Supplementary Materials for

Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir

Yanmei Hu,^{1,†} Eric M. Lewandowski,^{2,†} Haozhou Tan,^{1,†} Xiaoming Zhang,^{3,4} Ryan T. Morgan,²

Xiujun Zhang,² Lian M. C. Jacobs,² Shane G. Butler,² Maura V. Gongora,² John Choy,⁵ Xufang

Deng,^{3,4,*} Yu Chen,^{2,*} Jun Wang^{1,*}

¹Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State

University of New Jersey, NJ, 08854, United States

²Department of Molecular Medicine, Morsani College of Medicine, University of South Florida,

Tampa, FL, 33612, United States

³Department Physiological Sciences, College of Veterinary Medicine, Oklahoma State

University, Stillwater, OK, 74078, United States

⁴Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University,

Stillwater, OK, 74078, United States

⁵Department Biology, School of Arts and Sciences, the Catholic University of America,

Washington DC, 20064, United States

[†]These authors contributed equally to this work.

*Corresponding authors:

Jun Wang, Tel: 848-445-6488, email: junwang@pharmacy.rutgers.edu

Yu Chen, Tel: 813-974-7809, email: ychen1@usf.edu

Xufang Deng, Tel: 405-744-2158, email: xufang.deng@okstate.edu

This file includes:

Supplementary Materials

Figure S1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified SARS-CoV-2 M^{pro} WT and mutant proteins.

Figure S2. Thermal shift assay results of M^{pro} mutants.

Figure S3. Determination of K_i values for GC-376, PF-00835231 or Nirmatrelvir (PF-07321332) against SARS-CoV-2 WT and mutant proteins in FRET assay.

Figure S4. Plaque formation of passaged recombinant Nsp5 mutants.

Figure S5. X-ray crystal structures of H164N mutant.

Table S1. Enzymatic characterization, drug inhibition, and PDB code of SARS-CoV-2 M^{pro} mutants.

Table S2. Thermal shift assay results of nirmatrelvir with M^{pro} mutants.

 Table S3. X-ray Data Collection and Refinement Statistics.

Table S4. Protein concentrations used for the K_m/V_{max} , IC_{50} and K_i measurements.

Figure S1. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified SARS-CoV-2 M^{pro} WT and mutant proteins. 10 μ l of purified proteins were analyzed on 15% SDS-PAGE gel and the protein bands were visualized by staining with Coomassie blue. Protein standard (10-250 kD) was purchased from Bio-Rad, Cat #1610374.

Figure S2. Thermal shift assay results of M^{pro} mutants.

Figure S3. Determination of K_i values for GC-376, PF-00835231 or Nirmatrelvir (PF-07321332) against SARS-CoV-2 WT and mutant proteins in FRET assay. Curves were generated by fitting the initial velocity against various concentrations of the

compounds using Morrison plot (tight binding) in Prism 8 software. The results were the average of duplicates.

Figure S4. Plaque formation of passaged recombinant Nsp5 mutants. a Plaque formation by rNsp5^{WT}, rNsp^{S144M}-P3, and rNsp5^{H172Y}-P3 mutant viruses. **b** Plaque sizes were measured for each virus using ImageJ. Relative plaque sizes over WT are presented as mean ± SEM. Statistical significance of the size differences of each virus vs. rNsp5^{WT} virus was determined using the unpaired Kolmogorov-Smirnov test in Prism 9. ns: no significant.

Figure S5. X-ray crystal structures of H164N mutant. a Apo M^{pro} WT (white, PDB 7JP1) aligned with apo M^{pro} H164N (yellow, PDB 8DFN). **b** M^{pro} WT GC376 complex (white, PDB 6WTT) aligned with M^{pro} H164N GC376 complex (yellow, PDB 8DD1). WT hydrogen bonds are shown as black dashes, and mutant hydrogen bonds are shown as red dashes. GC-376 is shown in white for the WT structure and cyan for the mutant structure. Mutation is indicated with red text. Ser1 from an adjacent monomer is indicated with orange text.

Table S1. Enzymatic characterization, drug inhibition, and PDB code of SARS-CoV-2 Mpro mutants.

		Resistant mutants ider	ntified from the GISAIL	SARS-Cov-2 sequen	ce analysis			
M ^{pro} mutants	Occurrenceª	K _{cat} , V _{max} , K _m , K _{cat} /K _m	GC-376	С	Nirmatrelvir (PF-07321332)	PDB code		
wт		$\begin{array}{c} {\sf K}_{m} = 35.36 \pm 2.41 \; \mu M \\ {\sf V}_{max} = 38.97 \pm 0.91 \\ {\sf n}M/s \\ {\sf k}_{cat} = 0.39 \; {\sf S}^{-1} \\ {\sf k}_{cat}/{\sf K}_{m} = 11,000 \; {\sf S}^{-1} {\sf M}^{-1} \end{array}$	$\begin{array}{l} IC_{50} = 40.25 \pm 1.61 \text{ nM} \\ K_i = 15.50 \pm 1.28 \text{ nM} \end{array}$	$\begin{array}{l} \text{IC}_{50} = 15.09 \pm 0.80 \text{ nM} \\ \text{K}_i = 0.84 \pm 0.061 \text{ nM} \end{array}$	$IC_{50} = 26.03 \pm 1.65 \text{ nM}$ $K_i = 1.88 \pm 0.33 \text{ nM}$			
H41M	<mark>84</mark>	Enzymatically inactive						
H41T	27	Enzymatically inactive						
H41Y	19	Enzymatically inactive						
M49I	2,080	$\begin{array}{c} {\sf K}_{\rm m} = 21.43 \pm 3.29 \; \mu M \\ {\sf V}_{\rm max} = 19.90 \pm 0.94 \\ {\sf n}M/s \\ {\sf k}_{\rm cat} = 0.3980 \; {\sf S}^{-1} \\ {\sf k}_{\rm cat}/{\sf K}_{\rm m} = 18,572 \; {\sf S}^{-1}{\sf M}^{-1} \end{array}$	IC ₅₀ = 41.55 ± 0.75 nM	IC ₅₀ = 17.84 ± 0.64 nM	IC ₅₀ = 26.54 ± 1.05 nM			
M49T	78	$\begin{split} & K_m = 21.58 \pm 2.61 \; \mu M \\ & V_{max} = 14.47 \pm 1.08 \\ & nM/s \\ & k_{cat} = 0.2315 \; S^{-1} \\ & k_{cat}/K_m = 10,728 \; S^{-1}M^{-1} \end{split}$			$IC_{50} = 15.76 \pm 0.69 \text{ nM}$ $K_i = 2.00 \pm 0.08 \text{ nM}$			
M49L	73	$\begin{split} & K_{m} = 29.02 \pm 2.42 \; \mu M \\ & V_{max} = 34.77 \pm 1.93 \\ & nM/s \\ & k_{cat} = 0.5563 \; \mathrm{S}^{-1} \\ & k_{cat}/K_{m} = 19,170 \; \mathrm{S}^{-1} \mathrm{M}^{-1} \end{split}$			$IC_{50} = 18.50 \pm 0.69 \text{ nM}$ $K_i = 1.57 \pm 0.13 \text{ nM}$			
M49V	55	$\begin{split} & K_{m} = 32.35 \pm 1.65 \; \mu M \\ & V_{max} = 23.75 \pm 0.92 \\ & nM/s \\ & k_{cat} = 0.1900 \; S^{\text{-1}} \\ & k_{cat}/K_{m} = 5,873 \; S^{\text{-1}}M^{\text{-1}} \end{split}$			IC ₅₀ = 23.48 ± 0.39 nM			
M49 deletion	29	$\begin{split} & K_{m} = 30.87 \pm 3.16 \; \mu M \\ & V_{max} = 17.45 \pm 0.60 \\ & nM/s \\ & k_{cat} = 0.1745 \; S^{-1} \\ & k_{cat}/K_{m} = 5,653 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 32.99 ± 1.94 nM K _i = 8.02 ± 0.82 nM			
T135I	1,342	$\label{eq:km} \begin{array}{l} {K_{m}=27.08\pm2.76\ \mu M} \\ {V_{max}=29.28\pm0.97} \\ {n}{M}/{s} \\ {k_{cat}=0.2928\ {S}^{-1}} \\ {k_{cat}}/{K_{m}=10.812\ {S}^{-1}{M}^{-1}} \end{array}$	$\begin{array}{l} IC_{50} = 42.12 \pm 3.41 \text{ nM} \\ K_i = 15.38 \pm 1.13 \text{ nM} \end{array}$	$IC_{50} = 15.63 \pm 1.05 \text{ nM}$ K _i = 2.47 ± 0.19 nM	$IC_{50} = 21.86 \pm 0.85 \text{ nM}$ $K_i = 2.26 \pm 0.12 \text{ nM}$			
T135 deletion	40	$\label{eq:Km} \begin{array}{l} {{\rm K}_{\rm m}}{\rm =}41.78\pm3.99\;\mu M \\ {{\rm V}_{\rm max}}{\rm =}13.94\pm0.49 \\ {\rm n}M/s \\ {{\rm k}_{\rm cat}}{\rm =}0.0028\;{\rm S}^{-1} \\ {{\rm k}_{\rm cat}}/{{\rm K}_{\rm m}}{\rm =}67\;{\rm S}^{-1}{\rm M}^{-1} \end{array}$						

N142S	142	$\begin{split} & K_{m} = 22.24 \pm 3.09 \; \mu M \\ & V_{max} = 26.07 \pm 1.13 \\ & nM/s \\ & k_{cat} = 0.2607 \; S^{-1} \\ & k_{cat}/K_{m} = 11,722 \; S^{-1}M^{-1} \end{split}$	IC ₅₀ = 39.92 ± 1.36 nM	IC ₅₀ = 17.64 ± 1.18 nM	IC ₅₀ = 25.97 ± 1.14 nM	
N142D	76	$\begin{array}{l} {{K_{m}}=29.03\pm2.98\ \mu M} \\ {{V_{max}}=9.91\pm0.34\ nM/s} \\ {{k_{cat}}=0.0793\ S^{-1}} \\ {{k_{cat}}/{K_{m}}=2,731\ S^{-1}M^{-1}} \end{array}$	IC ₅₀ = 37.90 ± 1.67 nM	IC ₅₀ = 18.23 ± 0.49 nM	IC ₅₀ = 24.30 ± 1.46 nM	
N142L	34	$\begin{split} & K_{m} = 25.93 \pm 2.51 \; \mu M \\ & V_{max} = 24.94 \pm 1.57 \\ & nM/s \\ & k_{cat} = 0.3990 \; S^{-1} \\ & k_{cat}/K_{m} = 15,389 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 15.29 ± 0.42 nM	
N142I	18	$\begin{split} & K_{m} = 31.02 \pm 5.85 \; \mu M \\ & V_{max} = 32.86 \pm 2.10 \\ & nM/s \\ & k_{cat} = 0.5258 \; S^{-1} \\ & k_{cat}/K_{m} = 16,949 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 17.11 ± 0.82 nM	
N142H	13	$\begin{split} & K_{m} = 41.81 \pm 5.14 \; \mu M \\ & V_{max} = 29.84 \pm 1.35 \\ & nM/s \\ & k_{cat} = 0.2387 \; S^{-1} \\ & k_{cat}/K_{m} = 5,710 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 19.65 ± 0.32 nM	
N142M	9	$\begin{split} & K_m = 10.02 \pm 3.40 \; \mu M \\ & V_{max} = 10.88 \pm 0.96 \\ & nM/s \\ & k_{cat} = 0.1741 \; S^{-1} \\ & k_{cat}/K_m = 17,373 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 19.01 ± 0.62 nM	
N142K	8	$\begin{split} & K_{m} = 43.57 \pm 4.72 \; \mu M \\ & V_{max} = 20.14 \pm 0.81 \\ & nM/s \\ & k_{cat} = 0.3222 \; S^{-1} \\ & k_{cat}/K_{m} = 7,396 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 13.93 ± 0.39 nM	
N142T	4	$\begin{split} & K_{m} = 21.99 \pm 4.78 \; \mu M \\ & V_{max} = 13.66 \pm 0.92 \\ & nM/s \\ & k_{cat} = 0.2186 \; S^{-1} \\ & k_{cat}/K_{m} = 9.939 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 18.73 ± 0.96 nM	
N142Y	4	$\begin{split} & K_m = 20.84 \pm 2.45 \; \mu M \\ & V_{max} = 11.95 \pm 0.86 \\ & nM/s \\ & k_{cat} = 0.1912 \; S^{-1} \\ & k_{cat}/K_m = 9,175 \; S^{-1} M^{-1} \end{split}$			IC ₅₀ = 14.90 ± 1.26 nM	
N142 deletion	91	$\begin{split} & K_{m} = 31.35 \pm 3.46 \; \mu M \\ & V_{max} = 10.86 \pm 0.032 \\ & nM/s \\ & k_{cat} = 0.002172 \; S^{-1} \\ & k_{cat}/K_{m} = 69 \; S^{-1}M^{-1} \end{split}$				
S144L	52	$\begin{array}{l} {K_m} = 51.29 \pm 3.20 \ \mu M \\ {V_{max}} = 6.11 \pm 0.15 \ nM/s \\ {k_{cat}} = 0.0031 \ S^{-1} \\ {k_{cat}}/{K_m} = 60 \ S^{-1} M^{-1} \end{array}$	$IC_{50} = 1,812 \pm 86.1 \text{ nM}$ $K_i = 1,847 \pm 82.1 \text{ nM}$	$IC_{50} = 716.7 \pm 42.5 \text{ nM}$ K _i = 721.5 ± 41.0 nM	$\begin{array}{l} IC_{50} = 5,364 \pm 498.6 \ nM \\ K_i = 3,952 \pm 210.6 \ nM \end{array}$	Apo: 8DFE GC-376: 8DD9
S144T	17	$\begin{split} & K_{m} = 44.31 \pm 2.92 \; \mu M \\ & V_{max} = 16.85 \pm 0.42 \\ & nM/s \\ & k_{cat} = 0.0225 \; S^{-1} \\ & k_{cat}/K_{m} = 507 \; S^{-1}M^{-1} \end{split}$			IC_{50} = 353.7 ± 14.36 nM K _i = 207.1 ± 15.93 nM	
S144M	16	$\label{eq:Kappa} \begin{split} & K_{m} = 51.85 \pm 3.37 \; \mu M \\ & V_{max} = 28.36 \pm 0.72 \\ & nM/s \\ & k_{cat} = 0.0709 \; S^{-1} \\ & k_{cat}/K_{m} = 1,367 \; S^{-1}M^{-1} \end{split}$	K _i = 112.3 ± 8.57 nM	K _i = 37.18 ± 2.66 nM	$IC_{50} = 175.2 \pm 9.72 \text{ nM}$ K _i = 79.26 ± 4.13 nM	
L50F/ S144M		$\label{eq:Kappa} \begin{split} & {K}_{m} = 88.44 \pm 8.41 \; \mu M \\ & {V}_{max} = 15.32 \pm 0.68 \\ & {n} M/{s} \\ & {k}_{cat} = 0.10 \; {S}^{-1} \\ & {k}_{cat}/{K}_{m} = 1,155 \; {S}^{-1} {M}^{-1} \end{split}$	IC₅0 = 127.6 ± 19.6 nM	IC ₅₀ = 52.3 ± 7.7 nM	$IC_{50} = 147.4 \pm 21.9 \text{ nM}$ K _i = 33.84 ± 2.30 nM	

S144F	15	$\begin{split} & K_m = 45.11 \pm 3.45 \ \mu M \\ & V_{max} = 21.22 \pm 0.61 \\ & nM/s \\ & k_{cat} = 0.0849 \ S^{-1} \\ & k_{cat}/K_m = 1,882 \ S^{-1}M^{-1} \end{split}$	K _i = 86.60 ± 8.39 nM	K _i = 26.37 ± 3.81 nM	$IC_{50} = 133.3 \pm 5.61 \text{ nM}$ $K_i = 47.23 \pm 2.24 \text{ nM}$	
S144P	12	$\begin{array}{c} {K_m} = {2.78 \pm 0.58 \ \mu M} \\ {V_{max}} = {0.58 \pm 0.024} \\ {nM/s} \\ {k_{cat}} = {0.000058 \ S^{-1}} \\ {k_{cat}/K_m} = {21 \ S^{-1}M^{-1}} \end{array}$			IC ₅₀ > 10 μM K _i > 10 μM	
S144A	9	$\begin{split} & K_m = 25.66 \pm 1.76 \; \mu M \\ & V_{max} = 38.95 \pm 1.12 \\ & nM/s \\ & k_{cat} = 0.1558 \; S^{-1} \\ & k_{cat}/K_m = 6,072 \; S^{-1} M^{-1} \end{split}$	IC ₅₀ = 139.80 ± 9.29 nM K _i = 65.01 ± 4.76 nM	$IC_{50} = 39.43 \pm 1.14 \text{ nM}$ K _i = 12.61 ± 1.18 nM	IC ₅₀ = 171.1 ± 5.33 nM K _i = 36.43 ± 4.11 nM	Apo: 8D4L GC-376: 8D4M
S144W	7	$\begin{split} & K_{m} = 56.59 \pm 3.01 \; \mu M \\ & V_{max} = 15.55 \pm 0.39 \\ & nM/s \\ & k_{cat} = 0.0311 \; S^{-1} \\ & k_{cat}/K_{m} = 550 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 289.60 ± 14.78 nM K _i = 143.80 ± 9.79 nM	
S144E	6	$\begin{split} & K_{m} = 52.69 \pm 3.94 \; \mu M \\ & V_{max} = 23.31 \pm 0.69 \\ & nM/s \\ & k_{cat} = 0.0233 \; S^{-1} \\ & k_{cat}/K_{m} = 442 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 423.40 ± 29.31 nM K _i = 153.20 ± 9.74 nM	
S144V	4	$\begin{split} & K_{m} = 54.43 \pm 3.58 \; \mu M \\ & V_{max} = 17.12 \pm 0.45 \\ & nM/s \\ & k_{cat} = 0.0086 \; S^{-1} \\ & k_{cat}/K_{m} = 157 \; S^{-1}M^{-1} \end{split}$			$IC_{50} = 1,442 \pm 127.2 \text{ nM}$ $K_i = 858.9 \pm 73.57 \text{ nM}$	
S144H	5	$\begin{split} & K_{m} = 60.72 \pm 4.26 \; \mu M \\ & V_{max} = 16.45 \pm 0.48 \\ & nM/s \\ & k_{cat} = 0.0329 \; S^{-1} \\ & k_{cat}/K_{m} = 542 \; S^{-1}M^{-1} \end{split}$			$IC_{50} = 650.5 \pm 45.5 \text{ nM}$ $K_i = 402.2 \pm 19.92 \text{ nM}$	
S144Q	3	$\begin{split} & K_m = 64.17 \pm 4.49 \; \mu M \\ & V_{max} = 22.19 \pm 0.65 \\ & nM/s \\ & k_{cat} = 0.0222 \; S^{-1} \\ & k_{cat}/K_m = 346 \; S^{-1}M^{-1} \end{split}$			$IC_{50} = 831.2 \pm 48.6 \text{ nM}$ $K_i = 576.8 \pm 54.29 \text{ nM}$	
S144R	2	$\begin{split} & K_{m} = 62.54 \pm 5.09 \; \mu M \\ & V_{max} = 11.57 \pm 0.39 \\ & nM/s \\ & k_{cat} = 0.0014 \; S^{-1} \\ & k_{cat}/K_{m} = 23 \; S^{-1}M^{-1} \end{split}$			$\begin{array}{l} \text{IC}_{50} = 6,134 \pm 704.8 \text{ nM} \\ \text{K}_{i} = 2,190 \pm 204.9 \text{ nM} \end{array}$	
S144G	2	$\begin{split} & K_{m} = 53.52 \pm 4.72 \; \mu M \\ & V_{max} = 27.78 \pm 0.97 \\ & nM/s \\ & k_{cat} = 0.2222 \; S^{-1} \\ & k_{cat}/K_{m} = 4,152 \; S^{-1}M^{-1} \end{split}$	K _i = 77.16 ± 7.56 nM	K _i = 16.52 ± 1.58 nM	IC ₅₀ = 96.55 ± 1.93 nM K _i = 27.98 ± 2.76 nM	
S144Y	2	$\begin{split} & K_m = 55.15 \pm 4.39 \; \mu M \\ & V_{max} = 19.44 \pm 0.62 \\ & nM/s \\ & k_{cat} = 0.0778 \; S^{-1} \\ & k_{cat}/K_m = 1,410 \; S^{-1} M^{-1} \end{split}$	K _i = 60.87 ± 4.93 nM	K _i = 18.08 ± 1.79 nM	$IC_{50} = 61.49 \pm 3.18 \text{ nM}$ K _i = 34.09 ± 3.67 nM	
S144K	2	$\begin{array}{l} {K_{m}=3.88\pm0.31\ \mu M} \\ {V_{max}=0.80\pm0.041} \\ {nM/s} \\ {k_{cat}=0.00008\ S^{-1}} \\ {k_{cat}/K_{m}=21\ S^{-1}M^{-1}} \end{array}$			IC ₅₀ > 10 μM K _i > 10 μM	
S144D	1	$\begin{split} & {{K_m} = 27.60 \pm 2.62 \; \mu M} \\ & {V_{max} = 5.91 \pm 0.18 \; n M/s} \\ & {{k_{cat}} = 0.0035 \; S^{-1}} \\ & {{k_{cat}}/{K_m} = 128 \; S^{-1} M^{-1}} \end{split}$			IC ₅₀ = 8,532 ± 99.83 nM	
S144 deletion	84	$\label{eq:kappa} \begin{array}{c} {\sf K}_{\sf m} = 32.86 \pm 1.76 \; \mu M \\ {\sf V}_{\sf max} = 10.74 \pm 0.013 \\ {\sf nM/s} \\ {\sf k}_{\sf cat} = 0.0011 \; {\sf S}^{-1} \\ {\sf k}_{\sf cat}/{\sf K}_{\sf m} = 33 \; {\sf S}^{-1}{\sf M}^{-1} \end{array}$				

H163W	<mark>4,673</mark>	Enzymatically inactive				
H164N	4,682	$\begin{split} & K_{m} = 30.72 \pm 2.17 \; \mu M \\ & V_{max} = 19.88 \pm 0.69 \\ & nM/s \\ & k_{cat} = 0.0795 \; S^{-1} \\ & k_{cat}/K_{m} = 2,588 \; S^{-1}M^{-1} \end{split}$	$\begin{array}{l} \text{IC}_{50} = 126.3 \pm 6.53 \text{ nM} \\ \text{K}_{i} = 37.95 \pm 2.58 \text{ nM} \end{array}$	$\begin{array}{l} \text{IC}_{50} = 16.39 \pm 0.92 \text{ nM} \\ \text{K}_i = 3.45 \pm 0.45 \text{ nM} \end{array}$	IC ₅₀ = 32.85 ± 1.92 nM K _i = 3.58 ± 0.43 nM	Apo: 8DFN GC-376: 8DD1
H164 deletion		$\begin{split} K_m &= 36.98 \pm 4.14 \; \mu M \\ V_{max} &= 11.46 \pm 0.17 \\ &n M/s \\ k_{cat} &= 0.0011 \; S^{-1} \\ k_{cat}/K_m &= 31 \; S^{-1} M^{-1} \end{split}$				
M165Y	4,678	$\begin{split} & K_{m} = 38.42 \pm 2.32 \; \mu M \\ & V_{max} = 20.26 \pm 0.88 \\ & nM/s \\ & k_{cat} = 0.0101 \; S^{-1} \\ & k_{cat}/K_{m} = 264 \; S^{-1}M^{-1} \end{split}$	IC_{50} = 423.0 ± 22.3 nM K _i = 164.6 ± 14.69 nM	IC ₅₀ = 286.2 ± 15.99 nM K _i = 89.88 ± 8.11 nM	IC ₅₀ = 10,462 ± 497.7 nM K _i = 7,216 ± 330.1 nM	Nirmatrelvir 8DCZ
M165L	280	$\begin{split} K_m &= 20.60 \pm 4.24 \; \mu M \\ V_{max} &= 17.54 \pm 1.10 \\ nM/s \\ k_{cat} &= 0.2806 \; S^{-1} \\ k_{cat}/K_m &= 13,623 \; S^{-1}M^{-1} \end{split}$			IC_{50} = 22.62 ± 0.77 nM K _i =1.04 ± 0.079 nM	
M165I	101	$\begin{split} K_m &= 29.45 \pm 4.87 \; \mu M \\ V_{max} &= 14.90 \pm 0.82 \\ &n M/s \\ k_{cat} &= 0.2384 \; S^{-1} \\ k_{cat}/K_m &= 8,095 \; S^{-1} M^{-1} \end{split}$			$\begin{array}{l} \text{IC}_{50} = 27.38 \pm 2.09 \text{ nM} \\ \text{K}_{i} = 2.02 \pm 0.16 \text{ nM} \end{array}$	
M165V	16	$\begin{split} & K_m = 36.18 \pm 2.61 \; \mu M \\ & V_{max} = 33.75 \pm 1.44 \\ & nM/s \\ & k_{cat} = 0.3375 \; S^{-1} \\ & k_{cat}/K_m = 9,328 \; S^{-1} M^{-1} \end{split}$			IC ₅₀ = 23.96 ± 0.72 nM	
M165W	11	$\begin{array}{l} {K_{m}=9.41\pm0.92\ \mu M} \\ {V_{max}=1.34\pm0.066} \\ {nM/s} \\ {k_{cat}=0.0001\ S^{-1}} \\ {k_{cat}/K_{m}=12\ S^{-1}M^{-1}} \end{array}$			IC₅₀ > 10 μM	
M165K	8	$\begin{split} K_m &= 36.41 \pm 2.31 \; \mu M \\ V_{max} &= 10.09 \pm 0.33 \\ & nM/s \\ k_{cat} &= 0.0012 \; S^{-1} \\ k_{cat}/K_m &= 33 \; S^{-1}M^{-1} \end{split}$			IC₅₀ >10 μM	
M165T	7	$\begin{split} K_m &= 55.37 \pm 3.49 \; \mu M \\ V_{max} &= 29.33 \pm 0.74 \\ & nM/s \\ k_{cat} &= 0.0733 \; S^{-1} \\ k_{cat}/K_m &= 1,324 \; S^{-1} M^{-1} \end{split}$	$\begin{array}{l} \text{IC}_{50} = 239.6 \pm 9.64 \text{ nM} \\ \text{K}_i = 138.0 \pm 7.86 \text{ nM} \end{array}$	$\begin{array}{l} \text{IC}_{50} = 109.2 \pm 4.92 \text{ nM} \\ \text{K}_{i} = 33.58 \pm 1.78 \text{ nM} \end{array}$	$\begin{array}{l} IC_{50} = 94.68 \pm 5.94 \text{ nM} \\ K_i = 52.68 \pm 4.68 \text{ nM} \end{array}$	
M165R	5	$\begin{split} & K_m = 7.83 \pm 0.76 \ \mu M \\ & V_{max} = 2.32 \pm 0.11 \ n M/s \\ & k_{cat} = 0.0003 \ S^{-1} \\ & k_{cat}/K_m = 33 \ S^{-1}M^{-1} \end{split}$			IC₅₀ > 10 μM	
M165A	4	$\begin{split} & K_{m} = 50.82 \pm 3.76 \; \mu M \\ & V_{max} = 36.68 \pm 1.99 \\ & nM/s \\ & k_{cat} = 0.3668 \; S^{-1} \\ & k_{cat}/K_{m} = 7,218 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 23.28 ± 1.88 nM	
M165G	3	$\begin{split} & K_{m} = 56.00 \pm 4.91 \; \mu M \\ & V_{max} = 24.53 \pm 0.86 \\ & nM/s \\ & k_{cat} = 0.0245 \; S^{-1} \\ & k_{cat}/K_{m} = 438 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 243.5 ± 16.40 nM	
M165F	3	$\begin{split} & K_{m} = 74.74 \pm 3.47 \; \mu M \\ & V_{max} = 11.72 \pm 0.24 \\ & nM/s \\ & k_{cat} = 0.0059 \; S^{-1} \\ & k_{cat}/K_{m} = 78 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 1,336 ± 49.13 nM	

M165H	2	$\begin{split} & {{\rm K}_{\rm m}} = 14.71 \pm 1.92 \; \mu M \\ {{\rm V}_{\rm max}} = 3.49 \pm 0.13 \; n M/s \\ {{\rm k}_{\rm cat}} = 0.0003 \; {\rm S}^{-1} \\ {{\rm k}_{\rm cat}}/{{\rm K}_{\rm m}} = 20 \; {\rm S}^{-1} {\rm M}^{-1} \end{split}$			IC₅₀ > 10 µM	
M165P	2	$\begin{split} & K_m = 0.11 \pm 0.024 \; \mu M \\ & V_{max} = 1.02 \pm 0.10 \; n M/s \\ & k_{cat} = 0.0001 \; S^{-1} \\ & k_{cat}/K_m = 773 \; S^{-1} M^{-1} \end{split}$			IC₅₀ > 10 µM	
M165C	1	$\begin{array}{l} {{\rm K}_{\rm m}=46.24\pm2.54\ \mu M} \\ {{\rm V}_{\rm max}=33.39\pm0.96} \\ {{\rm n}M/s} \\ {{\rm k}_{\rm cat}=0.3339\ S^{-1}} \\ {{\rm k}_{\rm cat}/{\rm K}_{\rm m}=7,221\ S^{-1}M^{-1}} \end{array}$			IC ₅₀ = 24.84 ± 1.77 nM	
M165D	1	$\begin{split} & K_{m} = 68.73 \pm 4.65 \; \mu M \\ & V_{max} = 16.03 \pm 0.46 \\ & nM/s \\ & k_{cat} = 0.0178 \; S^{-1} \\ & k_{cat}/K_{m} = 258 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 147.6 ± 10.59 nM	
M165 deletion	67	$\begin{split} & K_m = 35.12 \pm 4.13 \; \mu M \\ & V_{max} = 2.30 \pm 0.095 \\ & nM/s \\ & k_{cat} = 0.0002 \; S^{-1} \\ & k_{cat}/K_m = 7 \; S^{-1}M^{-1} \end{split}$				
E166Q	4,682	$\begin{split} & K_m = 36.04 \pm 3.16 \; \mu M \\ & V_{max} = 50.18 \pm 1.55 \\ & nM/s \\ & k_{cat} = 0.4014 \; S^{-1} \\ & k_{cat}/K_m = 11,139 \; S^{-1}M^{-1} \end{split}$	$\begin{array}{l} \text{IC}_{50} = 52.31 \pm 2.06 \text{ nM} \\ \text{K}_{i} = 47.10 \pm 3.49 \text{ nM} \end{array}$	$IC_{50} = 14.88 \pm 0.47 \text{ nM}$ K _i = 4.45 ± 0.39 nM	$\begin{array}{l} \text{IC}_{50} = 27.87 \pm 2.11 \text{ nM} \\ \text{K}_{i} = 8.37 \pm 0.74 \text{ nM} \end{array}$	Apo: 8D4N
E166H	235	$\begin{split} & {K_m} = 55.96 \pm 5.14 \; \mu M \\ & {V_{max}} = 17.55 \pm 0.65 \\ & {nM/s} \\ & {k_{cat}} = 0.0351 \; {S^{-1}} \\ & {k_{cat}/K_m} = 627 \; {S^{-1}M^{-1}} \end{split}$			IC ₅₀ = 9,598 ± 1,675 nM	
E166G	16	$\begin{split} & K_{m} = 32.90 \pm 3.16 \; \mu M \\ & V_{max} = 24.39 \pm 0.98 \\ & nM/s \\ & k_{cat} = 0.04878 \; S^{-1} \\ & k_{cat}/K_{m} = 1,483 \; S^{-1}M^{-1} \end{split}$	K _i = 85.00 ± 8.16 nM	K _i = 13.54 ± 1.69 nM	$IC_{50} = 92.15 \pm 6.49 \text{ nM}$ K _i = 30.89 ± 2.55 nM	
E166K	10	$\begin{split} & K_{m} = 50.12 \pm 4.68 \; \mu M \\ & V_{max} = 25.93 \pm 1.17 \\ & nM/s \\ & k_{cat} = 0.02593 \; S^{-1} \\ & k_{cat}/K_{m} = 517 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 1,994 ± 175.1 nM	
E166V	8	$\begin{split} & K_m = 50.25 \pm 2.81 \; \mu M \\ & V_{max} = 25.01 \pm 0.54 \\ & nM/s \\ & k_{cat} = 0.0572 \; S^{-1} \\ & k_{cat}/K_m = 1,138 \; S^{-1} M^{-1} \end{split}$	K _i = 584.4 ± 40.27 nM	K _i = 666.5 ± 73.39 nM	IC₅0 > 10,000 nM Ki = 10,384 ± 673.3 nM	
E166A	5	$\begin{split} & K_m = 47.05 \pm 2.49 \; \mu M \\ & V_{max} = 17.16 \pm 0.18 \\ & nM/s \\ & k_{cat} = 0.0686 \; S^{-1} \\ & k_{cat}/K_m = 1,459 \; S^{-1} M^{-1} \end{split}$	K _i = 139.6 ± 14.22 nM	K _i = 22.64 ± 2.49 nM	$\begin{array}{l} IC_{50} = 153.0 \pm 10.28 \ nM \\ K_i = 89.29 \pm 6.47 \ nM \end{array}$	
E166L	3	$\begin{split} & K_{m} = 18.73 \pm 0.99 \; \mu M \\ & V_{max} = 2.16 \pm 0.034 \\ & nM/s \\ & k_{cat} = 0.000432 \; S^{-1} \\ & k_{cat}/K_{m} = 23 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 214.2 ± 18.57 nM	
E166Y	2	$\label{eq:km} \begin{split} & {\rm K_m} = 27.92 \pm 1.67 \; \mu M \\ & {\rm V_{max}} = 11.00 \pm 0.43 \\ & {\rm nM/s} \\ & {\rm k_{cat}} = 0.011 \; {\rm S^{-1}} \\ & {\rm k_{cat}/K_m} = 394 \; {\rm S^{-1}M^{-1}} \end{split}$			IC ₅₀ = 3,711 ± 283.1 nM	
E166I	1	$\begin{array}{l} {{K_m} = 37.82 \pm 3.77 \; \mu M} \\ {{V_{max}} = 2.00 \pm 0.14 \; nM/s} \\ {{k_{cat}} = 0.0002 \; {S^{-1}} \\ {{k_{cat}}/{K_m} = 5 \; {S^{-1}}{M^{-1}}} \end{array}$			IC ₅₀ > 10,000 nM	

E166 deletion	67	$\begin{array}{c} {\sf K}_{\rm m} = 33.97 \pm 2.46 \ \mu M \\ {\sf V}_{\rm max} = 1.92 \pm 0.048 \\ {\sf nM/s} \\ {\sf k}_{\rm cat} = 0.0002 \ {\sf S}^{-1} \\ {\sf k}_{\rm cat}/{\sf K}_{\rm m} = 6 \ {\sf S}^{-1} {\sf M}^{-1} \end{array}$				
H172T	99	$\begin{split} & K_m = 51.84 \pm 3.01 \; \mu M \\ & V_{max} = 6.29 \pm 0.14 \; n M/s \\ & k_{cat} = 0.0006 \; S^{-1} \\ & k_{cat}/K_m = 12 \; S^{-1} M^{-1} \end{split}$	IC ₅₀ > 10,000 nM K _i = 6,842 ± 657.1 nM	IC ₅₀ = 7,888 ± 420 nM K _i = 1,293 ± 95.15 nM	IC ₅₀ > 10,000 nM K _i = 12,672 ± 545.4 nM	
H172Y	21	$\begin{array}{l} {{\rm K}_{\rm m}}=39.20\pm2.83\ \mu M\\ {{\rm V}_{\rm max}}=15.26\pm0.39\\ {{\rm n}}M/s\\ {{\rm k}_{\rm cat}}=0.0305\ {{\rm S}^{-1}}\\ {{\rm k}_{\rm cat}}/{{\rm K}_{\rm m}}=790\ {{\rm S}^{-1}}{{\rm M}^{-1}} \end{array}$	$\begin{array}{c} \text{IC}_{50} = 449.2 \pm 27.81 \\ \text{nM} \\ \text{K}_i = 432.5 \pm 17.40 \text{ nM} \end{array} \begin{array}{c} \text{IC}_{50} = 126.4 \pm 5.64 \text{ nM} \\ \text{K}_i = 57.06 \pm 5.79 \text{ nM} \end{array}$		$\begin{array}{l} IC_{50} = 279.3 \pm 23.09 \ nM \\ K_i = 275.1 \pm 10.83 \ nM \end{array}$	Apo: 8D4J GC-376: 8D4K
H172E	16	$\begin{split} & K_m = 13.43 \pm 0.88 \; \mu M \\ & V_{max} = 3.23 \pm 0.12 \; n M/s \\ & k_{cat} = 0.000323 \; S^{\text{-1}} \\ & k_{cat}/K_m = 24 \; S^{\text{-1}} M^{\text{-1}} \end{split}$			IC ₅₀ > 10,000 nM	
H172Q	12	$\begin{split} & K_m = 49.61 \pm 4.41 \; \mu M \\ & V_{max} = 21.53 \pm 0.74 \\ & nM/s \\ & k_{cat} = 0.1722 \; S^{-1} \\ & k_{cat}/K_m = 3,472 \; S^{-1} M^{-1} \end{split}$	K _i = 214.4 ± 11.36 nM	K _i = 42.66 ± 3.56 nM	IC ₅₀ = 152.1 ± 8.01 nM K _i = 70.54 ± 3.90 nM	
H172D	10	$\begin{split} & K_{m} = 53.01 \pm 4.79 \; \mu M \\ & V_{max} = 13.87 \pm 0.50 \\ & nM/s \\ & k_{cat} = 0.0277 \; S^{-1} \\ & k_{cat}/K_{m} = 523 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 266.1 ± 24.8 nM K _i = 170.6 ± 11.30 nM	
H172L	8	$\begin{array}{l} {{K_m} = 54.89 \pm 2.08 \; \mu M} \\ {{V_{max}} = 5.99 \pm 0.11 \; nM/s} \\ {{k_{cat}} = 0.0012 \; {S^{-1}} \\ {{k_{cat}}/{K_m}} = 22 \; {S^{-1}} {M^{-1}} \end{array}$			IC ₅₀ = 3,380 ± 295.48 nM K _i = 3,135 ± 227.7 nM	
H172M	7	$\begin{split} & K_{m} = 60.05 \pm 3.65 \; \mu M \\ & V_{max} = 19.62 \pm 0.49 \\ & n M/s \\ & k_{cat} = 0.0196 \; \mathrm{S}^{-1} \\ & k_{cat} / K_{m} = 327 \; \mathrm{S}^{-1} \mathrm{M}^{-1} \end{split}$			$IC_{50} = 699.0 \pm 27.0 \text{ nM}$ $K_i = 290.6 \pm 18.98 \text{ nM}$	
H172A	7	$\begin{split} & K_{m} = 56.15 \pm 3.40 \; \mu M \\ & V_{max} = 27.33 \pm 0.67 \\ & nM/s \\ & k_{cat} = 0.0547 \; S^{-1} \\ & k_{cat}/K_{m} = 973 \; S^{-1}M^{-1} \end{split}$			$\begin{array}{l} \text{IC}_{50} = 374.7 \pm 30.5 \text{ nM} \\ \text{K}_{i} = 213.8 \pm 13.47 \text{ nM} \end{array}$	
H172F	5	$\begin{split} & K_m = 66.53 \pm 2.68 \ \mu M \\ & V_{max} = 29.64 \pm 0.51 \\ & nM/s \\ & k_{cat} = 0.0741 \ S^{-1} \\ & k_{cat}/K_m = 1,114 \ S^{-1}M^{-1} \end{split}$	K _i = 188.5 ± 12.41 nM	K _i = 36.00 ± 2.59 nM	$IC_{50} = 212.2 \pm 9.69 \text{ nM}$ K _i = 46.60 ± 5.59 nM	
H172I	5	$\begin{split} & K_{m} = 61.31 \pm 4.27 \; \mu M \\ & V_{max} = 58.34 \pm 1.68 \\ & nM/s \\ & k_{cat} = 0.00583 \; S^{-1} \\ & k_{cat}/K_{m} = 95 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ > 10 μM K _i > 10 μM	
H172V	5	$\begin{split} & K_m = 37.81 \pm 1.79 \; \mu M \\ & V_{max} = 7.14 \pm 0.12 \; n M/s \\ & k_{cat} = 0.0014 \; S^{-1} \\ & k_{cat}/K_m = 38 \; S^{-1} M^{-1} \end{split}$			IC₅₀ > 10 μM	
H172N	5	$\begin{split} & K_{m} = 62.46 \pm 2.12 \; \mu M \\ & V_{max} = 15.33 \pm 0.22 \\ & n M / s \\ & k_{cat} = 0.0051 \; S^{-1} \\ & k_{cat} / K_{m} = 82 \; S^{-1} M^{-1} \end{split}$			$\begin{split} & \text{IC}_{50} = 1,827 \pm 337.24 \\ & \text{nM} \\ & \text{K}_{\text{i}} = 1,613 \pm 60.97 \text{ nM} \end{split}$	
H172S	4	$\begin{split} & K_m = 65.48 \pm 2.33 \; \mu M \\ & V_{max} = 15.5 \pm 0.23 \; n M/s \\ & k_{cat} = 0.0052 \; S^{-1} \\ & k_{cat}/K_m = 79 \; S^{-1}M^{-1} \end{split}$			$\begin{array}{l} IC_{50} = 5,650 \pm 180.8 \ nM \\ K_i = 2,204 \pm 142.8 \ nM \end{array}$	

H172K	3	$\begin{split} & K_{m} = 55.53 \pm 2.57 \; \mu M \\ & V_{max} = 16.12 \pm 0.29 \\ & nM/s \\ & k_{cat} = 0.0107 \; S^{-1} \\ & k_{cat}/K_{m} = 194 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 1,030 ± 50.53 nM	
H172R	1	$\begin{array}{c} {K_m} = 1.09 \pm 0.15 \ \mu M \\ {V_{max}} = 1.19 \pm 0.037 \\ nM/s \\ {k_{cat}} = 0.00036 \ S^{-1} \\ {k_{cat}/K_m} = 262 \ S^{-1} M^{-1} \end{array}$			IC₅₀ >10 μM	
H172G	1	$\begin{split} & {K_m} = 74.20 \pm 2.31 \; \mu M \\ & {V_{max}} = 9.95 \pm 0.14 \; n M/s \\ & {k_{cat}} = 0.0119 \; S^{-1} \\ & {k_{cat}}/{K_m} = 161 \; S^{-1} M^{-1} \end{split}$			IC ₅₀ = 810.2 ± 19.30 nM	
H172C	1	$\begin{split} & K_{m} = 66.79 \pm 3.00 \; \mu M \\ & V_{max} = 12.59 \pm 0.24 \\ & nM/s \\ & k_{cat} = 0.0094 \; S^{\text{-1}} \\ & k_{cat}/K_{m} = 141 \; S^{\text{-1}}M^{\text{-1}} \end{split}$			IC ₅₀ = 3,056 ± 158.3 nM	
H172 deletion	59	$\begin{array}{l} {K_m} = {39.14 \pm 0.23 \ \mu M} \\ {V_{max}} = {6.81 \pm 0.39 \ nM/s} \\ {k_{cat}} = {0.0007 \ S^{-1}} \\ {k_{cat}/K_m} = {17 \ S^{-1}M^{-1}} \end{array}$				
Q189K	168	$\begin{split} & K_{m} = 41.45 \pm 2.66 \; \mu M \\ & V_{max} = 39.78 \pm 1.01 \\ & nM/s \\ & k_{cat} = 0.16 \; S^{-1} \\ & k_{cat}/K_{m} = 3,800 \; S^{-1}M^{-1} \end{split}$	$IC_{50} = 73.65 \pm 4.09 \text{ nM}$ K _i = 64.09 ± 3.45 nM	$\begin{array}{l} IC_{50} = 37.23 \pm 0.83 \text{ nM} \\ K_i = 14.35 \pm 1.65 \text{ nM} \end{array}$	IC ₅₀ = 39.31 ± 1.92 nM K _i = 14.60 ± 1.53 nM	
Q189F	39	$\begin{split} & K_{m} = 26.02 \pm 2.40 \; \mu M \\ & V_{max} = 19.49 \pm 1.16 \\ & nM/s \\ & k_{cat} = 0.3118 \; S^{-1} \\ & k_{cat}/K_{m} = 11,985 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 34.02 ± 1.47 nM	
Q189R	27	$\begin{split} & K_{m} = 42.63 \pm 2.72 \; \mu M \\ & V_{max} = 21.84 \pm 0.52 \\ & nM/s \\ & k_{cat} = 0.1092 \; S^{-1} \\ & k_{cat}/K_{m} = 2,562 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 37.82 ± 1.16 nM	
Q189H	20	$\begin{split} & K_{m} = 42.83 \pm 3.24 \; \mu M \\ & V_{max} = 18.05 \pm 0.51 \\ & nM/s \\ & k_{cat} = 0.1444 \; S^{-1} \\ & k_{cat}/K_{m} = 3,371 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 32.71 ± 1.04 nM	
Q189L	19	$\begin{split} & K_{m} = 47.00 \pm 3.83 \; \mu M \\ & V_{max} = 15.42 \pm 0.48 \\ & nM/s \\ & k_{cat} = 0.0617 \; S^{\text{-1}} \\ & k_{cat}/K_{m} = 1,312 \; S^{\text{-1}}M^{\text{-1}} \end{split}$			IC ₅₀ = 39.25 ± 1.47 nM	
Q189P	18	$\begin{split} & K_{m} = 29.57 \pm 2.25 \; \mu M \\ & V_{max} = 19.07 \pm 0.97 \\ & n M /s \\ & k_{cat} = 0.3051 \; S^{-1} \\ & k_{cat} / K_{m} = 10,319 \; S^{-1} M^{-1} \end{split}$			IC ₅₀ = 14.08 ± 0.70 nM	
Q189S	8	$\begin{split} & K_{m} = 27.97 \pm 3.26 \; \mu M \\ & V_{max} = 17.28 \pm 0.66 \\ & nM/s \\ & k_{cat} = 0.1728 \; S^{-1} \\ & k_{cat}/K_{m} = 6,178 \; S^{-1}M^{-1} \end{split}$			IC ₅₀ = 25.34 ± 1.72 nM	
Q189E	8	$\begin{array}{l} {\sf K}_{m} = 23.03 \pm 1.71 \; \mu M \\ {\sf V}_{max} = 29.75 \pm 1.91 \\ {\sf n}M/s \\ {\sf k}_{cat} = 0.4760 \; S^{-1} \\ {\sf k}_{cat}/{\sf K}_{m} = 20,669 \; S^{-1} M^{-1} \end{array}$	IC₅₀ = 80.19 ± 6.31 nM K _i = 36.86 ± 2.97 nM	$IC_{50} = 42.34 \pm 3.07 \text{ nM}$ $K_i = 1.34 \pm 0.14 \text{ nM}$	$IC_{50} = 49.71 \pm 3.19 \text{ nM}$ $K_i = 4.51 \pm 0.29 \text{ nM}$	
Q189 deletion	1093	$\begin{split} & K_{m} = 59.36 \pm 5.73 \; \mu M \\ & V_{max} = 11.67 \pm 0.14 \\ & nM/s \\ & k_{cat} = 0.0039 \; S^{-1} \\ & k_{cat}/K_{m} = 66 \; S^{-1}M^{-1} \end{split}$				

Q192T	187	$\begin{split} & K_{m} = 32.94 \pm 2.96 \; \mu M \\ & V_{max} = 19.94 \pm 0.62 \\ & nM/s \\ & k_{cat} = 0.0399 \; S^{-1} \\ & k_{cat}/K_{m} = 1,200 \; S^{-1}M^{-1} \end{split}$	IC ₅₀ = 237.2 ± 17.12 nM K _i = 119.7 ± 6.57 nM	IC ₅₀ = 185.5 ± 13.90 nM K _i = 71.40 ± 4.26 nM	$IC_{50} = 102.6 \pm 5.52 \text{ nM}$ K _i = 45.69 ± 4.43 nM	GC-376: 8DGB
Q192K	63	$\begin{split} & K_{m} = 38.29 \pm 2.05 \; \mu M \\ & V_{max} = 12.21 \pm 0.23 \\ & nM/s \\ & k_{cat} = 0.0122 \; \mathrm{S^{-1}} \\ & k_{cat}/K_{m} = 319 \; \mathrm{S^{-1}M^{-1}} \end{split}$	$\begin{array}{c} IC_{50} = 303.6 \pm 27.42 \\ nM \\ K_i = 430.3 \pm 22.35 \ nM \end{array}$	$\begin{array}{l} \text{IC}_{50} = 324.0 \pm 18.93 \\ \text{nM} \\ \text{K}_{\text{I}} = 299.5 \pm 23.79 \text{ nM} \end{array}$	IC ₅₀ = 219.1 ± 9.62 nM K _i = 88.90 ± 4.88 nM	
Q192S	29	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\begin{array}{l} IC_{50} = 183.9 \pm 8.16 \text{ nM} \\ K_i = 82.32 \pm 4.23 \text{ nM} \end{array}$	$IC_{50} = 217.3 \pm 10.59 \text{ nM}$ $K_i = 75.56 \pm 8.45 \text{ nM}$	
Q192L	12	$ \begin{array}{c} {{K_m} = 62.36 \pm 3.76 \; \mu M} \\ {{V_{max}} = 31.72 \pm 0.79} \\ {nM/s} \\ {{k_{cat}} = 0.1586 \; {S^{-1}} \\ {{k_{cat}}/{K_m}} = 2,543 \; {S^{-1}{M^{-1}}} \end{array} } \hspace{1.5cm} K_i = 165.3 \pm 17.86 \; nM \\ \end{array} \hspace{1.5cm} K_i = 25.39 \pm 1.81 \; nM \\ \end{array} $		$\begin{array}{l} \text{IC}_{50} = 121.9 \pm 5.51 \text{ nM} \\ \text{K}_{i} = 70.99 \pm 7.02 \text{ nM} \end{array}$		
Q192R	12	$\begin{split} & K_{m} = 59.39 \pm 4.71 \; \mu M \\ & V_{max} = 17.70 \pm 0.57 \\ & nM/s \\ & k_{cat} = 0.0283 \; S^{-1} \\ & k_{cat}/K_{m} = 477 \; S^{-1} M^{-1} \end{split}$			IC ₅₀ = 229.6 ± 11.54 nM	
Q192N	9	$\begin{array}{l} {{K_m} = 54.93 \pm 3.37 \; \mu M} \\ {V_{max} = 9.19 \pm 0.22 \; nM/s} \\ {{k_{cat}} = 0.0408 \; {S^{-1}} \\ {{k_{cat}}/{K_m} = 744 \; {S^{-1}}{M^{-1}}} \end{array}$			IC ₅₀ = 73.69 ± 4.96 nM	
Q192A	9	$\begin{split} & K_{m} = 59.42 \pm 3.02 \; \mu M \\ & V_{max} = 35.25 \pm 0.0.73 \\ & nM/s \\ & k_{cat} = 0.1058 \; S^{-1} \\ & k_{cat}/K_{m} = 1,780 \; S^{-1}M^{-1} \end{split}$	K _i = 206.8 ± 14.64 nM	K _i = 62.84 ± 5.63 nM	$\begin{array}{l} \text{IC}_{50} = 140.7 \pm 3.93 \text{ nM} \\ \text{K}_{i} = 58.10 \pm 5.67 \text{ nM} \end{array}$	
Q192I	8	$\begin{split} K_m &= 52.72 \pm 4.87 \; \mu M \\ V_{max} &= 21.47 \pm 0.78 \\ nM/s \\ k_{cat} &= 0.1031 \; S^{-1} \\ k_{cat}/K_m &= 1,955 \; S^{-1} M^{-1} \end{split}$	K _i = 179.8 ± 10.86 nM	K _i = 41.16 ± 5.37 nM	$\begin{array}{l} \text{IC}_{50} = 109.9 \pm 2.45 \text{ nM} \\ \text{K}_{i} = 43.53 \pm 3.13 \text{ nM} \end{array}$	
Q192P	8	$\begin{split} & K_{m} = 55.88 \pm 3.74 \; \mu M \\ & V_{max} = 20.34 \pm 0.55 \\ & nM/s \\ & k_{cat} = 0.0814 \; S^{-1} \\ & k_{cat}/K_{m} = 1,456 \; S^{-1}M^{-1} \end{split}$	K _i = 217.1 ± 19.24 nM	K _i = 80.95 ± 8.68 nM	$\begin{array}{l} IC_{50} = 135.1 \pm 7.17 \text{ nM} \\ K_i = 76.19 \pm 5.66 \text{ nM} \end{array}$	
Q192G	7	$\begin{split} & K_m = 68.11 \pm 2.55 \; \mu M \\ & V_{max} = 20.69 \pm 0.33 \\ & nM/s \\ & k_{cat} = 0.0414 \; S^{-1} \\ & k_{cat}/K_m = 608 \; S^{-1}M^{-1} \end{split}$	K _i = 277.6 ± 19.21 nM	K _i = 78.78 ± 7.01 nM	$IC_{50} = 319.1 \pm 12.73 \text{ nM}$ $K_i = 106.3 \pm 5.84 \text{ nM}$	
Q192H	7	$\begin{split} K_m &= 60.51 \pm 3.86 \; \mu M \\ V_{max} &= 27.12 \pm 0.71 \\ & nM/s \\ k_{cat} &= 0.0814 \; S^{-1} \\ k_{cat}/K_m &= 1,345 \; S^{-1} M^{-1} \end{split}$	K _i = 237.2 ± 21.98 nM	K _i = 61.19 ± 3.93 nM	$\begin{array}{l} IC_{50} = 169.4 \pm 7.27 \text{ nM} \\ K_i = 80.69 \pm 7.33 \text{ nM} \end{array}$	
Q192Y	7	$\begin{split} & K_m = 9.18 \pm 0.62 \; \mu M \\ & V_{max} = 2.64 \pm 0.12 \; n M/s \\ & k_{cat} = 0.0004 \; S^{-1} \\ & k_{cat}/K_m = 43 \; S^{-1} M^{-1} \end{split}$			IC₅₀ >10 μM	
Q192V	6	$\begin{split} & K_m = 59.77 \pm 3.01 \; \mu M \\ & V_{max} = 18.36 \pm 0.38 \\ & nM/s \\ & k_{cat} = 0.0734 \; S^{-1} \\ & k_{cat}/K_m = 1,229 \; S^{-1} M^{-1} \end{split}$	IC ₅₀ = 136.1 ± 5.66 nM K _i = 122.0 ± 9.62 nM	IC ₅₀ = 82.17 ± 2.54 nM K _i = 78.46 ± 6.47 nM	$\begin{array}{l} \text{IC}_{50} = 95.58 \pm 4.23 \text{ nM} \\ \text{K}_{i} = 30.87 \pm 1.12 \text{ nM} \end{array}$	
Q192W	5	$\begin{split} & K_{m} = 50.15 \pm 4.32 \; \mu M \\ & V_{max} = 24.00 \pm 0.80 \\ & nM/s \\ & k_{cat} = 0.0691 \; S^{-1} \\ & k_{cat}/K_{m} = 1,378 \; S^{-1}M^{-1} \end{split}$	K _i = 149.0 ± 12.78 nM	Ki = 32.88 ± 2.89 nM	$IC_{50} = 65.94 \pm 2.54 \text{ nM}$ K _i = 43.65 ± 2.32 nM	

Q192E	5	$\begin{split} & K_{m} = 60.37 \pm 3.88 \; \mu M \\ & V_{max} = 32.98 \pm 0.87 \\ & nM/s \\ & k_{cat} = 0.0660 \; S^{-1} \\ & k_{cat}/K_{m} = 1,093 \; S^{-1}M^{-1} \end{split}$	K _i = 296.1 ± 21.17 nM	K _i = 39.21 ± 2.92 nM	$IC_{50} = 193.1 \pm 9.27 \text{ nM}$ $K_i = 114.4 \pm 10.82 \text{ nM}$	
Q192C	3	$\begin{split} & K_m = 55.53 \pm 3.46 \; \mu M \\ & V_{max} = 21.80 \pm 0.54 \\ & nM/s \\ & k_{cat} = 0.0872 \; S^{-1} \\ & k_{cat}/K_m = 1,570 \; S^{-1} M^{-1} \end{split}$	K _i = 147.7 ± 16.25 nM	K _i = 27.98 ± 1.58 nM	$IC_{50} = 96.82 \pm 2.40 \text{ nM}$ K _i = 54.12 ± 2.79 nM	
Q192D	3	$\begin{split} & K_{m} = 68.35 \pm 5.76 \; \mu M \\ & V_{max} = 18.58 \pm 0.67 \\ & n M/s \\ & k_{cat} = 0.0372 \; \mathrm{S}^{-1} \\ & k_{cat} / K_{m} = 544 \; \mathrm{S}^{-1} \mathrm{M}^{-1} \end{split}$			IC ₅₀ = 271.5 ± 17.63 nM	
Q192F	2	$\begin{split} & K_m = 54.41 \pm 4.34 \; \mu M \\ & V_{max} = 42.44 \pm 1.35 \\ & nM/s \\ & k_{cat} = 0.1698 \; S^{-1} \\ & k_{cat}/K_m = 3,120 \; S^{-1} M^{-1} \end{split}$	K _i = 137.5 ± 11.09 nM	K _i = 21.41 ± 2.28 nM	$IC_{50} = 92.68 \pm 6.53 \text{ nM}$ $K_i = 85.50 \pm 12.51 \text{ nM}$	
Q192 deletion	1070	$\begin{array}{l} {{K_m} = 34.20 \pm 4.24 \; \mu M} \\ {{V_{max}} = 3.00 \pm 0.13 \; nM/s} \\ {{k_{cat}} = 0.0008 \; {S^{-1}} \\ {{k_{cat}}/{K_m}} = 22 \; {S^{-1}}{M^{-1}} \end{array}$				
Q189E/ H172Y	0	$\begin{split} & K_m = 61.34 \pm 4.83 \; \mu M \\ & V_{max} = 24.76 \pm 0.80 \\ & nM/s \\ & k_{cat} = 0.0619 \; S^{-1} \\ & k_{cat}/K_m = 1,009 \; S^{-1} M^{-1} \end{split}$	$\begin{split} IC_{50} &= 652.7 \pm 30.98 \\ nM \\ K_i &= 618.2 \pm 36.42 \; nM \end{split}$	$\begin{array}{l} \text{IC}_{50} = 169.9 \pm 11.54 \\ \text{nM} \\ \text{K}_{i} = 83.84 \pm 4.61 \text{ nM} \end{array}$	$\begin{array}{l} \text{IC}_{50} = 603.7 \pm 17.42 \text{ nM} \\ \text{K}_{i} = 528.5 \pm 47.25 \text{ nM} \end{array}$	

^aThe occurrence of mutation was analyzed using the GISAID CoVsurver as of September 14th, 2022 (latest update on July 7, 2022). k_{cat}, V_{max}, K_m, k_{cat}/K_m, IC₅₀ and K_i values are the average of two repeats. Enzymatically inactive mutants are colored in yellow. M^{pro} mutants that have comparable enzymatic activity as the WT (k_{cat}/K_m <10-fold change) and are resistant to nirmatrelvir (K_i > 10-fold increase) are colored in red.

nirmatrelvir (µM)	wт	S144M	S144F	S144A	S144G	∆T _m (°C S144Y) M165T	E166A	E166G	H172Q	H172F
200	19.95	12.91	16.55	15.96	15.16	17.05	15.40	12.34	17.34	12.21	12.90
60	19.07	10.45	13.67	14.39	12.00	14.10	12.60	10.23	14.71	9.26	10.94
20	17.97	6.81	10.94	12.94	8.35	11.23	9.94	6.05	11.25	5.33	8.41
6	11.65	1.26	7.71	8.71	1.82	8.49	5.95	2.90	7.34	1.19	5.47
2	9.40	0.56	1.68	5.65	0.42	3.58	1.40	1.41	2.65	0.28	1.47
0.6	2.33	0.28	0.56	1.79	0.14	0.28	0.28	1.20	1.12	-0.07	0.49
0.2	0.68	0.14	0.21	0.31	-0.14	-0.14	-0.07	0.00	0.06	-0.14	0.14
nirmatrelvir	∆T _m (°C)										
(µM)	Q192T	Q192S	Q192L	Q192A	Q192I	Q192P	Q192H	Q192V	Q192W	Q192C	Q192F
200	15.36	15.01	16.49	13.53	17.10	16.20	16.17	16.95	15.49	15.74	14.94
60	12.28	11.99	12.89	12.13	13.67	13.75	12.81	14.43	13.17	11.80	13.43
20	9.12	8.42	9.13	8.74	10.94	10.45	8.89	11.35	9.89	8.12	10.00
6	4.98	3.65	5.55	5.50	5.54	5.75	1.82	7.22	6.46	4.77	6.41
2	2.03	1.75	2.23	2.28	1.33	1.40	0.56	2.24	2.04	1.65	2.35
0.6	0.77	0.70	0.71	0.91	0.49	0.28	0.28	0.63	0.10	0.00	0.95
0.2	-0.07	0.28	0.07	0 44	0 14	0 14	0.07	0 14	0.03	0.02	0.39

Table S2. Thermal shift assay results of nirmatrelvir with M^{pro} mutants.

Table S3. X-ray Data Collection and Refinement Statistics

Data Collection											
Structure (PDB ID)	<u>8D4J</u>	<u>8D4K</u>	<u>8D4L</u>	<u>8D4M</u>	<u>8D4N</u>	8DFN	8DD1	8DFE	8DD9	8DGB	8DCZ
Mutation	H172Y	H172Y	S144A	S144A	E166Q	H164N	H164N	S144L	S144L	Q192T	M165Y
Ligand	Apo	GC376	Apo	GC376	Apo	Apo	GC376	Apo	GC376	GC376	Nirmatrelvir
Space Group	P21	C2	P21	C2	P21	P21	C2	C2	C2	P1	P21
Cell Dimensions											
a, b, c (Å)	44.962	114.549	44.625	114.134	44.816	44.668	113.899	113.554	113.707	47.03	45.566
	53.474	53.111	53.707	53.653	53.687	53.738	53.55	54.075	53.153	53.241	53.786
	114.185	45.643	114.685	45.457	114.532	114.781	45.321	44.615	45.345	59.532	114.76
α, β, γ (°)	90	90	90	90	90	90	90	90	90	67	90
	101.14	102.67	101.3	101.97	101.79	100.81	101.9	100.73	102.22	79.57	100.53
	90	90	90	90	90	90	90	90	90	88.8	90
Resolution (Å)	50-1.78	50-1.89	50-1.70	50-1.81	50-2.70	50-2.04	50-2.04	50-1.89	50-2.04	50-2.87	50-2.38
No. Reflections	51114	21112	56762	24143	14631	33845	16735	20077	16416	10878	21947
R _{merge} (%)	6.3	8.4	5.5	7.4	17.2	8.7	7.8	7.1	9.7	7.9	9.2
I / óI	24.2 (2.73)	20.35 (2.01)	28.72 (3.46)	21.77 (2.34)	9.13 (2.02)	16.75 (2.14)	22.18 (2.27)	26.7 (2.63)	13.59 (2.31)	9.03 (3.06)	12.33 (2.13)
Completeness (%)	99.5	98.6	96.8	98.1	99.1	98.6	97.0	94.0	96.9	93.5	98.6
Redundancy	3.5 (2.6)	4.1 (3.9)	3.4 (3.2)	3.9 (4.1)	3.7 (3.6)	5.2 (5.2)	4.9 (4.7)	6.2 (5.9)	3.7 (3.3)	2.2 (1.5)	4.0 (3.5)
<u>Refinement</u>											
Resolution (Å)	38.71-1.78	48.02-1.89	38.87-1.70	48.41-1.81	38.80-2.70	43.79-2.04	34.24-2.04	48.41-1.89	39.92-2.04	48.98-2.87	39.28-2.38
$R_{\text{work}}/R_{\text{free}}$ (%)	16.6/20.9	16.6/22.4	17.1/21.3	17.2/22.9	20.6/25.8	19.1/25.1	18.5/24.8	20.8/26.8	16.5/22.8	22.7/27.2	19.2/25.1
No. Heavy Atoms											
Protein	4912	2443	4912	2431	4844	4703	2345	2421	2411	4723	4757
Ligand/Ion	6	29	0	29	0	0	29	0	29	58	70
Water	478	187	471	246	40	304	148	201	208	11	140
B-Factors (Å ²)											
Protein	27.19	30.87	25.91	31.04	34.42	33.18	45.22	30.96	33.51	56.10	40.08
Ligand/Ion	36.91	30.63	0	32.29	0	0	40.87	0	25.19	59.20	31.48
Water	34.53	37.51	33.21	37.49	20.3	36.22	48.83	34.38	38.29	54.78	37.38
Ramanchandran Plot											
Favored Region (%)	98.5	98.0	98.5	98.7	98.7	98.3	98.3	98.7	98.7	97.4	97.7
Allowed Region (%)	1.5	2.0	1.5	1.3	1.0	1.3	1.3	1.3	1.3	2.6	2.0
Outlier Region (%)	0.0	0.0	0.0	0.0	0.3	0.3	0.3	0.0	0.0	0.0	0.3

*values in the parentheses represent highest resolution shells

Table S4. Protein concentrations used for the $K_m/V_{max},\,IC_{50}$ and K_i measurements.

M ^{pro}	M ^{pro} Co	oncentratio	on (µM)
mutants	K _m /V _{max}	IC 50	Ki
WT	0.1	0.1	0.005
H41M	10		
H41T	10		
H41Y	10		
M49I	0.05	0.1	0.025
M49T	0.0625	0.1	0.005
M49L	0.0625	0.1	0.003
M49V	0.125	0.125	
M49 deletion	0.1	0.1	0.05
T135I	0.1	0.1	0.05
T135 deletion	5		
N142S	0.1	0.1	
N142D	0.125	0.125	
N142L	0.0625	0.1	
N142I	0.0625	0.1	
N142H	0.125	0.125	
N142M	0.0625	0.1	
N142K	0.0625	0.1	
N142T	0.0625	0.1	
N142Y	0.0625	0.1	
N142 deletion	5		
S144L	2	2	0.5
S144T	0.75	0.75	0.25
S144M	0.4	0.4	0.125
L50F/S144M	0.15	0.15	0.05
S144F	0.25	0.25	0.125
S144P	10	10	5

S144A	0.25	0.25	0.04
S144W	0.5	0.5	0.25
S144E	1	1	0.2
S144V	2	2	1
S144H	0.5	0.5	0.25
S144Q	1	1	0.5
S144R	8	8	4
S144G	0.125	0.125	0.05
S144Y	0.25	0.25	0.125
S144K	10	10	2
S144D	2	2	
S144 deletion	10		
H163W	10		
H164N	0.25	0.25	0.1
H164 deletion	10		
M165Y	2	2	0.25
M165L	0.0625	0.1	0.003
M165I	0.0625	0.1	0.005
M165V	0.1	0.1	
M165W	12	12	
M165K	10	10	
M165T	0.4	0.4	0.15
M165R	12	12	
M165A	0.1	0.1	
M165G	1	1	
M165F	2	2	
M165H	12	12	
M165P	12	12	
M165C	0.1	0.1	

1				
	M165D	1.2	1.2	
	M165 deletion	10		
	E166Q	0.125	0.125	0.0625
	E166H	0.5	0.5	
	E166G	0.5	0.5	0.2
	E166K	1	1	
	E166V	0.4	0.4	0.2
	E166A	0.25	0.25	0.125
	E166L	5	5	
	E166Y	1	1	
	E166I	10	10	
	E166 deletion	10		
	H172T	10	10	2
	H172Y	0.5	0.5	0.15
	H172E	10	10	
	H172Q	0.125	0.125	0.0625
	H172D	0.5	0.5	0.25
	H172L	5	5	2
	H172M	1	1	0.4
	H172A	0.5	0.5	0.25
	H172F	0.4	0.4	0.125
	H172I	10	10	5
	H172V	5	5	
	H172N	3	3	1
	H172S	3	3	1
	H172K	1.5	1.5	
	H172R	5	5	
	H172G	1	1	
	H172C	2	2	
1				· · · · · · · · · · · · · · · · · · ·

H172 deletion	10		
Q189K	0.25	0.25	0.05
Q189F	0.0625	0.1	
Q189R	0.2	0.2	
Q189H	0.125	0.125	
Q189L	0.25	0.25	
Q189P	0.0625	0.1	
Q189S	0.1	0.1	
Q189E	0.0625	0.1	0.01
Q189 deletion	3	3	
Q192T	0.5	0.5	0.2
Q192K	1	1	0.25
Q192S	0.5	0.5	0.25
Q192L	0.3	0.3	0.15
Q192R	1	1	
Q192N	0.3	0.3	
Q192A	0.5	0.5	0.175
Q192I	0.25	0.25	0.15
Q192P	0.3	0.3	0.15
Q192G	0.75	0.75	0.25
Q192H	0.5	0.5	0.175
Q192Y	10	10	
Q192V	0.25	0.25	0.125
Q192W	0.5	0.5	0.25
Q192E	0.5	0.5	0.2
Q192C	0.25	0.25	0.125
Q192D	0.5	0.5	
Q192F	0.25	0.25	0.125
Q192 deletion	4		

Q189E/H172Y	0.4	0.4	0.1
-------------	-----	-----	-----