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• Supplementary Figure 10: Spearman correlation for various models on individual datasets

for predicting unseen mutational sites in training sets.
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• Supplementary Table 2: List of hyperparameters and their optimization ranges for kernel
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3. Supplementary Notes:
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Supplementary Figure 1: The average performance of various embeddings for datasets categorized

by their taxonomy. All 34 datasets are categorized by their taxonomy with 11 Eukaryote, 12 Prokaryote, and

11 Human datasets. The average Spearman correlations are shown for (a). Eukaryote, (b). Prokaryote, and (c).

Human datasets. The average NDCGs are shown for (d). Eukaryote, (e). Prokaryote, and (f). Human datasets.

The ridge regression is used for Georgiev and one-hot embedding. Otherwise, ensemble regression is used. The width

of shade shows 95% confidence interval from n = 20 independent repeats. We showed and used absolute values of

Spearman correlation and NDCG for evolutionary scores.
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Supplementary Figure 2: The average performance of various embeddings for datasets categorized by

the fitness types. All 34 datasets are categorized to three types by their types of fitness: 9 datasets for binding, 12

datasets for enzyme activity, and 13 datasets for other fitness. Others include various types of fitness such as protein

stability, growth experiments, fluorescence, and drug and antibiotic resistance. The average Spearman correlations

are shown for (a). binding, (b). enzyme activity, and (c). others. The average NDCGs are shown for (d). binding,

(e). enzyme activity, and (f). other. The ridge regression is used for Georgiev and one-hot embedding. Otherwise,

ensemble regression is used. The width of shade shows 95% confidence interval from n = 20 independent repeats.

We showed and used absolute values of Spearman correlation and NDCG for evolutionary scores.
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Supplementary Figure 3: The average performance of various embeddings using ensemble models

from different categories. Different embeddings are tested on three categories of ensemble regression. The

ensembles for kernel, tree, and ANN models contain 10, 5, and 3 regressors, respectively. The average performance

over 34 datasets is shown. The average Spearman correlations are shown for ensemble of (a). kernel, (b). tree, and

(c). ANN models. The average NDCGs are shown for (d). kernel, (e). tree, and (f). ANN models. The ridge

regression is used for Georgiev and one-hot embedding for baseline comparisons. The width of shade shows 95%

confidence interval from n = 20 independent repeats. We showed and used absolute values of Spearman correlation

and NDCG for evolutionary scores.
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Supplementary Figure 4: Comparisons of regressors using Spearman correlation. This is a supplement

for Figure 3d to show performance on individual dataset. The ensemble model for all regressors is compared with

ensemble models for single type of regressors in kernels, trees, and ANNs. The ridge regression is also compared.

The model uses the PST embedding as features. Error bars show 95% confidence interval from n = 20 independent

repeats.
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Supplementary Figure 5: Comparisons for performance utilizing different types of structure modality

evaluated by Spearman correlation. Nuclear magnetic resonance (NMR) and AlphaFold (AF) are used for

comparisons. Since one NMR data contains multiple structure models in one experiment, “Ensemble NMR” indicates

average predictions from all NMR models. “Single NMR” indicates predictions from the first NMR model. The PST

embedding is used. Error bars show 95% confidence interval from n = 20 independent repeats.
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Supplementary Figure 6: The average performance of embeddings augmented with different evolu-

tionary scores. Embeddings are augmented single score: (a). no evolutionary score; (b). DeepSequence VAE score;

(c). EVE score; (d). Tranception score; (e). ESM score; (f). eUniRep score, and combinations of two scores: (g).

DeepSequence VAE and Tranception scores; (h). EVE and Tranception scores and combinations of three scores; and

(i). DeepSequence VAE, EVE and Tranception scores. Spearman correlation is used, and the results show average

performance across 34 datasets. Ridge regression is used. The width of shade shows 95% confidence interval from

n = 20 independent repeats.
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Supplementary Figure 7: The average performance of TopFit augmented with single or multiple

evolutionary scores. The embeddings for (a). ESM+PST and (b). eUniRep+PST are augmented with various

evolutionary scores. The augmentations are done with five single evolutionary scores: VAE, EVE, Tranception, ESM,

and eUniRep. Additional augmentations are carried out with three combinations of two or three scores, namely,

Tranception+EVE, VAE+Tranception, and VAE+Tranception+EVE. Spearman correlation is used, and the results

show average performance across 34 datasets. Ridge regression is used. The width of shade shows 95% confidence

interval from n = 20 independent repeats.
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Supplementary Figure 8: Extrapolation task predicting multiple-mutation datasets from single-

mutation data. (a) Comparisons between ridge regression and ensemble regression for extrapolation task. The

performance of PST embedding using ridge regression for various sizes of training data for (b). GB1 dataset and

(c). avGFP dataset. In (a)-(c), Spearman correlation is used as the evaluation metric. The width of shade or error

bars show 95% confidence interval from n = 20 independent repeats.
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Supplementary Figure 9: The average performance of various models over 27 single-mutation datasets

for predicting unseen mutational sites in training sets. Results are evaluated by (a). Spearman correlation

and (b). NDCG. Ensemble regression for 18 regressors is used. The width of shade shows 95% confidence interval

from n = 20 independent repeats. We showed and used absolute values of (a). Spearman correlation or (b). NDCG

for evolutionary scores.
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Supplementary Figure 10: Spearman correlation for various models on individual datasets for pre-

dicting unseen mutational sites in training sets. The ensemble regression is used. The results were shown

for training data sizes 24, 96, 168, and 240 from n = 20 independent repeats. The width of the shade shows 95%

confidence interval. We showed and used absolute values of Spearman correlations for evolutionary scores.
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Supplementary Figure 11: The frequency that an embedding is ranked as the best across 27 single-

mutation datasets for predicting unseen mutational sites in training sets, where performance is eval-

uated by Spearman correlation. For each dataset, the embedding with the highest average ρ is identified as

the top embedding. The best embedding includes the top embedding and others within the 95% confidence in-

terval of the top embedding. Comparisons for (a). structure-based embeddings, sequence-based embeddings, and

two sets of TopFit (VAE+PST+ESM and VAE+PST+eUniRep) (b). TopFit, structure-based and sequence-based

embeddings; (c). structure-based embeddings, sequence-based embeddings, and evolutionary scores; (d). structure-

based embeddings, sequence-based embeddings, evolutionary scores, and two sets of TopFit (VAE+PST+ESM and

VAE+PST+eUniRep). We showed and used absolute values Spearman correlation for evolutionary scores. Each

embedding has 20 independent repeats.
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Supplementary Figure 12: NDCG for various models on individual datasets for predicting unseen

mutational sites in training sets. The ensemble regression is used. The results were shown for training data sizes

24, 96, 168, and 240 from n = 20 independent repeats. The width of the shade shows 95% confidence interval. We

showed and used absolute values of NDCG for evolutionary scores.
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Supplementary Figure 13: The frequency that an embedding is ranked as the best across 27 single-

mutation datasets for predicting unseen mutational sites in training sets, where performance is

evaluated by NDCG. For each dataset, the embedding with the highest average NDCG is identified as the

top embedding. The best embedding includes the top embedding and others within the 95% confidence interval

of the top embedding. Comparisons for (a). structure-based embeddings, sequence-based embeddings, and two

sets of TopFit (VAE+PST+ESM and VAE+PST+eUniRep) (b). TopFit, structure-based and sequence-based em-

beddings; (c). structure-based embeddings, sequence-based embeddings, and evolutionary scores; (d). structure-

based embeddings, sequence-based embeddings, evolutionary scores, and two sets of TopFit (VAE+PST+ESM and

VAE+PST+eUniRep). We showed and used absolute values NDCG for evolutionary scores. Each embedding has 20

independent repeats.
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Supplementary Figure 14: Structure-based embeddings using persistent landscape representations.

PH is persistent homology. PH (landscape) is the persistent homology feature where the vectorization for dimensions

1 and 2 uses the persistent landscape. PST is the persistent spectral theory feature used in the main text. PST

(landscape) is the persistent spectral theory feature where the vectorization for dimensions 1 and 2 uses the persistent

landscape. TopFit is the feature combining VAE score, PST embedding, and ESM embedding. TopFit (landscape)

is the variant of TopFit feature that replaces PST by PST (landscape) feature. The results are calculated on YAP1

(WW domain 1) dataset [1]. The results were shown for training data sizes 24, 96, 168, and 240 from n = 20

independent repeats. Bars show average values. Error bars show 95% confidence interval. The ensemble regression

is used. (a). Spearman correlation and (b). NDCG are reported.
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Supplementary Figure 15: PST embedding with additional non-harmonic persistent spectral features

from L1 and L2. PST is the persistent spectral theory feature used in the main text. PST with p values is the

feature with additional non-harmonic persistent spectral features. Here, p is the value of persistence. Specifically,

p = 0 means no persistence is considered. The results are calculated on YAP1 (WW domain 1) dataset [1]. TThe

results were shown for training data sizes 24, 96, 168, and 240 from n = 20 independent repeats. Bars show average

values. Error bars show 95% confidence interval. The ensemble regression is used. (a). Spearman correlation and

(b). NDCG are reported.
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Supplementary Figure 16: TopFit embedding with additional non-harmonic persistent spectral fea-

tures from L1 and L2. TopFit is the feature combining VAE score, PST embedding and ESM embedding used in

the main text. TopFit with p values is the feature with additional non-harmonic persistent spectral features. Here,

p is the value of persistence. Specifically,, p = 0 means no persistence is considered. The results are calculated on

YAP1 (WW domain 1) dataset [1]. The results were shown for training data sizes 24, 96, 168, and 240 from n = 20

independent repeats. Bars show average values. Error bars show 95% confidence interval. The ensemble regression

is used. (a). Spearman correlation and (b). NDCGs are reported.
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Model

type

Packages Model Name Rounds

of hyper-

opt

Small

training

data?

Large

training

data?

Tree XGB Tree 40 Yes No

Kernel XGB Linear 40 Yes No

Tree sklearn-regressor GradientBoostingRegressor 0 Yes Yes

Tree sklearn-regressor RandomForestRegressor 0 Yes Yes

Kernel sklearn-regressor BayesianRidge 40 Yes No

Kernel sklearn-regressor LinearSVR 40 Yes No

Kernel sklearn-regressor ARDRegression 0 Yes No

Kernel sklearn-regressor KernelRidge 40 Yes No

Tree sklearn-regressor BaggingRegressor 0 Yes Yes

Kernel sklearn-regressor LassoLarsCV 40 Yes No

Tree sklearn-regressor DecisionTreeRegressor 0 Yes No

Kernel sklearn-regressor SGDRegressor 40 Yes No

Kernel sklearn-regressor KNeighborsRegressor 0 Yes No

Kernel sklearn-regressor ElasticNet 40 Yes No

Kernel sklearn-regressor Ridge 40 Yes No

ANN pytorch OneHidden 10 Yes No

ANN pytorch TwoHidden 10 Yes No

ANN pytorch ThreeHidden 10 Yes No

ANN pytorch OneHidden (wide) 10 No Yes

ANN pytorch FiveHidden (wide) 10 No Yes

Supplementary Table 1: List of regressors used in the ensemble regression. Hyperparameter opti-

mization was performed on all models except the tree-based method implemented by sklearn-regressor. Numbers of

hyperperameters optimization rounds are given in column “Round of hyperopt”. Here,“Small training data?” indi-

cates whether the model is used for the fixed and small training data size with Ntrain = 24, 96, 168, and 240. Here,

“Large training data?” indicates whether the model is used for 80/20 train/test split or five-fold cross-validation.
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Model Parameter Default Search range Search method

GradientBoostingRegressor n estimators 500 – –

RandomForestRegressor n estimators 500 – –

BaggingRegressor n estimators 500 – –

DecisionTreeRegressor – – – –

Tree (XGB)

eta 0.3 10−2 ∼ 1 loguniform

max depth 6 3∼8 quniform; q=1

lambda 1 10−3 ∼ 102 loguniform

alpha 0 10−3 ∼ 102 loguniform

num boost round 500 100∼2000 quniform; q=10

Linear (XGB)

lambda 1 10−3 ∼ 102 loguniform

alpha 0 10−3 ∼ 102 loguniform

num boost round 500 100∼2000 quniform; q=10

Ridge alpha 1.0 10−4 ∼ 105 loguniform

KernelRidge
alpha 1.0 10−4 ∼ 105 loguniform

kernel rbf

rbf; laplacian;

ploynomial;

chi2; sigmoid

choice

BayesianRidge

tol 10−3 10−5 ∼ 10−3 loguniform

alpha 1 10−6 10−7 ∼ 10−5 loguniform

alpha 2 10−6 10−7 ∼ 10−5 loguniform

lambda 1 10−6 10−7 ∼ 10−5 loguniform

lambda 2 10−6 10−7 ∼ 10−5 loguniform

LinearSVR

tol 10−4 10−5 ∼ 10−3 loguniform

C 1 0.1∼10 uniform

dual True True; False choice

LassoLarsCV

max iter 500 10∼1000 quniform; q=1

cv 5 2∼10 quniform; q=1

max n alphas 1000 10∼2000 quniform; q=1

SGDRegressor

alpha 10−4 10−3 ∼ 102 loguniform

l1 ratio 0.15 0∼1 uniform

tol 10−3 10−5 ∼ 10−3 loguniform

ElasticNet
l1 ratio 0.5 0∼1 uniform

alpha 1 10−3 ∼ 102 loguniform

Supplementary Table 2: List of hyperparameters and their optimization ranges for kernel and tree

models. If parameters are not specified in “Default”, default parameters defined in the software are used. If search

range is not given, the default parameter will be used all the time in hyperopt. Search method indicates the sampling

method in the given search range. In a given range lower ∼upper, “uniform” uniformly samples within the range, and

“loguniform” first maps the range to the log scale and uniformly samples within the mapped range. Here, “quiniform”

is a round-off the value from uniformly random sampling in the given range with parameter q: if the sampled value is

a, then the round-off value is round(a/q)*q. Here, “choice” returns one of the options in the list given in the search

range.

20



Model Parameter Default Search range Search method

OneHidden;
TwoHidden;
ThreeHidden

dropout 0.5 0.2∼0.95 uniform

weight decay 10−2 10−4 ∼ 1 loguniform

patience 20 – –

batch size 16 – –

tol 10−4 – –

num epochs 1000 – –

lr 10−3 – –

OneHidden size1 0.1 – –

TwoHidden
size1 0.1 – –

size2 0.05 – –

ThreeHidden

size1 0.1 – –

size2 0.05 – –

size3 0.01 – –

OneHidden (wide);

FiveHidden (wide)

dropout 0.5 0.2∼0.8 uniform

weight decay 10−4 10−5 ∼ 1 loguniform

patience 20 – –

batch size 64 – –

tol 10−4 – –

num epochs 2000 – –

lr 10−3 – –

OneHidden (wide) size1 1 – –

FiveHidden (wide) size1,size2,size3,size4,size5 1 – –

Supplementary Table 3: List of hyperparameters and their optimization ranges for ANN models. If

parameters are not specified in “Default”, default parameters defined in the software are used. If the search range is

not given for the parameter, its default value is used all the time even if the hyperopt is used. The search method

indicates the sampling method in the given search range. In a given range lower∼upper, “uniform” uniformly samples

within the range, and “loguniform” first maps the range to the log scale and uniformly samples within the mapped

range. Here, “quiniform” is a round-off value from uniformly random sampling in the given range with parameter

q: if the sampled value is a, then the round-off value is round(a/q)*q. Here, “choice” returns one of the options in

the list given in the search range. Here, “size1”, “size2”, and “size3” are the relative sizes of the first, second, and

third layers, respectively. The round-off integer by multiplying the size parameter with the number of features is the

number of hidden units at the corresponding layer. If evolutionary scores are used in the features, the number of

neurons at the last hidden layer includes an additional hidden unit for the score. The training is stopped when either

the epochs reach “num epochs”, or the training error reaches “tol” in patience consecutive epochs. Here, “lr” is the

learning rate , and “weight decay” is the weight decay coefficient used in the Adam optimizer.
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Dataset 24 96 168 240 80/20

split

5-fold

CV

avGFP, Sarkisyan 2016 0.607 0.71 0.732 0.746 – –

GB1, Olson 2014 0.478 0.682 0.756 0.809 – –

Kanamycin kinase APH(3’)-II, Melnikov 2014 0.553 0.661 0.687 0.701 0.789 0.791

β-lactamase, Firnberg 2014 0.713 0.785 0.812 0.831 0.909 0.911

β-lactamase, Jacquier 2013 0.696 0.769 0.775 0.771 0.797 0.793

β-lactamase, Deng 2012 0.506 0.565 0.579 0.615 0.823 0.818

β-lactamase, Stiffler 2015 0.771 0.812 0.834 0.844 0.908 0.909

PSD95 (PDZ domain), McLaughlin 2012 0.585 0.641 0.685 0.71 0.825 0.808

YAP1 (WW domain 1), Araya 2012 0.594 0.714 0.746 0.766 0.776 0.771

Ubiquitin, Roscoe 2013 0.443 0.654 0.73 0.762 0.839 0.848

Ubiquitin, Roscoe 2014 0.4 0.598 0.655 0.693 0.787 0.782

Ubiquitin, Mavor 2016 0.425 0.581 0.639 0.662 0.738 0.751

DNA methylase HaeIII, Rockah-Shmuel 2015 0.663 0.709 0.721 0.726 0.753 0.768

Aliphatic amidase, Wrenbeck 2017 0.561 0.656 0.671 0.692 0.783 0.784

Calmodulin-1, Roth 2017 0.083 0.132 0.193 0.221 0.289 0.289

TIM Barrell (S. solfataricus), Chan 2017 0.502 0.622 0.68 0.702 0.792 0.801

Thiamin pyrophosphokinase 1, Roth 2017 0.047 0.192 0.207 0.256 0.337 0.353

GTPase HRas, Matreyek 2017 0.41 0.58 0.642 0.686 0.844 0.845

Small ubiquitin-related modifier 1, Roth 2017 0.372 0.478 0.515 0.541 0.651 0.645

SUMO-conjugating enzyme UBC9, Roth 2017 0.369 0.553 0.585 0.62 0.759 0.753

Levoglucosan kinase, Klesmith 2016 0.166 0.231 0.247 0.258 0.431 0.429

Levoglucosan kinase (stabilized), Klesmith 2015 0.423 0.498 0.529 0.555 0.731 0.723

TIM Barrell (T. maritima), Chan 2017 0.409 0.47 0.559 0.637 0.783 0.789

Thiopurine S-methyltransferase, Matreyek 2019 0.447 0.574 0.604 0.614 0.686 0.673

TIM Barrell (T. thermophilus), Chan 2017 0.543 0.669 0.728 0.771 0.852 0.861

Mitogen-activated protein kinase 1, Brenan 2016 0.163 0.248 0.293 0.321 0.558 0.554

PTEN, Matreyek 2019 0.383 0.551 0.609 0.642 0.768 0.769

GAL4 (DNA-binding domain), Kitzman 2015 0.496 0.615 0.659 0.686 0.74 0.74

HSP90 (ATPase domain), Mishra 2016 0.446 0.543 0.586 0.611 0.754 0.751

Translation initiation factor IF-1, Kelsic 2016 0.449 0.59 0.665 0.708 – –

BRCA 1 (RING domain) (e3), Findlay 2018 0.402 0.519 0.553 0.58 – –

BRCA 1 (RING domain) (y2h), Findlay 2018 0.174 0.321 0.365 0.391 – –

UBE4B (U-box domain), Starita 2013 0.431 0.537 0.543 0.546 – –

PABP (RRM domain), Melamed 2013 0.495 0.663 0.719 0.747 – –

Supplementary Table 4: Spearman correlation obtained from TopFit by combining PST, ESM em-

bedding, and VAE score. The model was performed on six types for training data size. Four fixed numbers of

training are taken as 24, 96, 168, and 240, and the average Spearman correlation from 20 independent repeats was

shown. Either 80/20 train/test or five-fold cross-validation was performed and the average Spearman correlation

from 10 independent repeats was shown.
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Dataset
Augmented VAE ECNet

24 96 168 240 80/20

split

5-fold

CV

avGFP, Sarkisyan 2016 0.663 0.682 0.703 0.725 – –

GB1, Olson 2014 0.491 0.651 0.714 0.759 – –

Kanamycin kinase APH(3’)-II, Melnikov 2014 0.61 0.621 0.636 0.653 0.737 0.754

β-lactamase, Firnberg 2014 0.778 0.787 0.792 0.802 0.853 0.868

β-lactamase, Jacquier 2013 0.757 0.759 0.761 0.761 0.77 0.658

β-lactamase, Deng 2012 0.573 0.612 0.641 0.667 0.827 0.816

β-lactamase, Stiffler 2015 0.783 0.793 0.802 0.814 0.875 0.868

PSD95 (PDZ domain), McLaughlin 2012 0.607 0.634 0.65 0.671 0.721 0.737

YAP1 (WW domain 1), Araya 2012 0.615 0.67 0.715 0.729 0.731 0.746

Ubiquitin, Roscoe 2013 0.492 0.653 0.69 0.714 0.771 0.834

Ubiquitin, Roscoe 2014 0.431 0.593 0.628 0.641 0.706 0.764

Ubiquitin, Mavor 2016 0.472 0.565 0.596 0.627 0.69 0.711

DNA methylase HaeIII, Rockah-Shmuel 2015 0.72 0.722 0.721 0.728 0.749 0.654

Aliphatic amidase, Wrenbeck 2017 0.644 0.648 0.66 0.664 0.75 0.781

Calmodulin-1, Roth 2017 0.231 0.234 0.231 0.227 0.296 0.268

TIM Barrell (S. solfataricus), Chan 2017 0.567 0.616 0.655 0.694 0.749 0.767

Thiamin pyrophosphokinase 1, Roth 2017 0.235 0.238 0.263 0.268 0.332 0.365

GTPase HRas, Matreyek 2017 0.488 0.554 0.598 0.64 0.781 0.828

Small ubiquitin-related modifier 1, Roth 2017 0.458 0.481 0.52 0.541 0.615 0.641

SUMO-conjugating enzyme UBC9, Roth 2017 0.503 0.577 0.622 0.65 0.737 0.724

Levoglucosan kinase, Klesmith 2016 0.202 0.229 0.254 0.254 0.406 0.477

Levoglucosan kinase (stabilized), Klesmith 2015 0.451 0.502 0.508 0.509 0.626 0.72

TIM Barrell (T. maritima), Chan 2017 0.466 0.551 0.632 0.663 0.742 0.759

Thiopurine S-methyltransferase, Matreyek 2019 0.573 0.573 0.576 0.586 0.63 0.562

TIM Barrell (T. thermophilus), Chan 2017 0.606 0.683 0.722 0.746 0.807 0.816

Mitogen-activated protein kinase 1, Brenan 2016 0.175 0.241 0.244 0.275 0.485 0.426

PTEN, Matreyek 2019 0.392 0.46 0.512 0.551 0.733 0.698

GAL4 (DNA-binding domain), Kitzman 2015 0.53 0.625 0.656 0.673 0.713 0.672

HSP90 (ATPase domain), Mishra 2016 0.538 0.553 0.573 0.586 0.702 0.689

Translation initiation factor IF-1, Kelsic 2016 0.514 0.548 0.578 0.602 – –

BRCA 1 (RING domain) (e3), Findlay 2018 0.497 0.533 0.556 0.572 – –

BRCA 1 (RING domain) (y2h), Findlay 2018 0.162 0.297 0.329 0.392 – –

UBE4B (U-box domain), Starita 2013 0.538 0.539 0.559 0.564 – –

PABP (RRM domain), Melamed 2013 0.719 0.745 0.774 0.79 – –

Supplementary Table 5: Spearman correlation from Augmented VAE model and ECNet model. The

numbers of training data are 24, 96, 168, and 240 with the 80/20 train/test split for the augmented VAE model. The

average Spearman from 20 independent repeats was shown. ECNet was performed on five-fold cross-validation. The

average Spearman from multiple repeats was obtained from the original work.
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Supplementary Note 1 Embedding comparisons

Here, we categorized embeddings into various classes, and compared their performance within

different classes. This is an expansion of Section: Comparing PST embedding with sequence-based

embedding .

First, we compared all sequence-based embeddings evaluated by Spearman correlation. Two

constant embeddings, i.e., one-hot and Georgiev, provide baselines (Figure 3a). In general, Georgiev

embedding tends to have better performance with a small number of training data than one-hot

embedding while opposite observations can be found with a larger number of training data. Three

deep protein language models, i.e., TAPE ResNet, TAPE Transformer, and Bepler embedding,

underperform these two constant embeddings. The UniRep embedding achieves better average

performance than both constant embeddings, and its fine-tune version (eUniRep) further improves

the performance. The eUniRep along with TAPE LSTM and ESM rank at the top in three sequence

embeddings, and their performance varies on the number of training data (Figure 3a, Extended

Data Figure 3). With small training data, TAPE LSTM and eUniRep have similar performance

and they have a higher frequency as the best embeddings over all datasets than ESM (Extended

Data Figure 3). The eUniRep with fine-tuning on MSAs exhibits partial unsupervised behavior

as evolutionary scores, that promises good performance for low-N case. With larger training data,

the performance of ESM is improved, and it outperforms TAPE LSTM and eUnirep, especially

for the case with 240 training data. Overall, eUniRep and TAPE LSTM models rank as the two

best embeddings for the low-N case. As the number of training data increases, the performance of

ESM embedding is improved and achieves the best performance when over 168 training data are

available (Extended Data Figure 3a).

Similarly, for NDCG metrics, ESM embedding ranks most frequently as the best embedding

for all numbers of training data, including low-N case. It demonstrates the advantage of ESM

over other embeddings in ranking high-fitness variants (Extended Data Figure 5a). Unlike Spear-

man correlation, embeddings ranked by NDCG reveal that two constant embeddings, one-hot and

Georgiev, are also top strategies for the low-N case.

Next, we compared the embeddings including structure-based and sequence-based. As dis-

cussed in the main text, PST embedding ranks as the best embedding disregarding the large

number or small number of training data. This conclusion holds for both Spearman and NDCG

metrics (Extended Data Figure 3b and Extended Data Figure 5b). While for NDCG, the su-

perb performance is more clear where persistent homology (PH) embedding can outperform other

sequence-based embeddings, and PST embedding shows further improvement over PH.

Then, we compared all single embeddings and evolutionary scores. As expected, the unsuper-

vised manner of evolutionary scores allows accurate predictions on fitness with no or low-N training

data for both Spearman and NDCG metrics (Extended Data Figure 3c and Extended Data Figure

5c). Since the evolutionary scores provide predictions independent of training data, the regression

models built on embeddings tend to surpass evolutionary scores when a sufficient number of training

data is available. Particularly, PST embedding shows better performance than evolutionary scores

when relatively large training data (i.e., 240) are provided. The model performance changes re-

garding various training data sizes can be observed in detail at individual datasets for their average

Spearman correlation and NDCG (Extended Data Figure 2 and Extended Data Figure 4).

Last, we further included two TopFit embeddings for comparison. The two TopFit models all
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integrate PST embedding and VAE evolutionary score, and one of them is further aided by ESM

embedding and the other is aided by eUniRep embedding. The evolutionary scores consistently

show superb performance for the low-N case. However, TopFit embeddings become completely

dominant when more training data is available. The two TopFit models all show over 2.5-fold

frequently ranked as the best features over other single strategies with over 96 training data provided

(Extended Data Figure 3d and Extended Data Figure 5d). These results further demonstrate the

strong generalizability and accuracy in TopFit by combining multiple strategies.

Supplementary Note 2 Evolutionary scores for unsupervised fit-

ness predictions

In this work, we compared 5 advanced evolutionary scores, DeepSequence VAE [2], EVE [3],

Tranception [4], ESM [5], and eUniRep [6], for predicting the relative fitness of protein mutations

in an unsupervised manner. More comprehensive comparisons of extensive evolutionary scores

were studied previously [7, 8, 4]. All methods tested achieve relatively high Spearman correlations,

especially, DeepSequence VAE achieves the best average performance on 34 datasets (Figure 3a)

and it ranks as the best model on a majority of datasets (21/34).

Overall, evolutionary scores provide the most economic way of predicting protein fitness with-

out labeled data. They generally achieve higher Spearman correlations than supervised models with

small training data (e.g., 24 training data). When sufficient training data is available, supervised

models tend to surpass unsupervised models (Figure 3a, Extended Data Figure 2 and Extended

Data Figure 3).

Supplementary Note 3 TopFit augmented with different evolu-

tionary scores

In the main text, we only combined embeddings with VAE evolutionary score for fitness pre-

dictions. Here, we further investigate embeddings combined with other evolutionary scores. When

the embedding is augmented with any evolutionary scores, the improvement in Spearman corre-

lation can be seen. Especially, the improvement is significant on poorly performing embedding,

for example, TAPE ResNet achieves over 4-fold improvement for the low-N case and around 2-

fold improvement for large training data after augmented by any evolutionary scores we tested

(Supplementary Figure 6a-h). This indicates that the augmentation with an evolutionary score

ensures a better lower bound of regression task. Meanwhile, the embedding can further improve

the performance with sufficient training data.

Next, we combine PST embedding with either ESM or eUniRep embedding. The combined

two embeddings are further augmented with evolutionary scores to predict protein fitness (Supple-

mentary Figure 7). Without the evolutionary score, the combined embeddings alone lead to the

lowest average Spearman correlation regardless of the number of training data, and the average

Spearman correlation increases as the number of training data increases. With the augmentation of

single evolutionary score, the second best score EVE leads to the best performance in TopFit. We

further tested the augmentation of multiple evolutionary score in TopFit. All combinations show
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clear improvement over the single-score augmentation. Interestingly, the two-score combination

between VAE and Tranception scores achieves the best average Spearman correlation, and it even

outperforms the three-score combination by the inclusion of EVE. Although Tranception is a mix-

ture of local and global evolutionary model, it primarily contains global evolutionary information

from large sequence database. The purely local evolutionary model VAE contains evolutionary in-

formation from local MSAs complement to Tranception for the best combination in TopFit. While

EVE is another local evolutionary information which is redundant in the three-score combination.

In sequence-based feature generation, both evolutionary score and embedding are generated

from deep protein language models that learn from millions of protein sequences. The evolution-

ary score provides a high-level probability distribution for protein mutation in a one-dimensional

number, while the embedding has low-level features stored in a high-dimensional vector. Then, the

regression model can easily extract the most important information from the evolutionary score,

while the embedding needs to be further engineered in a complicated regression architecture. As a

result, the augmentation with a one-dimensional evolutionary can largely boost the performance of

the regression. Also, the evolutionary score ensures a robust lower bound of predictive performance

for the low-N case.

Supplementary Note 4 Improvements of TopFit

TopFit shows clear improvement over sequence-based methods with the inclusion of structure

data (Figure 4 and Figure 5). Such improvement is complicated with integrates featurizaiton and

the downstream supervised model. Indeed, multiple factors may contribute to the improvement.

In this section, we dissect TopFit improvement in various circumstance.

First, the quality of structure data is critical to structure-based performance, consequently,

affects TopFit improvement over sequence-based method (Extended Data Figure 6), as we dis-

cussed previously in Section 2.5. Random coils in 3D structure have unstable structures which are

difficult to be accurately determined. Indeed, accuracy of structure-based method depends on the

percentage of random coils in the target protein (Extended Data Figure 6a). B-factor quantifies the

atomic displacement in X-ray structures, which can serve as another indicator of structure quality.

Indeed, the accuracy of structure-based methods also depends on the B-factor values (Extended

Data Figure 6b).

By classifying target proteins by their taxonomy into three classes with 11 eukaryote, 12

prokaryote, and 11 human datasets, we looked into the average performance of various models

on each class (Supplementary Figure 1). In each class, TopFit shows clear improvement over all

single type of embedding regardless of training data size, and it also improves the unsupervised

evolutionary scores when sufficient training data is given (i.e. 96 here). In particular, when 240

training data is available, TopFit achieves at least 10.0% improvement on Spearman correlation

over sequence-base methods when 240 training data is available. Specifically, TopFit using ESM

embedding improves 10.0% and 14.2% over ESM embedding on eukaryote and prokaryote for Spear-

man correlation, while larger margins are observed for human datasets with 16.6% (Supplementary

Figure 1a-c). A small improvement (7.5%) over VAE is observed for prokaryote datasets, while

TopFit shows significant improvement over VAE on eukaryote and human datasets with 31.5% and

25.1%. The largest improvement from TopFit is observed on human datasets due to the overall
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lower performance from single strategy on this class of datasets.

Furthermore, the type of fitness measured by experiments may have impacts on supervised

model performance and consequently affect the TopFit improvement over sequence-based methods.

Indeed, we classify 34 datasets into three classes depending on their fitness experiment: binding,

enzyme activity, and others. Fitness for binding includes protein-ligand, protein-DNA and protein-

protein binding. Enzyme activity is related to kinase activity and phosphorylation. Rather than

these two major fitness types, there are various types of fitness, such as protein fluorescence, protein

stability, drug resistance, and growth experiments studied in the benchmark datasets. Since they

are only studied in a few datasets, we classify these types of fitness into one single class: others

(Supplementary Data 1). In the class of binding fitness, all embeddings including sequence- and

structure-based achieve relatively higher performance than other classes (Supplementary Figure 2).

Due to the overall good performance of all approaches, TopFit improvement is smallest over other

classes. In particular, TopFit using ESM embedding only improves 7.2% in Spearman correlation

over ESM embedding when 240 training data is available (Supplementary Figure 2a), while it has

an extremely large improvement over VAE with margin 48.8%. For the class of enzyme activity,

despite the small improvement from TopFit over VAE with margin 8.2% (when Ntrain = 240),

TopFit improves 29.3% in Spearman correlation over ESM embedding (Supplementary Figure 2b).

For the class with ”others” fitness, all methods achieved lower average performance than other

classes. Consequently, TopFit maximize the complementary information from both structure- and

sequence-based methods, with 12.7%, 15.4%, and 28.0% improvement over PST embedding, ESM

embedding, and VAE scores, respectively (Supplementary Figure 2c). Similar behaviors can also

be observed in NDCG metrics. The DMS for binding and enzyme activity have standard piplines

for experimental assay which may have smaller experimental errors. This may be the reason the

average performance of methods tested in these two classes is significantly better than “others”

type of fitness. But TopFit consistently shows improvement over sequence-based methods in all

classes, which indicates the combination of sequence- and structure-based methods can complement

to each other to improve the accuracy in predicting fitness landscape.

Supplementary Note 5 Predictions of unseen mutational sites

In the main text, we perform train and test sets by random sampling. In protein engineering, it

is also important to predict mutations at unseen sites from training set. Indeed, we further tested

TopFit and other methods for their ability in generalization for predicting mutations at unseen

sites. We performance our benchmark on single-mutation datasets by excluding the datasets with

NMR structures, which results in 27 datasets.

To have a split for the training and test sets with different mutational sites, we first split the

mutational sites equally into two initial sets, and sample training and test sets within these two

sets, respectively. If one of the two initial set contains insufficient number of data for training or

testing set sampling, we add an additional mutational site from the other initial set to this initial

set. This adjustment will repeat until we have two initial sets containing sufficient number of data

for both training and testing sets. Our benchmarks only use fixed sizes of training set with 24,

96, 168, and 240, and test set contains 20% of data . The equal split of two initial sets is usually

enough for training and test set splits. The adjustment is occasionally needed for small datasets.
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First, we compared various embeddings. From the average performance over 27 datasets,

PST embedding outperforms all sequence-based embedding regardless of sizes of training data for

both Spearman correlation and NDCG (Supplementary Figure 9), while PST achieves a small

margin over the best sequence-based ESM embedding. PST is also ranked most frequently as the

best embedding over others evaluated either by Spearman correlation (Supplementary Figure 10,

Supplementary Figure 11a) or NDCG (Supplementary Figure 12, Supplementary Figure 13a).

Next, we compared embeddings with evolutionary scores. All five evolutionary scores show

dominant performance over the embeddings with higher average performance in both Spearman

correlation and NDCG (Supplementary Figure 9). Only the worst-performing eUniRep score under-

performs PST and ESM embedding when sufficient training data is provided. Unlike the random

training and testing split (Extended Data Figure 1), the unsupervised evolutionary scores turn

to be more powerful to generalize to unseen sites (Supplementary Figure 11c and Supplementary

Figure 13c).

By combining both embeddings and evolutionary score, TopFit has dominant average perfor-

mance over all embeddings (Supplementary Figure 9). TopFit indeed ranks most frequently as

the best methods among all embeddings over 27 datasets evaluated by both Spearman (Supple-

mentary Figure 11b) and NDCG (Supplementary Figure 13b). However, TopFit can surpass the

average performance of evolutionary scores with over 168 training data, and the improvement over

evolutionary scores is limited.

Predictions for unseen sites require the models to predict out-of-distribution data. This is

extremely difficult for the supervised models of either structure- or sequence-based ones. Our

PST embedding consistently outperforms sequence-based embedding for this extrapolation task.

However, the unsupervised evolutionary scores are better candidate to handle this type of tasks. On

the other hand, in random training and test split, both structure- and sequence-based embeddings

can easily surpass evolutionary scores with limited number of training data. TopFit integrate all

these approaches together largely enhance its generalizabikity and accuracy in predicting protein

fitness landscape. The extrapolation may be needed for the very early stage of protein engineering

to screen a few mutations. Due to the much higher computational costs and limited improvement

from TopFit than evolutionary scores, evolutionary scores may be more suitable for an initial screen.

The supervised TopFit may be more suitable for a later stage with hundreds of available training

data.

Supplementary Note 6 Representations of persistent features

In this work, the element- and site-specific strategies are utilized to generate many sets (i.e., 9

or 10) of point cloud data. PST or persistent homology features indeed have high dimensions even

a small dimensional vectorization is employed for each set of point cloud. The high-dimensional

features may causes strong overfitting issues in machine learning, especially, for the small training

set studied in our work. To accommodate this issue, in topological dimensions 1 and 2, we only

calculate seven statistics of Betti-bars to extract the most essential features, which is followed by

the previous work in studying protein mutations [9]. This featurization results in a 420-dimensional

vector for each mutational entry.

Alternatively, the persistent landscape [10] and the persistent image [11] are two stable repre-
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sentations for persistent homology widely used in machine learning models. Here, we further tested

the persistent landscape for dimensions 1 and 2 under our element- and site-specific strategies. We

pick the top 3 landscapes with small resolution 10 to obtain the representation, which results in

a 30-D vector for each point cloud at topological each dimension. Even with such a small size of

representation, a 30×10×2×3 = 1800-D vector (i.e., 10 sets of point clouds, 2 is due to dimensions

1 and 2, 3 is for the features from wildtype, mutant, and their difference) is generated for each

mutational entry. We replaced our featurization for dimensions 1 and 2 by the persistent land-

scape features in the site- and element-specific settings, and compared with our statistics-based

features on YAP1 (WW domain 1) dataset [1]. For PH features, the persistent landscape-type

features cause slightly reduction in Spearman correlation when over 96 training data are available

(Supplementary Figure 14a), while they show slight outperformance on NDCG for several values of

training data sizes (Supplementary Figure 14b). Similarly, the persistent landscape-based features

cause a reduction of performance for both PST and TopFit evaluated by both Spearman correlation

and NDCG. Nonetheless, using or not using such persistent landscape-based features, no statistical

significant changes can be observed for the model performance (Supplementary Figure 14).

In dimensions 1 and 2, our PST only includes the persistent Betti bars features (i.e., equivalent

to harmonic spectra), while the non-harmonic spectra are not considered. Here, we further tested

the inclusion of non-harmonic spectra in dimensions 1 and 2. Especially, we tested nine persistence

parameters in building the p-persistent q-combinatorial Laplacian with p = 0, 0.1, 0.2, 0.3, 0.4,

0.5, 1.0, 1.5, and 2.0 which are implemented by HERMES [12]. The p-persistent Laplacians are

calculated at 10 fixed filtration parameters: 2Å, 3Å,· · · , 11Å. Five statistical values of non-harmonic

spectra: minimum, maximum, mean, standard deviation, and sum, are used for vectorization. It

results in a 50-dimensional vector for each point cloud. With the same strategy using in persistent

landscape, this approach results in a 3000-dimensional vector. By adding the non-harmonic spectra

to our PST feature used in the main text, we consistently observe the reduced Spearman correlation

to our original PST feature (Supplementary Figure 15a). While a few cases of inclusion of non-

harmonic spectra achieve slightly improved NDCG than our original PST feature when the training

set is small with 24 or 96 data, no significant improvement is observed (Supplementary Figure 15b).

Similarly, the inclusion of non-harmonic spectra in TopFit does not provide any improvement, and

reduced average performance is observed more frequently (Supplementary Figure 16).

Enrich information may be obtained from the persistent landscape or non-harmonic spectra

at high dimensions. However, the high-dimensional features introduced by these approaches may

make the machine learning models more difficult to handle the overfitting and generalization is-

sues. Meanwhile, the high-dimensional features make machine learning models more computational

expensive. In our work, since the critical structural information may be mainly contained in topo-

logical dimension 0 from both harmonic and non-harmonic spectra, we designed a comprehensive

representation for L0 features in TopFit. The high-dimensional feature may provide further im-

provement, but we use simple and small vectorization of it to overcome overfitting issues.

Supplementary Note 7 Sources of datasets

The list of data is provided in Supplementary Data 1 with original data sources [13, 14, 15,

16, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].
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