## **Supporting Information**

## Controlled and Selective Photo-oxidation of Amyloid-β Fibrils by Oligomeric *p*-Phenylene Ethynylenes

Adeline M. Fanni<sup>a,b</sup>, Daniel Okoye<sup>a</sup>, Florencia A. Monge<sup>a,b</sup>, Julia Hammond<sup>c,d</sup>, Fahimeh Maghsoodi<sup>e</sup>, Tye D. Martin<sup>a,b</sup>, Gabriella Brinkley<sup>c,f</sup>, M. Lisa Phipps<sup>g</sup>, Deborah G. Evans<sup>h</sup>, Jennifer S. Martinez<sup>i,j</sup>, David G. Whitten<sup>a,c</sup>, and Eva Y. Chi<sup>a,c</sup>\*

Author Address:

<sup>a</sup> Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131

<sup>b</sup> Biomedical Engineering Graduate Program, University of New Mexico, Albuquerque, NM.87131

<sup>c</sup> Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM. 87131

<sup>d</sup> Rose-Hulman Institute of Technology, Terre Haute, IN 47803

<sup>e</sup> Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, NM 87131

<sup>*f*</sup>Chemical Engineering Department, University of Minnesota, Duluth, MN 55812

<sup>g</sup> Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545

<sup>h</sup> Department of Chemistry and Chemical Biology, University of New Mexico, NM 87131

<sup>*i*</sup> Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, AZ 86011

<sup>*j*</sup> Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011

Corresponding author: Eva Y. Chi, evachi@unm.edu



**Figure S1:** Reverse phase HPLC chromatographs of soluble A $\beta$ 40 before and after irradiation in the presence of MB or OPE<sub>1</sub><sup>2-</sup>. Unincubated A $\beta$ 40 monomers, whether non-irradiated or irradiated in the presence of OPE<sub>1</sub><sup>2-</sup>, display a similar elution time that corresponds to 44.6-44.4% acetonitrile. When A $\beta$ 40 monomers are irradiated in the presence of MB, the elution profile of A $\beta$ 40 monomers significantly changed. The main peak eluted earlier (43.5% acetonitrile), which shows that A $\beta$ 40 peptide became more hydrophilic, which is consistently with the oxidation of the peptide. Also, the elution profile is broad with multiple peaks, indicating the presence of a several populations of A $\beta$ 40. Experimental method: The monomeric protein was analyzed by RP-HPLC on an Agilent 1100 instrument (Agilent Technology, Santa Clara, CA) before and after irradiation in the presence of OPE<sub>1</sub><sup>2-</sup> or MB (5  $\mu$ M protein with 1  $\mu$ M photosensitizer). 110  $\mu$ L of 5  $\mu$ M protein was centrifuged at 14,000 rpm for 15 minutes. The supernatant (100  $\mu$ L) was loaded onto an Eclipse XDB C18 column (Agilent Technology, Santa Clara, CA) pre-equilibrated at 40 °C with 95% of mobile phase A (water containing 0.1% TFA) and 5% of mobile phase B (acetonitrile containing 0.1% TFA). A $\beta$ 40 was eluted using a 5-100% linear gradient of mobile phase B over

40 min. The absorbance at 215 nm was monitored. Each chromatogram was background subtracted using the Agilent ChemStation software.



**Figure S2:** TEM images of A $\beta$ 40 after incubation of 50  $\mu$ M monomers either alone (A) or in the presence of 2.6  $\mu$ M non-sonicated A $\beta$ 40 fibrils (B) or 2.6  $\mu$ M sonicated A $\beta$ 40 fibrils (C). Only A $\beta$  protofibrils produced by sonication promoted fast peptide fibrillation.