) [28]

where t is the observation time, and the parameter λ represents the average occurance rate of the process.
We use MD simulations (See Methods) to obtain the estimate of the cross-slip rate, as shown in Fig. 1C and Fig. 2B. Our

simulations start with a single screw dislocation in the slip plane, and stop when cross-slip occurs. Therefore, we are sampling
the random variable observation time t at which the first cross-slip occurs (waiting time), equivalent to the Poisson’s process
with occurrence N = 0,
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P̃ (t) = f(N = 0) = exp(−λt) [29]

The rate parameter λ can be estimated using n independent MD simulations of the same applied stress and temperature
conditions the maximum-likelihood estimator (MLE) λ̂MLE = 1/

∑n

i=1 t
i
cs, where tics is the cross-slip time of the i-th case. The

95 % confidence interval of the MLE can be approximately calculated as λ̂MLE(1± 1.96/
√
n) when the sample n > 20 (9).

To demonstrate this statistical treatment, we present new independent MD simulations at the applied stress τapp =
(−0.6,−0.8, 0.8) GPa and different temperatures T = 350, 400, 450, 500 K conditions in Fig. S6. The solid curve shows the
exponential fitting curve using the MLE, and the dashed curves indicate the 95 % confidence interval. This errorbar of about
20% is very small and is not visible (smaller than the markers) on the log plot shown in Fig. 2 and Fig. S3. The width of the
confidence interval shrinks with increasing number of independent numbers n, in consistency with the central limit theorem (9).

To demonstrate that the Nosé-Hoover thermostat (NVT ensemble) does not introduce additional thermal excitation and
influence the thermally activated cross-slip, we performed additional 94 independent MD simulations of dislocation cross-slip
without thermostat (NVE ensemble). We start from the same configuration that has been equilibrated at given stress and
temperature conditions as the NVT simulations, and we then turn off the thermostat (NVE ensemble) so that the energy of
the system is conserved. Fig. S6(b) shows the comparison of the 71 independent NVT simulations and the 94 independent
NVE simulations, and it is readily shown that the NVE simulations has the same rate as the NVT simulations within the
95 % confidence interval. Fig. S6(c) shows the process of the two randomly selected cases from NVT and NVE simulations,
respectively, which shows that the thermostat does not significantly influence the statistics of the system during the wait time
of cross-slip.

It is worth noting that there is a small “incubation time” observed in the simulations, as is shown clearly in Fig. S6(a). This
incubation time may be due to the insufficient time for decorrelating multiple MD trajectories generated from perturbing the
same initial configuration. Even though the MD trajectories are chaotic, it would still take some time (i.e., the decorrelation
time) for the trajectories to diverge from each other. In addition, there may be other causes, e.g., thermal equilibrium of
vibrational modes. We opted to not shift the origin of the time axis to avoid hiding abovementioned effects. Instead, we simply
lump such effects in the error bars of the rate estimate, which are sufficiently small for our purposes. We also wish to point out
that the incubation time effect is hardly visible in lower temperature simulations shown in Fig. S6(b-d), where the average
cross-slip time is much longer compared to the decorrelation time.

Supporting Figures and Tables
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(a) (b)

(c) (d)

Fig. S1. Soft vibrational modes and their energy profiles. (a) Goldstone mode of the activated state S, where the constrictions can move along the dislocation line. (b) Energy
profile of the Goldstone mode and its harmonic approximation at the activated state. The horizontal axis is the total atomic displacement. (c) Gliding mode of the initial state
A, where the dislocation can glide along the original slip plane. (d) Energy profile of the Gliding mode and its harmonic approximation. The horizontal axis is the total atom
displacement.
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b

Constriction

Nx = Lx/b = 40

Shockley 

Partials

h = Lz/Nz 

Nz = 40

Fig. S2. Schematics of the repeated periods in the simulation cell’s x (Goldstone mode) and z (Gliding mode) directions. The Goldstone mode is defined as the constriction
motion along the dislocation line direction, with the repeated distance of b = 2.49 Å , the magnitude of the Burger’s vector, and repeated period Nx = 40. The Gliding mode
is defined as the dislocation motion in the original slip plane, with the repeated distance of h = 2.16 Å , and repeated period Nz = 40.
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Fig. S3. MD simulations and MEP calculations for additional applied stress conditions. (a) Activated energy calculated at zero-temperature strain ε0 and corresponding
finite-temperature strain εT for τapp = (−0.8,−0.8, 0.8)GPa. (b) Estimated rates using HTST (Eq. 4) with the activation energy and prefactor evaluated at ε0 and εT. (c)
Activated energy results and (d) Estimated rate results for the applied stress of τapp = (−0.8,−0.8, 0.6)GPa. The benchmark MD rates are performed for four temperature
conditions (T = 350, 400, 450, 500 K) in (b) and three temperature conditions (T = 350, 400, 450 K) in (d), shown as the orange stars with error bar.
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Fig. S4. (a) Stress-dependent activation enthalpy. Activation enthalpy estimated from Eq. 14 as a two-dimensional function of τ∗ and τ̂0. (b) Activation enthalpy Hc as a
function of effective shear stress τ∗ at different isotropic stresses (negative pressure) (−σ̂). (c) Derivative of the activation enthalpy over the isotropic stress [∂Hc/∂(−σ̂)]
as a function of τ∗.
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Fig. S5. Thermal expansion and thermal softening effects. (a) Zero-temperature strain state ε0, with fixed applied stress τapp. (b) Finite-temperature strain state εT, with
fixed applied stress τapp. (c) Negative isotropic stress −σ̂I and excess shear stress τex are needed for reaching the finite-temperature strain state εT at 0 K.
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(c) 400K: 96 cases    

NVT
MLE = (6.5 ± 1.3) × 108 s 1
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(d) 350K: 50 cases    

NVT
MLE = (6.1 ± 1.7) × 107 s 1

Fig. S6. Fraction P̃ (t) of configurations that have not cross-slipped as a function of t for applied stress of τapp = (−0.6,−0.8, 0.8)GPa, at temperature of (a) 500 K, (b)
450 K, (c) 400 K, (d) 350 K. The solid blue line is the fitted exponential distribution using the maximum-likelihood estimator (MLE) λMLE using the new NVT simulations (blue
dots), and the green filled region shows the 95 % confidence interval of the estimator. The solid orange line and dots in (a) presents the simulations without thermostat (NVE
ensemble), to demonstrate that the Nosé-Hoover thermostat (NVT ensemble) does not introduce additional thermal excitation and influence the thermally activated cross-slip,
see SI Text VII.
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Table S1. Fitting parameters for Eq. 14, 15, and 16

Cg
e -2.1077

Cc
e 1.1150

Dc
s 0.7218
A 1.9193
p 0.7711
q 1.4428
τ0 5.5949
K1 0.1592
K2 0.3620
K3 0.6994
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